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Abstract

Real  measurements in high-speed communications networks have recently shown  that traffic
may demonstrate properties of long-range dependency  peculiar to  self-similar stochastic
processes.   Measurements have also shown that,  with increasing buffer capacity,  the
resulting cell loss is not reduced exponentially fast as it is predicted by Markov-model-based
queueing theory but, in contrast,  decreases very slowly. Presenting a theoretical understanding
to those experimental results is still a problem.  The paper presents mathematical models for
self-similar cell traffic and analyzes the overflow behavior of a finite-size ATM buffer fed by
such a traffic.  An asymptotical upper bound to the overflow probability,  which decreases

hyperbollically, h a−  , with buffer-size- h    is obtained.  A lower bound is also described,

which demonstrates the same h a−   asymptotical behavior,  thus showing an actual
hyperbolical decay of overflow probability for a  self-similar-traffic model.
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1. INTRODUCTION

Recent traffic measurements in corporate LANs,  Variable-bit-rate video,  ISDN control-

channels and other communications systems have indicated traffic behavior of self-similar nature

[Leland 94], [Beran].  With actual traffic measurements, it was shown that the overall cell loss

decreases very slowly with increasing buffer capacity, in sharp contrast to Poisson-based models

where losses decrease exponentially fast with increasing buffer size. The problem is how to get a

theoretical explanation of such empirically observed behavior. An extensive bibliographical guide with

420 references to previously published papers on self-similar traffic and analysis is given in

[Willinger].

In this paper,  four models for self-similar cell input traffic are considered. Asymptotical upper

bounds to overflow probability in an ATM buffer queue fed by three types of traffic are presented.

These bounds are expressed in terms of the rate of input traffic, capacity of ATM channel, buffer  size,

and the Hurst parameter (the last shows the level of traffic self-similarity). The derived bounds

decrease much slower (hyperbolically) than exponentially with buffer-size growth. For a model with

constant source rate 1 and a channel of capacity 1, we are able to compare the obtained upper bounds

against the lower bound  presented here and proved  by us in {TG].

2. MODELS FOR SELF-SIMILAR TRAFFIC

We introduce here mathematical models of self-similar input cell traffic to an ATM buffer.

2. 1. Self-similar processes .  First we recall the definition of a self-similar process. Consider
a second-order stationary real-number stochastic process  X X X X= −(..., , , ,...)1 0 1  of discrete

argument (time) t I∈ −∞ = −{..., , , ,...}1 0 1   . Denote by µ = < ∞EXt  and σ 2 = < ∞var Xt  , the

mean and the varience of Xt   respectively. Denote by r(k) the autocorrelation function of process X  .

The mean  µ  ,  the varience σ 2, and the autocorrelation function r k( )  do not depend on time t , and

r k r k( ) ( )= − .

Now we  give  the definitions and some properties of exactly and asymptotically self-similar

processes ( see [Cox], [ST], [Leland 94], [TG]) .

Definition. A process X  is called exactly second-order self-similar (e.s.s) with parameter

H = −1
2
β

, 0 1< <β ,  if its autocorrelation function is

r k k k k g k k I( ) [( ) ( ) ] ˆ ( ), { , ,...}.= + − − − + − − = ∈ =1
2

1 2 2 2 1 2
1 1 2β β β
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The reason the process X  with r k g k( ) ( )=   is called self-similar is that it does not change its

correlational structure with averaging. It means that the averaged (over blocks of  m  )  process

(..., ( ), ( ), ( ),...)X m X m X m
−1 0 1   where  Xt

m
m

Xtm m Xtm m I t I( ) ( ... ), ,= − + + + ∈ ∈ −∞
1

1 1

has the autocorrelation function  r m k( )( )   such that     r m k r k g k( )( ) ( ) ( )= = .

   H  is called the Hurst parameter of process X  .

Definition. A process  X   is called asymptotically second-order self-similar  (a.s.o.s.s)  with

parameter  H = −1
2
β

 , 0 1< <β ,  if for all k I∈ 1,

lim ( )( ) ( )
m

r m k g k
→ ∞

= .                                                                                      (2. 1)

The above means that X   is a.s.o.s.s if (after averaging over blocks of size m   and with

m → ∞)  its correlational structure tends to that of the e.s.s process.

The important property of  X   , which  guarantees that  X   is a.s.o.s.s  with parameter

H = −1
2
β

  is lim
( )

k

r k

k
c

→ ∞ − =β ,    where  0 < < ∞c  is a constant and 0 1< <β   [TG]. It is

interesting to notice that this limiting equation gives  a definition of long-range dependence  (l.r.d)

process  (see [Beran] , Sect. 2. 1) .  It means a l.r.d process is always an a.s.o.s.s process.

2. 2. Source process.  We consider a traffic as a stream of cells. For convenience, we assume

that a cell has the length 1 when it is transmitted over the ATM channel. The channel can transmit C
cells at a time unit slot; the time interval  [ , )t t + 1   is called slot  t t I, {..., , , ,...}∈ ≡ −−∞ 1 0 1   and

C  is called the channel capacity. The case of C = 1 is considered in Sections 3  and 4;  the general
case of C ∈I1 is considered in Sect. 5.

The discrete-time source process Y Y Y Y= −(..., , , ,...)1 0 1   is a random process where Yt

represents the number of new cells arrived at time  t  ,  Y It ∈ ≡0 0 1 2{ , , ,...}. The source process  Y

is constructed in the following way.
              Let  θ ωs st( )− + 1  be a random sequence over time t  ,  associated with a moment of arrival

ω s   of  source  s,  t I I Is s∈ ∈ ∈−∞ −∞, , ( )ω θ 0  . The sources are numbered by s according to their

arrivals,  ω ωs s+ ≥1   . The  θ s ( )1  represents the number of cells generated by source s  upon its

arrival at  ω s  and θ s i( )  gives the analogous number  for the moment which is  i − 1  time units later

than  ω s  . The source  s generates its cells within time interval of length  τ s I∈ ≡1 1 2 3{ , , ,...} and

the sequence  θ s i( )  in this interval  ω ω τs s si≤ < +  is called the source s active period.

We denote by



- 4 -

γ θ θ τs s s sˆ ( ) ... ( )= + +1                                                                                      (2. 2)

the total number of cells generated by source s  during its active period and  γ s  is called the volume of

source s  .
Let  ξt  denote the number of new sources arrived at  t   . We assume in this paper that  ξt   are

independent and Poissonian with parameter  λ  .
  It is assumed that the random sequencies  (θ s (1),...,θ s (τ s ))  are i. i. d.  for different  s  and

they are independent of  the sequences  ξt   and  ω s  .

   The source process  Y Y Y Y= −(..., , , ,...)1 0 1  is defined as

 Y tt s
s

s= − +∑θ ω( ),1                                                                                        (2. 3)

i. e.  Y   is a superposition of source active periods. The  Yt   is the total number of cells generated by

all  active sources at time  t   .

2. 3. Four models for self-similar traffic.  In the next sections, the most detailed results on

buffer overflow probability  shall be obtained for self-similar input traffics which are the further

narrowing of the source process  Y  . We introduce them now. Let us consider the four special cases

of  Y .
In the most interesting case of  Y ( )1  ,  θ s i R( ) =  where  R   is a given constant independent of

s and i   ,  R I∈ 1  . The rates R   which are less than 1 can not be interpreted in the framework of

process Y ( )1  (the same holds for Y ( )2    and Y ( )3  ), since θ s i( )  has a meaning of the number of cells

arrived at i  . However, these rates can be interpreted in the framwork of process Y ( )4  .  The process
Y ( )1  with  R=1 was considered in [Cox], while  Y ( )1  with arbitrary  R I∈ 1 was considered in [LTG]

and [TG].
In the case of  Y ( )2  , θ s i R l( ) ( )=   given  τ s l=  and the function  R l( ) is monotonic and not

random (given  τ s l=  ). R l( )  does not depend on  s and  i  ,  R l I( ) ∈ 1  , l I∈ 1   .   However, for

the source  s without the condition  τ s l=  , the rate R s( )τ   is a random variable.

   In the case of  Y ( )3  ,  θ s si R l( ) ( )=   given  τ s l=  where  R ls ( )  is a random variable (even

for given  τ s l=  ) and the distribution of R ls ( )   does not depend on  s and i   ,  R l Is ( ) ∈ 1

.According to assumptions in 2.2, the random variables  R ls s( ) (given  τ s sl=  ) are independent for

different  s  .
In the case of Y ( )4  ,  θs(i), ωs ≤ i < ωs + τs   with different  s   are the segments of i. i. d.

stationary  discrete-time processes. The process  Y ( )4  was introduced in [TG] . A condition of

asymptotical self-similarity of Y ( )4   is given by:

Statement 1.   If  tα Pr{τ > t} → c, t → ∞, 1 < α < 2  (where c  is a constant,   0 < c < ∞ )

and E Eθ θ< ∞ < ∞, 2  ,  then Y ( )4  is asymptotically  second-order self-similar process with

parameter H = (3 − α ) / 2 > 0.5
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   In what follows, we give the conditions for self-similarity of processes  Y (i) , i = 1 2 3, , ,  and

thus present  finally our remaining three self-similar cell traffic models Y i( )   , i = 1 2 3, ,   .

Statement 2. The process  Y i( )   is asymptotically  second-order self-similar (a.s.o.s.s) with

parameter  H = −1
2
β

 ,  0 < β <1,  if asymptotically with  l → ∞

Y(1): Pr{τ = l}

Y(2): R2(l)Pr{τ = l}

Y(3): (ER2(l))Pr{τ = l}













~ cl
− β + 2( )

                                                                (2. 4)

where c > 0   is a constant.

   For  Y ( )1   with  R = 1  , sufficiency of the condition (2. 4) for a.s.o.s.s was given by  Cox [Cox].

Statement 2  for  the case of process Y ( )1   was given in [TG].

3.  ATM - BUFFER QUEUE TO CHANNEL OF CAPACITY 1:

  LOWER BOUND TO OVERFLOW PROBABILITY

In this section, we consider a finite-buffer queueing system with input cell traffic  Y(1)  having

sources of constant rate R = 1 and denoted by Y1.  We will obtain the lower bounds to the stationary

buffer-overflow  probability,  expressed in terms of λ > 0,   Pr{τ = n} and h ,  where  h  is the size of

the buffer.  The bound decays hyperbollically rather then exponentially fast  with increasing  h  when

τ  has Pareto-type distribution and Y1  is self-similar.
            Let  yt  be the number of new cells arrived at  t  and  zt  be the number of cells that were in the

buffer at time t  .

           Definition.   A service discipline  d  is in class D(h),  if it satisfies the following two

conditions: (i) If  yt + zt > 0 ,  then some cell (out of the  yt + zt  total) goes definitely into service at t ;

(ii) If  yt + zt ≤ h + 1,  then no cells are discarded at time t  .  If  yt + zt > h + 1, instead, then exactly

yt + zt − h − 1  cells are discarded at t  .

      The event { yt + zt > h + 1} is called the buffer overflow at time t . We are interested in the

stationary probability of overflow,  Pover . 

Our  result  (the details are in [TG]) for the lower bound to Pover  is expressed by the following:

Statement 3.   The queueing system Y1/D/1/ h  with any service discipline from D(h) has the

overflow probability Pover  lowerbounded by

P
E E

nover
n n

≥
+

≥∑
=

∞1
2

1
( )

Pr{ }
τ κ

τ                                             (3. 1)
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where  n
h b

a
E1 2= +





+ , κ  is given by

E eκ λ= − −− −( )1 11                                                                                     (3. 2)

and a b,  are given by

a
E E

b a=
+

≤ = + ≥1
1 1 1

τ κ
, ..                                                                    (3. 3)

We  apply the bound (3.1) to the most interesting case of Pareto-type distribution,

Pr{τ = n} = cn−α −1 ,  1 < α < 2 ,  and  self-similar traffic Y1.

We get

P
c

E E

h b

aover ≥
− +

+





+





− +

α α τ κ

α

( )( )1
22

1

                                            (3. 4)

where

E c n c n
n n

τ α α= =−

=

∞
− −

=

∞
−∑ ∑

1

1

1

1, ( ) ,                                                                    (3. 5)

and a  and b are given by (3. 3) , whereas Eκ is given by (3.2).

Asymptotically,  when h  i s  large ,   (3 .4)  g ives  the  bound

Pover ≥ c h−α+1 = c h−β = c h−2(1−H) , where c  is a constant independent of h  but

dependent on λ  and α  and where we used the equation H = 1 − β
2

= 3 − α
2

 from Statement 1.  With

this bound,  we come to the important conclusion that for the considered self-similar traffic Y1,   the
overflow probability Pover  cannot decrease faster than hyperbolically with the growth of buffer size h .

To get a numerical result,  let us consider,  for example the case of α=1. 5 (the Hurst parameter

is H=(3-α)/2=0. 75 ) and λ = 0 2. .  In this case,  c=0.745,  Eτ=1. 95,   Eκ=4. 51  ,  and

P
h

over ≥
+





+

0 0238

1 15
0 15

2

.

.
.

                                                                        (3. 6)

According to (3. 6) or (3.4),

Pover ≥ 7.9∗10−3 for  h = 0, Pover ≥ 2.8∗10−3 ,    for  h = 10,
Pover ≥ 9.3∗10−4 ,    for  h = 100,  Pover ≥ 3∗10−4 ,       for  h = 1000,
Pover ≥ 9.4∗10−5 ,    for  h = 10,000.

4.  ATM - BUFFER QUEUE TO CHANNEL OF CAPACITY 1:
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   UPPER BOUNDS TO OVERFLOW PROBABILITY

   Here we consider the processes Y( )1  and  Y(2)   as the input cell traffics to ATM finite-buffer

discrete-time queue. We are interested in the buffer-overflow probability. We adopt the usual symbols

to denote the queueing systems.   Y /D/1/h/d    means that input traffic is  Y   (i.e. at time t   , the
input traffic provides  Yt  new requests or, in other words, it provides Yt   new cells), service-time is

constant and equal to 1, there is a single server, the buffer has size  h  , and the sevice discipline is d .

In this Section, we restrict our analysis to the case of ATM channel having capacity C = 1  . The cases

of greater channel capacity are the subject of the next Section.

            We begin with consideration of  input traffic  Y (1)  with  R = 1  , denoted by  Y1 .

4. 1. Upper bound to overflow probability for self-similar traffic Y1.  A  way to get our

upper bound is based on the large-deviation results for a sum of independent random variables with

long-tailed distribution. In the case of long-tailed distribution, the large deviation of the sum occurs

mainly at the expense of just one (maximal) summand. These results  originated with Chistyakov

[Chistyakov] and Chover et al. [Chover]. The more deep mathematical background for the problem is

given in the book of Bingham, Goldie, and Teugles [Bingham] in context of regular variation.

          Our upper bound is presented by:

    Statement 4.  If for  the asymptotically self-similar process  Y1  with parameter

H = −3
2

α
, the condition  λ τE < 1 is satisfied and the source-active-period length  τ  has the

Pareto-type distribution

Pr{ } ~ , ,τ αα= < < → ∞− −l c l l0
1 1 2 ,                                                              (4. 1)

then for the discrete-time  Y1/D/1/h/d   system  with any service discipline  d D h∈ ( ) , the overflow

probability for the size  h  buffer is upperbounded asymptotically as

Pover ≤
c
0

λ
α(α −1)(1− λEτ)

h−α+1, h → ∞.                                                       (4. 2)

  If for Y1 we also  consider  the other  sub-exponential distributions  Pr{ }τ > l   with long tails

(but not only the Pareto-type distribution), for example, the lognormal distribution or the Weibull

distribution adopted for the discrete case, and  we use the results of  Pakes,  Cline,  Teugels,Willekens

(see [Bingham]), then under the conditions of Statement 4 , we  get the asymptotical upper bound

 Pover ≤ λ
(1− λEτ)

Pr{τ ≥ n}
n=h

∞
∑  . (4. 3)
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          Asymptotically in the case of Pareto-type distribution of τ , the upper bound (4.2) is again

hyperbolical over  h  with the same exponent  ( )− +α 1  as in the lower bound (3. 4). This shows that

both bounds demonstrate the right asymptotical behavior of  Pover   apart from a factor  which  is

independent of  h   in (3. 4) and (4.2).                                                                                      

Now we give a numerical example to compare the lower bound (3. 4) and the upper  bound
(4. 2) for the case of  Pr{ } , ,τ αα= = < <− −l c l0

1 1 2    and self-similar traffic Y1  .

   Choosing  α λ= =1 5 0 2. , .  , we get 35 as the upper bound/lower bound ratio.

4. 2.  Upper bounds to overflow probability for self-similar traffics  Y(2)and  Y(1) with

R > 1 .   Here , we  extend Statement 4 on the self-similar input traffic Y ( )2   satisfying (2. 4).

              Beginning with the case of Pr{ }τ = l   satisfying (4. 1) , we  obtain finally

Pover ≤
c
3
λ

α(α −1)(1− λEγ )
h

−α+β−1
α−β+1, h → ∞   , λ γE < 1. (4.4)

where c c c3 0 2≡ −α ,  c c c
c

c2 1

2

1
1

0

≡ ≡
−

− +α β , ,and c  is the constant from (2.4).

 Thus, (4. 4)  is an asymptotical (for large h  ) upper bound to the overflow probability Pover  for

the discrete-time  Y(2)/D/1/h/d  system with any service discipline d D h∈ ( )  in the case of

asymptotically self-similar input cell traffic Y ( )2   defined in Sec. 2 and satisfying (2. 4) and (4. 1). The
bound is expressed in terms of λ α β, , ,  and h ,  where (we remind) λ   is the intensity of source

arrivals, α  is the parameter of distribution of source active-period length τ ,   β = −2 1( )H  is the

parameter of self-similar traffic ( 0 < β <1, β α≤ − 1 ), and  h   is the buffer size.

           Since Y ( )2   is more general process than Y ( )1 , we can derive [from (4. 4)] the upper bound to
Pover  for     YR/D/1/h/d  system where  the symbol YR  denotes the asymptotically self-similar traffic

Y ( )1   with any given rate R I∈ 1  . Putting the restriction  λ τRE < 1 , we obtain

Pover ≤
c
0

λRα

α(α −1)(1− λREτ)
h−α+1, h → ∞, 1< α < 2.                                     (4. 5)

         Thus, (4. 5) is an asymptotical upper bound to the overflow probability  Pover    for discrete-time

YR/D/1/h/d   system.

  Next, we consider the case of distribution  Pr{τ = l}  which decreases exponentially,
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Pr{τ = l}~ c4e−ϕl , l → ∞                                                                          (4. 6)

where  c4 > 0   and ϕ > 0   are constants.

We obtain,

Pover ≤
c4λeϕ

ϕ(1− λEγ )
h−1

(lnh)β
, h → ∞                                                            (4. 7)

when λEγ <1 .

(4. 7)  gives an asymptotical upper bound to the overflow probability for a Y(2) /D/1/h/d

system with self-similar input traffic Y(2)  satisfying (2. 4) and (4. 6). The bound (4. 7) obtained for

the exponential-tail distribution  Pr{τ = l}  goes to zero  a little faster than the bounds (4. 2), (4. 4),

and (4. 5) obtained for hyperbollical-tail distribution  Pr{τ = l} .

5. ATM-BUFFER QUEUE TO CHANNEL OF CAPACITY C  :

    UPPER BOUNDS TO OVERFLOW PROBABILITY

          So far we considered an ATM channel which could transmit one cell at its time unit called  slot.
Now we consider a channel which can transmit  C  cells in its slot,  C I∈ 1 . Again, the problem is to

find an upper bound to the buffer-overflow probability.

5. 1. Queueing model .  We consider the discrete-time queueing system  Y1/DC/1/h  which

has the input cell traffic Y1 , constant service-time  C−1 (where  C  is a positive integer), a single

server, and finite buffer of  h -cells size. In our consideration , discrete-time Y1/DC/1/h  is equivalent

to the system Y1/D/C/h  which has  C  servers, each with constant service-time 1. Taking it into

account, it is more convenient for us to analyze Y1/D/C/h   since, in this case, we should deal with

only one channel-scale unit 1 and not partition the channel slots into subslots of length  C−1 each.

  We consider only the service dicsiplines  d  which satisfy the following two conditions: (i) If
yt zt+ > 0  (where yt  and zt  were defined in Sect. 3),  min( , )yt zt C+   cells go into service at t  ,

(ii) If  yt zt h C+ ≤ +  , then no cells are discarded at  t  . If  yt zt h C+ > +  , instead, then

yt zt h C+ − −  cells are discarded at t  .

  We denote by  DC h( ) the class of the considered disciplines.

   The event { yt zt h C+ > + } is called the buffer overflow at time t    and

Pover
t =̂ Pr{yt + zt > h + C}

denotes its probability. Again, we are interested in getting an upper bound to the steady-state overflow
probability denoted by Pover , Pover =̂ limsup

t→∞
Pover

t   .
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5.2 Upper bound to the overflow probability for self-similar traffic Y1
     For the discrete-time  Y1/D/C/h/d,    d ∈DC(h)  queueing system with self-similar input

traffic Y1 satisfying (4. 1), the overflow probability for the size h  buffer and channel capacity C  is

upperbounded by

Pover ≤
c
0

λ
α(α −1)(C −λEτ)

h−α+1, h→ ∞, λEτ < C. (5. 1)

5. 3. Generalization on the input traffic  Y(4) . Our consideration in 5. 2  (the details are in

[TGa]) remains valid  for the self-similar input traffic Y(4)   if instead of the distribution of  τ , we
use the distribution of γ  (the source volume),

γ = θ(i)
i=1

τ
∑ (5. 2)

where  θ(i) is the generic symbol for θs(i)  , and if Pr{γ = l}  is a Pareto-type or sub-exponential

distribution. Thus, for  Y(4)/D/C/h/d,  d ∈D
C

(h)   , we obtain

Pover ≤ λ
C − λEγ Pr{γ > n}

n=h

∞
∑ , h → ∞, λEγ < C.  (5. 3)

As a first example of Y(4) , let us consider the singular case of  θ(i) = R, R∈I
1

. In this

case,  Y(4)   is  Y( )1 . If  Pr{τ = l} satisfies (4. 1), then using  Pr{γ > x}= Pr{τ > x

R
} , we obtain

Pover ≤
c
0

λRα

α(α −1)(C −λREτ)
h−α+1, h→ ∞, λREτ < C.                               (5. 4)

          The relation (5. 4) is the  direct generalization of (4. 5) in the case of channel capacity greater

than 1.

As a second example of Y(4) , let us consider  i. i. d.  θ(i)  with

Pr{θ(i) =1}=1− Pr{θ(i) = 0}= p.                                                                      (5. 5)

          If Pr{τ = l}  is the Pareto-type distribution (4. 1), then

Pover ≤
c
0

λpα

α(α −1)(C −λpEτ)
h−α+1, h→ ∞, λpEτ < C.                                 (5. 6)

The bound (5. 6) is a natural extention of the bound (4. 5) in the case of R <1  and C ≥1.

These considerations  can be extended to the traffic Y(4)     with ergodic sequence θ(i).
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   5. 4. Generalization on the input traffic Y(2). The consideration in 5. 2 (the details are in

[TGa]) remains also valid  for the input traffic Y(2) ,  if instead of the  distribution of  τ , we use the
distribution of γ = τR(τ)  as in 4. 2. Eventually for the C ≥1 case , if λEγ < C , we get the upper

bounds which are the same as (4. 4)   [for  Y(2)/D/C/h/d  with the traffic Y(2)   satisfying (2. 4)

and (4. 1)]  and (4. 7)  [for Y(2)/D/C/h/d  with the traffic Y(2)   satisfying (2. 4) and (4. 6)]  with
the only change of the term (1− λEγ ) for the term (C − λEγ ) in the denominators.

6. CONCLUSIONS

   Four models for ATM cell traffic were considered in this paper.  Then a finite buffer fed by

self-similar traffic Y i( ) was treated as a queueing system. The problem was to find an asymptotical

bound to the buffer overflow steady-state probability and with this bound to explain the slow decay of

cell-loss probability measured in high-speed networks. Indeed, we got bounds which decrease

hyperbollically with increasing buffer size and this decay is much slower than regular exponential

decay. The bounds have  simple and explicit expressions in terms of intensity and the Hurst parameter

of input traffic, ATM channel capacity, and buffer size.
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