. ٸ, .

 

 

 

*.doc

 

 

 

 

( ) ( ). .

 

 

In the article two kinds movements (straight and circle) of two kinds photons (positive and negative) are described. From this point of view structure of elementary particles and of quants of radiation and various physical effects are explained.

 

 

 

 

 

1.      .

1.1. .

 

 

 

: (+ - ) ( - - ).

+ - , - - . , (+ - ), , ( ) ( ) ( ). :

1. ;

2. ( , , ). ( , ). , (.1).

 

 

 

 


) )

 

. 1.

 

 

 

 

 

 

 

 

1.2. .

 

 

:

 

∙ 2 t =

h

 

(1),

2

 

- , t - , ( ) , .. ( ) , h - . . 1 . 2υ (υ - , 2υ - . ), 2t 2t ∙ 2υ , :

∙2t ∙2υ = (h/2)∙2υ = hυ. , hυ - , ( ) ( ). , ( 2υ0 = const), , ( 2υ > 2υ0 ). 2υ > 2υ0, . 2υ0 , . . , , () . , , , .

 

 

1.3. .

 

( ) .

2t (t + t ) ( ). , , ( ) (. 2).

 

E

2 ● 1 ● 1

1 3

2 4 t

4

3

) )

 

. 2.

 

1 , , . 1 Vmax ( ) . , 1, , px , ( ) = m c (m , ), = mVmax , 2= 2 + 2 (.3).

 

py

px

1

. 3.

 

2 . , 2,

== m ( = 0).

3 , Vmax 1. , , 3, 2 = 2+2, = - m Vmax , = m (.4).

px

 

3

. 4.

 

4 , . , 4, = = m ( = 0) - , 2. , m = ( Vmax << ) - - 2 , - 1, 1 2. ( 1, = mV, V ) ( ) max 1 3, .. = maxcos ωt, ω , t- . ( ) py, 1, = max cos ωt 2 , 1. 2 1, 1 (.. 2) 2 () 1: , 1 2 , ( 1 2) (.5) 2, ..

 

 


. 5.

2 . 1, 1 3 , 2: 1 1, 3 3 ( 1 3 2) (. 6). 1 ( υ), 3. 1 ( 3 ) υ, λ =/ υ

 


1

. 6.

3

1 2

 

( 1 3). ( 1) 2υ. 1 2 1 , ( 1 3 , , 3). 1 ( 2) 1 2υ. , υ λ (λ - ), () 2υ λ/2. ( ) ( ) 2υ λ/2 (λ/2 ).

 

 

 

1.4. .

 

, , ( ) t ( ) ( ), d, .. t d . t d ( ). ( . ), . t ()

t () . t = cnst . t () t () , t () t () . , t () ( ) . ,

t 0 = t , ( ) . ℓ0 , ( ) (. 7). () ( ) 2t, λ0/2 = 2ℓ0 - . ( λ/2 > λ0/2) :

λ

 

=

nλ0

 

, 2υ =

0

 

, n ≥ 2 (2)

2

2

N

 

( λ/2 < λ0/2) :

λ

 

=

1

 

*

Λ0

 

=

0

 

, 2 υ = 2n·2 υ0 , (3)

2

n

4

n

n ≥ 1 , (n + 1)

 

● ● ● ● ● ● ● ● ● ● ● ●

 


0

λ0/2 . 7.

 

 

 

 

1.5. .

 

q1 ( 1, ) q2 ( 2, F). , 1 , x 1 2, , , R. ( 2 , , 2, 2 , ). 1 .: F = /∆t . F , 1 2 1 . ( 1):

 

F =

q1 q2

 

=

q1 q2

S R 1

4πε0R2

ε0S

, 2 .

1 , . F = q1 / ε0S. 1 ( )

 

N = 2 υ0 d =

d

 

. (4)

2t

1 1

 

N0 =

N

 

. (5)

q 1

 

Nu = N q =

q N

 

(6)

. 1 . 1 . , 2, n = Nu /S

(n- ).

 

n =

N0 q1

 

=

q1 N

 

=

q1 d

 

(7),

S

S

S∙2t

 

 

 

=

Nu

 

= a n (8),

N0 ε0S

= 1/ N0 ε0 = const, ( , , 1 . 1 1 .). (: Nu c-1, N0 c -1 -1,

nc -1 -2 , ). :

F = q2 n (9)

F = Nn m (10),

Nn 2 ( 1) 1 , m - 1 . Nn q2 :

Nn = b q2 n (11),

b ( , 2 (1 ) 1

n = 1 c 1 2 , b -2 1 ). , 0 < b < 1, ..

b , 2 (1) 1 , , 1 . , 2, 1 . :

F = b q2 n m c = q2 n b m c = a (12).

m = / b c = const . , , 1 2 1 , , 2 1 1 . 1 2: = FR, F 1 2, R , - 1 2, = mV 2/ 2, - 1, m- 1, V 1, F = mV 2/R, = FR /2 = p / 2, .. 1 ½ 1 2 ( ). , ( . ) ( ) , . () , , m c (m , ). , . .

 

 

 

1.6. .

 

, 1 V 2 , 1 (.8).

 


t1

V t2 t2

(2) 2 (2) 1

V t2 t1 a

1

t2

. 8.

 

F ~ n, n ~ 1/ R2, R - , F ~ 1/ R2. : F , 2 , Fv , 2 V 1, R1 , , R2 , 2 , 1 , R1 .

F ~ 1/ R12 , Fv ~ 1/ R22 R1 = ct1, R2 = ct2 ( - , t1 R1 , t2- R2), F ~ 1/ t12 , Fv ~ 1/ t22 .

 

Fv =

t12

 

F (13)

t22

t1 = t2+ V t2 (. 8)

 


Fv = 1 +

V

2

F (14)

c

2 1 V , t1 = t2 V t2 (.8)

 

 

Fv = 1 -

V

2

F (15)

c

2 1 ′, 1, ′, V, 2 1 V cos£, £- a′ , (.9)

 


V t2 (2) 2 £ V t2

2 £ 180 -£ (2)

t2

t1 t1 t2

£

1

. 9.

(14) :

 


Fv = 1 +

V cos£

2

F (16)

c

 

2 1 ′ (15) :

 

 


Fv = 1 -

V cos£

2

F (17)

(16) Fv = F + F,

 


F = 1 +

V cos£

2

- 1 F =

2 V cos£

 

+

V 2cos2£

 

F (18)

c

c2

. , (17) : Fv = F - F,

 


F = 1 - 1 -

V cos£

2

F =

2 V cos£

 

-

V 2cos2£

 

F (19)

c

c2

.

F F , F F . (16) (17) £ t2. V<<, (. 9). V cos£ 2 (t1 - t2 ) / t2 = =(t1 / t2 1), (t2 - t1)/ t2 = (1 - t1 / t2). (16) (17) , (13). R1 = ct1, V, £, , :

(t1)2 + (V t1)2 2Vt1 t2 cos£ (t2)2 = 0, ( £ (180 £)) (t1)2 + (V t2)2 + 2Vt1 t2 cos£ (t2)2 = 0. t2, (13). (14) (15), V 2 1, , , 2 1 ( ).

1 , V 2, , ′ (.10).

V t2 O V t2́

2                                                                                                                                                ΄

t1 t2 t1́ t2 ́́

. 10.

1                                                                                       

1 2 2 . 2 1. , 2 , 1 , 2 t2, 2 . 2, , 1

Fv = (t12 / t22 )F . (t1)2 = (V t2)2 + (t2)2 (. 10) :

 


Fv = 1 +

V 2

 

F = F + F,

c2

 

 

F =

V 2

 

F (20).

2

, 2 , 1 , 2 t́2́, 2 (. 10). 2, , 1 Fv = (t1 / t2)2 F . (t′2)2 = (t′1)2 + (V t′2)2 :

 


F′v = 1 -

V 2

 

F′ = F′ - F′,

c2

 

 

F′ =

V 2

 

F′ (21).

2

 

 

 

1.7. .

 

(. 10), V ( , | V | , I). () (). V , 1 (. 10) , 2 ( 1 ) , . 1 2 Fv = (1 + V 2 / c2)F, F 2. ΄ 1 1. 1 c 1 ΄. ( ). ΄ 2V, V, .

 


1+

(2V)2

 

F + F = 2 +

4V 2

 

F ,

2

2

1+

V 2

 

F + 1 +

V 2

 

F = 2 +

2V 2

 

F .

 

2

2

2

 

, :

 

2V 2

 

F (22)

2

( ). , V, .

 


1+

V 2

 

F + 1 +

V 2

 

F = 2 +

2V 2

 

F .

2

2

2

F + F = 2F . , : (2V 2 / 2 ) F ( (22)). F . 1 1

1 , V . 1 1/ V . ,

F = k(q1q2 /R2) = k / V 2 , q1 = q2 = 1/ V, R = 1, k = 1/ 4πε0 = 8,987109. ΄ 1

(2V2 / 2 ) F = 2k/ 2 = 28,987109 / 8,9871016 = 210 7 . 1.

 

 

 

1.8. .

 

, 2 V 1 ( ) (. 8). V , F , V , F . () . , , - . ( ). . , . , . , .

 

 

 

1.9. .

 

t , ( ). , , , , . () ( ), .

V, () + V = λυ, = λ υ0 () , υ0 ( ), υ , λ - ( υ0 ).

 

υ =

+ V

 

=

+ V

 

υ0 (23)

Λ

V. V = λυ.

υ =

V

 

=

V

 

υ0 (24)

Λ

, , .

 

 

 

1.10. .

 

Et = E + E, E , E () ( , ). 1 V, E1 = m V 2 / 2 (m- ), E1 = E (1 - (V 2 / 2)) (E , E = 0. (21) E =FR). 2 V + ∆V, E2 = (m(V + ∆V)2) / 2,

 


E2 = E 1-

(V + ∆V)2

2

E = E1 + E1 = E1 + E1 ,

m V 2

 

+ E 1 -

V 2

 

=

m(V + ∆V)2

 

+ E 1-

(V + ∆V)2

 

2

2

2

2

 

, E = m 2 /2,

 

Et = E1 + E1 =

m 2

 

(25)

2

 

, , , ( , ). , ,

E =

 

m 2

/2 = const (26)

(. ) , , . , , . , . () . (. ).

, ( ) ( , , , , 1, 2, 2 1 m ). ( ) ( ).

 

 

 

1.11. .

 

. (. ). t d + - ( ), 2t - ; . tg ( ) : d/2 + d/2 - -. 2tg . , . ( ) , ( ). 2 R

F = ke2/R2 = (2,306∙10 28 / R2 ) ,

Fg = Gm / R2 = (1,860∙10 64 / R2 ) (m ).

F

 

=1,24∙1036 (27),

Fg

.. 1,24∙1036 , .

2tg = 1,24∙1036 2 t (28).

(. ) n ( ),

 

tv = 2 tg

n

 

(29)

d

, .

, . , ( tg) , . . ( tg ). , , .

 

 

 

1.12. .

 

Fg , F , . , Fg, , , F ((13) (21)):

Fgv =

t1 t2

2 · Fg = Fg Fg (30),

 

Fg = G m1 m2 / R2 ( ), + , - - .

, 1 2 :

 

Fgv = 1 -

V 2

 

Fg = Fg Fg (31)

c2

( Fg = (V2 / 2 ) Fg , V - 1 ), 1 2 1 (. 10 .11). V t2

1

t1 t2

2 . 11.

, . C R = 0,387 .. = 5,78952·1010 . = 88 . = 7,6032·106 . V = 2πR/ = =4,78438·104 /. Fg / Fg = V2 / 2 = 2,54693·108

88 . , Fg 88 . 360 ,

100 =36525. c Fg 360·36525/88 =149420,45 Fg Fg / Fg , 100 ( ) :

2,54693·108 · 149420,45 = 0,0038056 = 13,7″. 13,7″ 100 .

 

 

 

1.13. .

 

(- , . ).

t , , -- d , . t , , ( ) ( ) --, ( ) ( ) ( ), ( , , ..). t --, t -- (t . ) . - - - t, , .. t . (, ) ( ), .

( ) (. 12).

|-| = L - . λ.

L = n λ (32)

(n ), , , ( υ ) ( t ) υ .

 

L = (2n + 1)

λ

 

(33)

2

( 2υ ) t .

 

 


 

 

. 12.

, , , (.13). λ/2 - (. ).

 


. 13.

 

L = n

λ

 

(34)

2

C ,

 

L =

2n + 1

 

λ

 

(35),

2

2

. , λ/2. (. 14), , , .

 

 

 

 

 

 


. 14.

 

 

 

1.14. .

 

:

mV2

 

=

ke2

 

( ) (36),

r

r2

m V r = n ħ (37),

 

=

2π r

 

(38),

V

 

m , V , r- , , k = 1/ 4πε0 , , ħ = h/ 2π , n- . (36) (38) :

 

rn =

ħ2n2

 

= r1n2 (39),

e2 km

 

 

Vn =

k e2

 

=

V1

 

(40),

ħ n

n

 

 

Tn =

2π ħ3 n3

 

= T1 n3 (41),

E4 k2m

 

r1 = 5,29·10 11 (42),

V1 = 2,187·10 6 /c (43),

T1 = 1,5198·10 16 c (44) -

, rn, Vn, Tn, - n- . , . Z>1 2 (Z-σ) 2, 4 (Z-σ)2 4, σ . σ = 0,

2-7 σ = 1, 3-7 σ = 7,5, Z = 19 Z = 20 (4- ) σ = 15,75, (Z ≥ 21) , , σ , .

( (1)) :

 

k1 · 2t =

h

 

(45),

2

k = mV2/2 , t . (37) (45) ,

 

ta =

π r1

 

=

T1

 

(46) -

V1

2

.

= π r1 (47)-

( ), ( t , Z). n-

n =rn = 2π r1 n2 = 2 n2 (48),

n- 2n2 . , n- 2n2 . ( . ) (. 15). MS ( ) ML ( ) . , , . (45), , n- :

 

 

kn∙2

n

 

=

n h

 

(49),

2

2

kn = k1/n2 ( Vn = V1 /n) n /2 = n31 /2 .

 

 

 


 

 


. 15.

, (39) ( n, Z σ) . , , , 2r (r - ). . (r) () r = r1()n2/(Z-σ)=5,29∙1011∙22/(6-1)=4,232∙1011 , r3 = 7,5794∙10 32 3. 1 8rn3 N = m / ρ,

N , , ρ - .

rn3 = / 8ρN = 12 ∙10 3 / 8∙3,5·10 3·6·10 23 = 7,1428·10 31 3.

3

=

rn3

 

= 2,11 (50).

r3

 

, ( ) . . 16. , , ( ).

ρ = / 64 Nr13(Fe) = 56103 /64·6·1023 · (5,29·10 11 /26)3 =1,73·10 8 /3.

 

 

 

 


. 16.

 

 

 

 

1.15. .

 

V = c (51)

(- , 0<k<1), = mV (m- ). , , m = nmc (m , n , ).

= k m = k nm c (52)

, ( k) , , ( ) ( n, n= k n).

= nmc (53).

=

mV2

 

= k 2

mc2

 

= k 2 E (54)

2

2

E . n n, ( ) V , . ( ) n =1, ..

 

V min =

c n

 

(55)

1836,16 ( m = =1836,16 m, , , n = 1836,16 n)

 

V min =

c

 

(56)

n

m ,

 

V min =

c

 

(57)

n

, V min :

V = n Vmin (58),

n . : , , , .

 

 

 

1.16. .

 

. - n ,

V+∆V ( . ),

n m (V+∆V) = (n+∆n) m c,

n m (V+∆V) / 2 = ((n+∆n)/n)2 n m c2/2.

:

 

∆ = ∆n m c, V =

n

 

c (59),

ne

 

=

2nn+n2

 

*

m c2

 

(60),

ne

2

.. , , ,

 

2n + 1

 

*

m c2

 

(61),

ne

2

n = ne V/c, .. , .

 

 

 

1.17. .

 

t n , . V1 (43), V1/ = 1/ 137,06≈1/137 , n = ne /137. 1/1372 . , , t .

ne = 1372 = 18769 (62)

. 8- , . , , t , , . , (, ) . 280 , .

2- 3- ,

n ≈ 1,0 ∙ 105.

n3/3 = 3,33∙1014, 5,33∙10 5 . n2r1/10 =1010∙5∙10 11/10 = 5∙10 2 , - 10 .

2-6 , . , .

 

 

 

1.18. .

 

. m m ne : m = me /ne =4,848∙10 35 . = mc2 /2 = 2,178∙10 18 , p = m c = 1,4534∙10 26 ∙/. (1)

t = n / 4E = 7,599∙10 17c.

/2 =2 t=1,5198∙10 16, 2υ = 1/0,5 = 6,58∙10 15 . = t = =2,278 10 8 ,

λ/2 = 2 = 4,556 ∙10 8 ( λ = 9,112 ∙10 8 = 91,12 , ). ( /2, 2 υ , λ /2, , υ, λ ).

(28) 2tg = 1,885∙10 20 c = 5,972∙1012 , (29) tv = 2,504∙1017 ( - . ).

t ( ) 137 , . t , . ( ) 137 2t ( ).

F1 = 137 p /2 t = 1,31∙10 8 . F2= ke2/r12 = 8,24∙10 8 , F2/ F1= 6,29 ≈ 6 . , ( ) t

d=137∙6 = 822 (63)

( ), 137 . 137 (. 17-), 822 (. 17-).

 


137                                                                              2

138 1

. 17 ) )

 

t . , t >> t , . , d, ( (5), (8) (11)). :

= 3,345∙10 27∙∙, b = 0,2319 21, No = 3,376∙1037 1 1. 1 1/ = 6,9324∙1025

1 .

() . (1) 2π, · t /π = ħ/2. = mc2 /2 o =t ,

mc (o /2 π) = ħ/2.

 

=∆E,

t

 

= ∆t (64),

π

 

mc = ∆p,

o

 

= ∆x (65),

2 π

E∙∆t = ħ/2 ∆p∙∆x = ħ/2 - . (64) (65) , ∆t - , , , ( , ).

 

 

 

1.19. .

 

1, n1 -- ( 1 = n1m), t 1 t 2, n2 -- (n2< <n1) (

2 = n2 m ), , , 1 (. 18). (n1 - n2) , .. (n1 - n2)(m2/2), (n+n1-n2)(mV2/2) ( ), V 2.

(n1 - n2) (m2/2) = (n + n1 - n2) (mV2/2) (66).

 

 

2 2 2

1 φ 1 £ φ

£ 1

. 18 ) ) )

( ). 2 , =(n+n1 - n2) mV 1 2 φ, 1 £. 1 = 2 cos φ + cos £, cos£ = (1 - 2 cosφ) /, ( ) cos£ = (2 + 12 - 22)/ 2 1. cos£, , , 212212 cosφ-2 -12+22=0. 2=12+22-212 cosφ, , ( n + n1 - n2)2 V2 =

= (n12+n22-2n1n2 cos φ) 2 .

V2

 

=

n12+n22-2n1n2cos φ

 

(67).

2

(n+n1- n2)2

(66)

V2

 

=

n1 - n2

 

(68).

2

n+n1- n2

(67) (68), , (n1 - n2)( n + n1 - n2) = n12 + n22 2 n1n2 cos φ .

(n1 - n2) n = 2n1n2 (1 - cos φ) (1/ n2) (1/ n1) = (2 / n)(1- cos φ). o,

o

 

-

o

 

=

2o

 

(1- cos φ) (69).

n2

n1

n

o/n1 o/ n2 - 1 2 , o / n1= λ1/2 o / n2= λ1/2. 2o /n=2= ·2te, , , t (. ). h/2 = (n m c2/2)2t (. ),

2o

 

= 2 =

h

 

= λ (70) -

ne

me c

. (69),

λ2

 

-

λ1

 

= λ (1 cos φ) (71) -

2

2

.

 

 

1.20. .

 

V = kc (51) (. 19,) ( ).

V V

C B A

. 19. ) )

 

h /2 = Ee· 2te (. )

h

 

= Ek·

2te

 

(72),

2

K2

E = mec2 / 2 - , t , E = k 2 = me V2 / 2 (54) . k2/2t 2υ. (72)

E =hυ (73)

,

 

2 υ =

k 2

 

=

n2

 

(74) -

2 t

ne 2t

(n = k n . ). V, V.

V = (λ /2)·2 υ, λ /2 ,

 

λ

 

=

V

 

=

k c·2 t

 

=

2

 

=

2o

 

(75),

2

2 υ

k 2

k

n

(72),

λ

 

=

V h

 

=

h

 

=

h

 

(76),

2

2 Ek

me V

pe

pe . : λ/2 , 2υ . V , λ/2 ( n, k pe). ? V ( ) , λ/2 (. ) . ( ), λ/2 , (. . 19, ) , , λ/2 , = , - . V =0 (n =0),

λ/2= ∞ - . V = (n = n) ,

λ/2 = 2ℓ = h/m c = λ - .

 

 

 

1.21. .

 

, λ , = bo = 2,898∙ 10 3 /9,112∙10 8 = 31801 K. 1 = /2 = =1,38∙10 23 ∙ 31801/2 = 2,195∙10 19 ( ). , ,

 

= 9,92 ≈ 10 (77).

, 10 : , , , : 1 + 3∙3 = 10.

 

 

 

1.      .

2.1. .

 

 

(. ) . -, ,

(. . 20).

 

 

 

 


. 20 ) ) )

t , , . ( ) , ( ) . ( ), ( ) . ( (1) (45)) :

 

∙ 2t =

h

 

(78),

2

= m 2/2 , m , t ,

h .

( )

 

m c r =

ħ

 

(79),

2

r . (78) (79) ,

 

t =

2π rk

 

(80) -

, ( ) ( ). ( . ), ( ) ( ). n , . , 137 ( 81 ).

 

 

 

2.2.

 

(. 20, ), n --. (79) , r = 1,93·10 -13 , r/ r1 = 274,1 ( 280 . ). , , ℓ= 2π r = 1,21·1012 . , , ℓ = ℓ / n = 6,46·1017 . te = ℓe /c = 4,036·10 21 .

-, , ℓe = ℓ/ne = h/ ne m c = ℓe =1,21·1012 ( ℓ = t, (1), (79) e = 2 π re). , ℓe , : ℓe , ℓe . - λ/2 ≥ℓe, 2 ≤ n ne.

1 = me V1 r1 = ħ,

μ1 = IS = - eV1r1 /2 = - eħ /2me = μ, I = q/1 = - eV1/ 2π r1- ,

S = π r12 , μ .

n- : n = me Vn rn = n ħ = n M1,

μn= - eVnrn/2= - e ħ n/2me= n μ = n μ1. :

μ

 

=

- e

 

(81).

M

2 me

t , π rn . : .. t >> te ( ne -. (1) (78)), .

 

I =

-

 

=

-

 

(82).

t /2

π r

μS = IS = - e c re (83),

S = π r2 . MS = me c re = ħ/2 (79),

 

μS =

- eħ

 

= - μ (84)

2me

μS S

 

=

- me

 

(85)

 

( ).

 

 

 

2.3. .

 

,

 

mυ =

mn

 

me =

1838,69 me

 

Me = 1,00138 me (86).

mp

1836,16 me

nυ = mυ / m = 1,00138 ne = 18794 (87)

( 0,50069 ne , 68 - , ). . 1836,16 , () 1836,16/3 = 612,053 , 612,0532 . ( ) 612,0532 , ( ≈ 900 ), 3,372∙108 10 8 7 , - . , , . (, ), . μ = + υ + υ . ≈ 204ne ( ≈ 207me) 102 ne , ( -). 0 204 me c2 /2, 1/3 (204 me c2 /2) = 68 me c2/2 1/2 (204me c2/2) = 102me c2/2 - . ( ) .

( ) , ( ) ( - ) ( ), ( ) ( ) ( ). , . ( ) , .

 

 

 

 

2.4. .

 

( ) (. 21, ).

 

 

 


. 21 ) )

( - ). , . (. 21, ), ( ). .

 

 

 

2.5. .

 

(. 20, ). ( ) () . ne , ne , . , , ; , : . . ħ/2 , , . , , (rkm ) x/2 (r)

 

rkm =

2

 

re (88) -

x

(79). - - , - . , - .

 

 

 

 

2.6. .

 

(. 20, )

np = 1836,16 ne = 3,4463· 107 (89)

. +- ne , - -, + - , 360·3/1836,16 = 0,588˚ = 0˚35΄16,8˝ , . . ħ/2, , ħ/2 , . ( mk = mp/3)

 

nk =

 

 

= 612,053 ne (90).

np 3

, (79),

 

rk =

re

 

= 3,1533·10 16 (91).

612,053

dp = 6 rk = 1,892·10 15 (92)

( d = 1,3·10 15A ,

- ). ( )

p = 3∙2∙π rk = 5,9438·10 15 (93).

 

tp =

p

 

= 1,98·10 23 c (94)

c

( ).

 

po =

p

 

=1,7247·1022 (95),

np

.. 612,0532 = 374655 , .

+ +

 

) )

. 22.

. , μS μS = e ħ /2mp = 1μ (μ - ). μS = 2,79 μ. , (.22,), μS = e ħ /2m = 3μ ( m = mp/3). , (.22,),

μS = -3μ ( ). ( tp ) 96,5% , 3,5% - .

μS = (0,965·3 0,035·3)μ = 2,79μ .

 

 

 

2.7. .

 

(. 20, )

nn = 1838,69ne = 3,451·107 (96)

( ). , , - (- ). , , ħ/2. , n . . . , :

 

68

1

 

%

(. 23, )

6

 

( ),

 

31

5

 

% -

6

(. 23, ) (

6μ).

+ +

 

) )

. 23.

 


μS = 68

1

 

0

 

31

5

 

6

 

μ = 1,91 μ

 

6

100

6

100

( ≈ 900 ) , 0,765 ne : , -, β - . , , , (. 24). , . , β- - ( ).

 

 

 

 


. 24.

 

 

 

2.8. ר .

 

,

 

ρ

3 mp

 

= 7,406 ∙1017 /3 (97).

dp3

, . rg = 9 ∙10-3 ( m = 6∙1024 ), ,

 


ρ =

m

 

= 2∙1030 /3

 

(

4

π rg3

3

 

po/2 ≈ r )

 

ρ =

 

m

 

= 1∙1031 /3.

 

,

4

3

π r3

 

 

 

 

, . (. ), .

 

 

 

2.9. .

 

, , . , - , . - , , . , n , , , , . (. ) .

 

 

 

2.10. .

 

λ/2 > λ/2 . , ( ) ρ = 1∙10-28 /3 . , , 1 3 ρ/m = 0,0625 ( 16 3 1 1 ). , 1 2 (), 1 (1 = 3,086 ∙1022 ) (. 25),

N = 0,0625∙3,086∙1022 =1,85∙1021 ( ).

 

 

 


. 25.

(, , ) 1 2 ( r2e /3rpk2 > 105 , ). S = N π re2 = 2,22∙10 4 2 ( , ). , 1 2 , , ( ),

= S/1 = 2,22∙104. , 1/ = 4504,5 (2 9009). , 1 υ1 , 1

υ2 = (1 2,22∙104) υ1 . . V, (12,22∙1041 = (1V/1. V = 6,65∙104 /c = 66,5 /,

= 50 100 /∙. , . , , , , .

 

 

 

2.11. .

 

, , : , , . .

, . .

, . ( - ) . ( + ) . , ,

 

Fe =

ke2

 

. ke2

1

 

-

R2

R2

, . , = 2,5 ( ). b = 5,291011 ( ). (- ).

(. .26)

 

 

 


) ) ) ) )

. 26

. 26 ) 2 ( ),

. 26 ) 4 ( - 2 ), 4 . 26 ) 12 .

 

 

)

1

 

=

1

 

+

1

 

-

2

 

6 a2 b2 + 12 ab3 + 4 b4

R2

a2

(a + 2b)2

(a+ b)2