


This includes 3 articles, the first a nontechnical discussion of the book by science writer S. Pinker, the second a technical discussion of the
flaw in Pinker’s book published in Physica A: Statistical Mechanics and Applications, the third a technical discussion  of what I call the
Pinker Problem,  a corruption of the law of large numbers.

The “Long Peace” is a Statistical Illusion
Nassim Nicholas Taleb

When I finished writing The Black Swan, in 2006, I was confronted with ideas of  “great moderation”, by people who did not realize that the
process was getting fatter and fatter tails (from operational and financial,  leverage, complexity,  interdependence, etc.),  meaning fewer but
deeper departures from the mean. The fact that nuclear bombs explode less often that regular shells does not make them safer. Needless to say
that with the arrival of the events of 2008, I did not have to explain myself too much. Nevertheless people in economics are still using the
methods that led to the “great moderation” narrative, and Bernanke, the protagonist of the theory, had his mandate renewed. 
I had argued that we were undergoing a switch between the top graph (continuous low grade volatility) to the next one, with the process moving
by jumps, with less and less variations outside of jumps.
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My idea of current threats outside finance:

The Pinker Argument
{Technical Appendix}

Pinker’s Rebuttal of This Note
Pinker has written a rebuttal (ad hominem blather, if he had a point he would have written something 13 of this, not 3 x the words). He still does
not understand the difference between probability and expectation (drop in observed volatility/fluctualtion ≠ drop in risk) or the incompatibility
of his claims with his acceptance of fat tails (he does not understand asymmetries-- from his posts on FB and private correspondence). Yet it
was Pinker who said “what is the actual risk for any individual? It is approaching zero”.



Second Thoughts on The Pinker Story: What Can We Learn From It
It turned out, the entire exchange with S. Pinker  was a dialogue de sourds. In my correspondence and exchange with him, I was under the
impression that he simply misunderstood the difference between inference from symmetric, thin-tailed random variables an one from asymmet-
ric, fat-tailed ones --the 4th Quadrant problem. I thought that I was making him aware of the effects from the complications of the distribution.
But it turned out things were worse, a lot worse than that.
Pinker doesn’t  have a clear idea of the difference between science and journalism, or the one between rigorous empiricism and anecdotal
statements. Science is not about making claims about a sample, but using a sample to make general claims and discuss properties that apply
outside the sample.
Take M* the observed arithmetic mean from the realizations (a sample path) for some process, and M the "true" mean. When someone says:
"Crime rate in NYC dropped between 2000 and 2010", the claim is about M* the observed mean, not M the true mean, hence the claim can be
deemed merely journalistic, not scientific, and journalists are there to report "facts" not theories. No scientific and causal statement should be
made from M* on "why violence has dropped"  unless one establishes a link to M the true mean. M* cannot be deemed "evidence" by itself.
Working with M* cannot be called "empiricism". 
What I just wrote is at the foundation of statistics (and, it looks like, science). Bayesians disagree on how M* converges to M, etc., never on this
point. From his statements, Pinker seems to be aware that M* may have dropped (which is a straight equality) and sort of perhaps we might not
be able to make claims on M which might not have really been dropping.
Now Pinker  is  excusable.  The practice  is  widespread in  social  science  where  academics  use  mechanistic  techniques  of  statistics  without
understanding the properties of the statistical claims. And in some areas not involving time series, the differnce between M* and M is negligi-
ble. So I rapidly  jot down a few rules before showing proofs and derivations (limiting M to the arithmetic mean). Where E is the expectation
operator under “real-world” probability measure P:

1. Tails Sampling Property: E[|M*-M|] increases in with fat-tailedness (the mean deviation of M* seen from the realizations in different 
samples of the same process). In other words, fat tails tend to mask the distributional properties. 

2. Counterfactual Property: Another way to view the previous point, μ[M*], The distance between different values of  M* one gets from 
repeated sampling of the process (say counterfactual history) increases with fat tails.

3. Survivorship Bias Property: E[M*-M ] increases under the presence of an absorbing barrier for the process. (Casanova effect)
4. Left Tail Sample Insufficiency: E[M*-M] increases with negative skeweness of the true underying variable.
5. Asymmetry in Inference: Under both negative skewness and fat tails, negative deviations from the mean are more informational than 

positive deviations.
6. Power of Extreme Deviations (N=1 is OK): Under fat tails, large deviations from the mean are vastly more informational than small ones. 

They are not “anecdotal”. (The last two properties corresponds to the black swan problem).

Fig1 First 100 years (Sample Path): A Monte Carlo generated realization of  a process of the “80/20 or 80/02 style” as described by Pinker’s in his book, 
that is tail exponent $= 1.1, dangerously close to 1

2   Long Peace2.nb



Fig 2: The Turkey Surprise:  Now 200 years, the second 100 years dwarf the first; these are  realizations of the exact same process, seen with a longer 
widow. 

At the core, the estimator of the mean is NOT the mean, but rather the tail exponent (+ scale)

Long Peace2.nb   3
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Abstract—Sample measures of top centile contributions to the
total (concentration) are downward biased, unstable estimators,
extremely sensitive to sample size and concave in accounting for
large deviations. It makes them particularly unfit in domains
with power law tails, especially for low values of the exponent.
These estimators can vary over time and increase with the
population size, as shown in this article, thus providing the
illusion of structural changes in concentration. They are also
inconsistent under aggregation and mixing distributions, as the
weighted average of concentration measures for A and B will
tend to be lower than that from A [ B. In addition, it can be
shown that under such fat tails, increases in the total sum need
to be accompanied by increased sample size of the concentration
measurement. We examine the estimation superadditivity and
bias under homogeneous and mixed distributions.
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I. INTRODUCTION

Vilfredo Pareto noticed that 80% of the land in Italy
belonged to 20% of the population, and vice-versa, thus both
giving birth to the power law class of distributions and the
popular saying 80/20. The self-similarity at the core of the
property of power laws [1] and [2] allows us to recurse and
reapply the 80/20 to the remaining 20%, and so forth until one
obtains the result that the top percent of the population will
own about 53% of the total wealth.

It looks like such a measure of concentration can be
seriously biased, depending on how it is measured, so it is
very likely that the true ratio of concentration of what Pareto
observed, that is, the share of the top percentile, was closer
to 70%, hence changes year-on-year would drift higher to
converge to such a level from larger sample. In fact, as we
will show in this discussion, for, say wealth, more complete
samples resulting from technological progress, and also larger
population and economic growth will make such a measure
converge by increasing over time, for no other reason than
expansion in sample space or aggregate value.

The core of the problem is that, for the class one-tailed
fat-tailed random variables, that is, bounded on the left and
unbounded on the right, where the random variable X 2
[xmin,1), the in-sample quantile contribution is a biased
estimator of the true value of the actual quantile contribution.

Let us define the quantile contribution



q

= q

E[X|X > h(q)]

E[X]

where h(q) = inf{h 2 [x

min

,+1) ,P(X > h)  q} is the
exceedance threshold for the probability q.

For a given sample (X

k

)1kn

, its "natural" estimator b
q

⌘
q

thpercentile
total

, used in most academic studies, can be expressed,
as

b
q

⌘
P

n

i=1
Xi>ĥ(q)XiP
n

i=1 Xi

where ˆ

h(q) is the estimated exceedance threshold for the
probability q :

ˆ

h(q) = inf{h :

1

n

nX

i=1

x>h

 q}

We shall see that the observed variable b
q

is a downward
biased estimator of the true ratio 

q

, the one that would hold
out of sample, and such bias is in proportion to the fatness of
tails and, for very fat tailed distributions, remains significant,
even for very large samples.

II. ESTIMATION FOR UNMIXED PARETO-TAILED
DISTRIBUTIONS

Let X be a random variable belonging to the class of
distributions with a "power law" right tail, that is:

P(X > x) ⇠ L(x)x

�↵ (1)

where L : [xmin,+1) ! (0,+1) is a slowly varying
function, defined as lim

x!+1
L(kx)
L(x) = 1 for any k > 0.

There is little difference for small exceedance quantiles
(<50%) between the various possible distributions such as
Student’s t, Lévy ↵-stable, Dagum,[3],[4] Singh-Maddala dis-
tribution [5], or straight Pareto.

For exponents 1  ↵  2, as observed in [6], the law of
large numbers operates, though extremely slowly. The problem
is acute for ↵ around, but strictly above 1 and severe, as it
diverges, for ↵ = 1.

A. Bias and Convergence

1) Simple Pareto Distribution: Let us first consider �

↵

(x)

the density of a ↵-Pareto distribution bounded from below by
xmin > 0, in other words: �

↵

(x) = ↵x

↵

minx
�↵�1

x�xmin , and

1
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P(X > x) =

�
xmin
x

�
↵. Under these assumptions, the cutpoint

of exceedance is h(q) = xmin q
�1/↵ and we have:



q

=

R1
h(q) x�(x)dxR1
xmin

x�(x)dx

=

✓
h(q)

xmin

◆
1�↵

= q

↵�1
↵ (2)

If the distribution of X is ↵-Pareto only beyond a cut-point
xcut, which we assume to be below h(q), so that we have
P(X > x) =

�
�

x

�
↵ for some � > 0, then we still have

h(q) = �q

�1/↵ and



q

=

↵

↵� 1

�

E [X]

q

↵�1
↵

The estimation of 
q

hence requires that of the exponent ↵ as
well as that of the scaling parameter �, or at least its ratio to
the expectation of X .

Table I shows the bias of b
q

as an estimator of 

q

in the
case of an ↵-Pareto distribution for ↵ = 1.1, a value chosen
to be compatible with practical economic measures, such as
the wealth distribution in the world or in a particular country,
including developped ones.1 In such a case, the estimator is
extemely sensitive to "small" samples, "small" meaning in
practice 108. We ran up to a trillion simulations across varieties
of sample sizes. While 0.01 ⇡ 0.657933, even a sample size
of 100 million remains severely biased as seen in the table.

Naturally the bias is rapidly (and nonlinearly) reduced for ↵
further away from 1, and becomes weak in the neighborhood
of 2 for a constant ↵, though not under a mixture distribution
for ↵, as we shall se later. It is also weaker outside the top
1% centile, hence this discussion focuses on the famed "one
percent" and on low values of the ↵ exponent.

TABLE I: Biases of Estimator of  = 0.657933 From 10

12

Monte Carlo Realizations

b(n) Mean Median STD
across MC runs

b(103) 0.405235 0.367698 0.160244
b(104) 0.485916 0.458449 0.117917
b(105) 0.539028 0.516415 0.0931362
b(106) 0.581384 0.555997 0.0853593
b(107) 0.591506 0.575262 0.0601528
b(108) 0.606513 0.593667 0.0461397

In view of these results and of a number of tests we have
performed around them, we can conjecture that the bias 

q

�
b
q

(n) is "of the order of" c(↵, q)n

�b(q)(↵�1) where constants
b(q) and c(↵, q) need to be evaluated. Simulations suggest that
b(q) = 1, whatever the value of ↵ and q, but the rather slow
convergence of the estimator and of its standard deviation to
0 makes precise estimation difficult.

2) General Case: In the general case, let us fix the thresh-
old h and define:



h

= P (X > h)

E[X|X > h]

E[X]

=

E[X
X>h

]

E[X]

1This value, which is lower than the estimated exponents one can find in
the literature – around 2 – is, following [7], a lower estimate which cannot
be excluded from the observations.

so that we have 

q

= 

h(q). We also define the n-sample
estimator:

b
h

⌘
P

n

i=1 Xi>h

X

iP
n

i=1 Xi

where X

i

are n independent copies of X . The intuition
behind the estimation bias of 

q

by b
q

lies in a difference
of concavity of the concentration measure with respect to
an innovation (a new sample value), whether it falls below
or above the threshold. Let A

h

(n) =

P
n

i=1 Xi>h

X

i

and

S(n) =

P
n

i=1 Xi

, so that b
h

(n) =

A

h

(n)

S(n)

and assume a

frozen threshold h. If a new sample value X

n+1 < h then the

new value is b
h

(n+1) =

A

h

(n)

S(n) +X

n+1
. The value is convex

in X

n+1 so that uncertainty on X

n+1 increases its expectation.
At variance, if the new sample value X

n+1 > h, the new value
b
h

(n + 1) ⇡ Ah(n)+Xn+1�h

S(n)+Xn+1�h

= 1 � S(n)�Ah(n)
S(n)+Xn+1�h

, which is
now concave in X

n+1, so that uncertainty on X

n+1 reduces its
value. The competition between these two opposite effects is in
favor of the latter, because of a higher concavity with respect
to the variable, and also of a higher variability (whatever its
measurement) of the variable conditionally to being above
the threshold than to being below. The fatter the right tail
of the distribution, the stronger the effect. Overall, we find

that E [b
h

(n)]  E [A

h

(n)]

E [S(n)]

= 

h

(note that unfreezing the

threshold ˆ

h(q) also tends to reduce the concentration measure
estimate, adding to the effect, when introducing one extra
sample because of a slight increase in the expected value of
the estimator ˆ

h(q), although this effect is rather negligible).
We have in fact the following:

Proposition 1. Let X = (X)

n

i=1 a random sample of size
n >

1
q

, Y = X

n+1 an extra single random observation, and

define: b
h

(X t Y ) =

P
n

i=1 Xi>h

X

i

+

Y >h

YP
n

i=1 Xi

+ Y

. We remark

that, whenever Y > h, one has:

@

2b
h

(X t Y )

@Y

2
 0.

This inequality is still valid with b
q

as the value ˆ

h(q,X tY )

doesn’t depend on the particular value of Y >

ˆ

h(q,X).

We face a different situation from the common small sample
effect resulting from high impact from the rare observation
in the tails that are less likely to show up in small samples,
a bias which goes away by repetition of sample runs. The
concavity of the estimator constitutes a upper bound for the
measurement in finite n, clipping large deviations, which
leads to problems of aggregation as we will state below
in Theorem 1. In practice, even in very large sample, the
contribution of very large rare events to 

q

slows down the
convergence of the sample estimator to the true value. For a
better, unbiased estimate, one would need to use a different
path: first estimating the distribution parameters

⇣
↵̂,

ˆ

�

⌘
and

only then, estimating the theoretical tail contribution 

q

(↵̂,

ˆ

�).
Falk [7] observes that, even with a proper estimator of ↵ and
�, the convergence is extremely slow, namely of the order of
n

��

/lnn, where the exponent � depends on ↵ and on the
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Fig. 1: Effect of additional observations on 
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Fig. 2: Effect of additional observations on , we can see
convexity on both sides of h except for values of no effect to
the left of h, an area of order 1/n

tolerance of the actual distribution vs. a theoretical Pareto,
measured by the Hellinger distance. In particular, � ! 0 as
↵ ! 1, making the convergence really slow for low values of
↵.

III. AN INEQUALITY ABOUT AGGREGATING INEQUALITY

For the estimation of the mean of a fat-tailed r.v. (X)

j

i

, in
m sub-samples of size n

i

each for a total of n =

P
m

i=1 ni

,
the allocation of the total number of observations n between
i and j does not matter so long as the total n is unchanged.
Here the allocation of n samples between m sub-samples does
matter because of the concavity of .2 Next we prove that
global concentration as measured by b

q

on a broad set of data
will appear higher than local concentration, so aggregating
European data, for instance, would give a b

q

higher than
the average measure of concentration across countries – an
"inequality about inequality". In other words, we claim that
the estimation bias when using b

q

(n) is even increased when
dividing the sample into sub-samples and taking the weighted
average of the measured values b

q

(n

i

).

2The same concavity – and general bias – applies when the distribution is
lognormal, and is exacerbated by high variance.

Theorem 1. Partition the n data into m sub-samples N =

N1[ . . .[N

m

of respective sizes n1, . . . , nm

, with
P

m

i=1 ni

=

n, and let S1, . . . , Sm

be the sum of variables over each sub-
sample, and S =

X
m

i=1
S

i

be that over the whole sample.
Then we have:

E [b
q

(N)] �
mX

i=1

E

S

i

S

�
E [b

q

(N

i

)]

If we further assume that the distribution of variables X

j

is
the same in all the sub-samples. Then we have:

E [b
q

(N)] �
mX

i=1

n

i

n

E [b
q

(N

i

)]

In other words, averaging concentration measures of sub-
samples, weighted by the total sum of each subsample,
produces a downward biased estimate of the concentration
measure of the full sample.

Proof. An elementary induction reduces the question to the
case of two sub-samples. Let q 2 (0, 1) and (X1, . . . , Xm

)

and (X

0
1, . . . , X

0
n

) be two samples of positive i.i.d. random
variables, the X

i

’s having distributions p(dx) and the X

0
j

’s
having distribution p

0
(dx

0
). For simplicity, we assume that

both qm and qn are integers. We set S =

mX

i=1

X

i

and

S

0
=

nX

i=1

X

0
i

. We define A =

mqX

i=1

X[i] where X[i] is the i-

th largest value of (X1, . . . , Xm

), and A

0
=

mqX

i=1

X

0
[i] where

X

0
[i] is the i-th largest value of (X

0
1, . . . , X

0
n

) . We also set

S

00
= S + S

0 and A” =

(m+n)qX

i=1

X

00
[i] where X

00
[i] is the i-th

largest value of the joint sample (X1, . . . , Xm

, X

0
1, . . . , X

0
n

).

The q-concentration measure for the samples
X = (X1, ..., Xm

), X 0
= (X

0
1, ..., X

0
n

) and
X 00

= (X1, . . . , Xm

, X

0
1, . . . , X

0
n

) are:

 =

A

S



0
=

A

0

S

0 

00
=

A

00

S

00

We must prove that he following inequality holds for expected
concentration measures:

E [

00
] � E


S

S

00

�
E [] + E


S

0

S

00

�
E [

0
]

We observe that:

A = max

J⇢{1,...,m}
|J|=✓m

X

i2J

X

i

and, similarly A

0
= max

J

0⇢{1,...,n},|J 0|=qn

P
i2J

0 X
0
i

and
A

00
= max

J

00⇢{1,...,m+n},|J 00|=q(m+n)

P
i2J

00 X
i

, where we
have denoted X

m+i

= X

0
i

for i = 1 . . . n. If J ⇢
{1, ...,m} , |J | = ✓m and J

0 ⇢ {m+ 1, ...,m+ n} , |J 0| =
qn, then J

00
= J [ J

0 has cardinal m + n, hence A + A

0
=P

i2J

00 X
i

 A

00
, whatever the particular sample. Therefore



00 � S

S

00+

S

0

S

00
0 and we have:

E [

00
] � E


S

S

00

�
+ E


S

0

S

00
0
�
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Let us now show that:

E

S

S

00

�
= E


A

S

00

�
� E


S

S

00

�
E

A

S

�

If this is the case, then we identically get for 0
:

E

S

0

S

00
0
�
= E


A

0

S

00

�
� E


S

0

S

00

�
E

A

0

S

0

�

hence we will have:

E [

00
] � E


S

S

00

�
E [] + E


S

0

S

00

�
E [

0
]

Let T = X[mq] be the cut-off point (where [mq] is the

integer part of mq), so that A =

mX

i=1

X

i Xi�T

and let B =

S � A =

mX

i=1

X

i Xi<T

. Conditionally to T , A and B are

independent: A is a sum if m✓ samples constarined to being
above T , while B is the sum of m(1�✓) independent samples
constrained to being below T . They are also independent of
S

0
. Let p

A

(t, da) and p

B

(t, db) be the distribution of A and
B respectively, given T = t. We recall that p

0
(ds

0
) is the

distribution of S0 and denote q(dt) that of T . We have:

E

S

S

00

�
=

ZZ
a+ b

a+ b+ s

0
a

a+ b

p

A

(t, da) p

B

(t, db) q(dt) p

0
(ds

0
)

For given b, t and s

0, a ! a+b

a+b+s

0 and a ! a

a+b

are two increasing functions of the same variable a, hence
conditionally to T , B and S

0, we have:

E


S

S

00

����T,B, S

0
�
= E


A

A+B + S

0

����T,B, S

0
�

� E


A+B

A+B + S

0

����T,B, S

0
�
E


A

A+B

����T,B, S

0
�

This inequality being valid for any values of T , B and S

0, it
is valid for the unconditional expectation, and we have:

E

S

S

00

�
� E


S

S

00

�
E

A

S

�

If the two samples have the same distribution, then we have:

E [

00
] � m

m+ n

E [] +

n

m+ n

E [

0
]

Indeed, in this case, we observe that E
⇥

S

S

00

⇤
=

m

m+n

. In-
deed S =

P
m

i=1 Xi

and the X

i

are identically distributed,
hence E

⇥
S

S

00

⇤
= mE

⇥
X

S

00

⇤
. But we also have E

h
S

00

S

00

i
=

1 = (m + n)E
⇥
X

S

00

⇤
therefore E

⇥
X

S

00

⇤
=

1
m+n

. Similarly,
E
h

S

0

S

00

i
=

n

m+n

, yielding the result.
This ends the proof of the theorem.

Let X be a positive random variable and h 2 (0, 1). We
remind the theoretical h-concentration measure, defined as:



h

=

P (X > h)E [X |X > h ]

E [X]

whereas the n-sample ✓-concentration measure is b
h

(n) =

A(n)
S(n) , where A(n) and S(n) are defined as above for an n-
sample X = (X1, . . . , Xn

) of i.i.d. variables with the same
distribution as X .

Theorem 2. For any n 2 N, we have:

E [b
h

(n)] < 

h

and
lim

n!+1
b
h

(n) = 

h

a.s. and in probability

Proof. The above corrolary shows that the sequence
nE [b

h

(n)] is super-additive, hence E [b
h

(n)] is an increasing
sequence. Moreover, thanks to the law of large numbers,
1
n

S(n) converges almost surely and in probability to E [X]

and 1
n

A(n) converges almost surely and in probability to
E [X

X>h

] = P (X > h)E [X |X > h ], hence their ratio
also converges almost surely to 

h

. On the other hand,
this ratio is bounded by 1. Lebesgue dominated convergence
theorem concludes the argument about the convergence in
probability.

IV. MIXED DISTRIBUTIONS FOR THE TAIL EXPONENT

Consider now a random variable X , the distribution of
which p(dx) is a mixture of parametric distributions with
different values of the parameter: p(dx) =

P
m

i=1 !i

p

↵i(dx).

A typical n-sample of X can be made of n

i

= !

i

n samples
of X

↵i with distribution p

↵i . The above theorem shows that,
in this case, we have:

E [b
q

(n,X)] �
mX

i=1

E

S(!

i

n,X

↵i)

S(n,X)

�
E [b

q

(!

i

n,X

↵i)]

When n ! +1, each ratio
S(!

i

n,X

↵i)

S(n,X)

converges almost

surely to !

i

respectively, therefore we have the following
convexity inequality:



q

(X) �
mX

i=1

!

i



q

(X

↵i)

The case of Pareto distribution is particularly interesting.
Here, the parameter ↵ represents the tail exponent of the
distribution. If we normalize expectations to 1, the cdf of X

↵

is F

↵

(x) = 1�
⇣

x

xmin

⌘�↵

and we have:



q

(X

↵

) = q

↵�1
↵

and
d

2

d↵

2


q

(X

↵

) = q

↵�1
↵

(log q)

2

↵

3
> 0

Hence 

q

(X

↵

) is a convex function of ↵ and we can write:



q

(X) �
mX

i=1

!

i



q

(X

↵i) � 

q

(X

↵̄

)

where ↵̄ =

P
m

i=1 !i

↵.
Suppose now that X is a positive random variable with

unknown distribution, except that its tail decays like a power
low with unknown exponent. An unbiased estimation of the
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exponent, with necessarily some amount of uncertainty (i.e.,
a distribution of possible true values around some average),
would lead to a downward biased estimate of 

q

.

Because the concentration measure only depends on the tail
of the distribution, this inequality also applies in the case of
a mixture of distributions with a power decay, as in Equation
1:

P(X > x) ⇠
NX

j=1

!

i

L

i

(x)x

�↵j (3)

The slightest uncertainty about the exponent increases the
concentration index. One can get an actual estimate of this
bias by considering an average ↵̄ > 1 and two surrounding
values ↵

+
= ↵+ � and ↵

�
= ↵� �. The convexity inequaly

writes as follows:



q

(↵̄) = q

1� 1
↵̄
<

1

2

⇣
q

1� 1
↵+�

+ q

1� 1
↵��

⌘

So in practice, an estimated ↵̄ of around 3/2, sometimes
called the "half-cubic" exponent, would produce similar results
as value of ↵ much closer ro 1, as we used in the previous
section. Simply 

q

(↵) is convex, and dominated by the second

order effect ln(q)q
1� 1

↵+� (ln(q)�2(↵+�))
(↵+�)4 , an effect that is exac-

erbated at lower values of ↵.
To show how unreliable the measures of inequality concen-

tration from quantiles, consider that a standard error of 0.3 in
the measurement of ↵ causes 

q

(↵) to rise by 0.25.

V. A LARGER TOTAL SUM IS ACCOMPANIED BY
INCREASES IN b

q

There is a large dependence between the estimator b
q

and

the sum S =

nX

j=1

X

j

: conditional on an increase in b
q

the

expected sum is larger. Indeed, as shown in theorem 1, b
q

and
S are positively correlated.

For the case in which the random variables under concern
are wealth, we observe as in Figure 3 such conditional
increase; in other words, since the distribution is of the class of
fat tails under consideration, the maximum is of the same order
as the sum, additional wealth means more measured inequality.
Under such dynamics, is quite absurd to assume that additional
wealth will arise from the bottom or even the middle. (The
same argument can be applied to wars, epidemics, size or
companies, etc.)

VI. CONCLUSION AND PROPER ESTIMATION OF
CONCENTRATION

Concentration can be high at the level of the generator, but
in small units or subsections we will observe a lower 

q

. So
examining times series, we can easily get a historical illusion
of rise in, say, wealth concentration when it has been there all
along at the level of the process; and an expansion in the size
of the unit measured can be part of the explanation.3

3Accumulated wealth is typically thicker tailed than income, see [8].

60000 80000 100000 120000
Wealth

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
k Hn=104 L

Fig. 3: Effect of additional wealth on ̂

Even the estimation of ↵ can be biased in some domains
where one does not see the entire picture: in the presence
of uncertainty about the "true" ↵, it can be shown that, unlike
other parameters, the one to use is not the probability-weighted
exponents (the standard average) but rather the minimum
across a section of exponents [6].

One must not perform analyses of year-on-year changes in
b
q

without adjustment. It did not escape our attention that
some theories are built based on claims of such "increase"
in inequality, as in [9], without taking into account the true
nature of 

q

, and promulgating theories about the "variation"
of inequality without reference to the stochasticity of the
estimation � and the lack of consistency of 

q

across time
and sub-units. What is worse, rejection of such theories also
ignored the size effect, by countering with data of a different
sample size, effectively making the dialogue on inequality
uninformational statistically.4

The mistake appears to be commonly made in common
inference about fat-tailed data in the literature. The very
methodology of using concentration and changes in concen-
tration is highly questionable. For instance, in the thesis by
Steven Pinker [10] that the world is becoming less violent,
we note a fallacious inference about the concentration of
damage from wars from a b

q

with minutely small population
in relation to the fat-tailedness.5 Owing to the fat-tailedness
of war casualties and consequences of violent conflicts, an
adjustment would rapidly invalidate such claims that violence
from war has statistically experienced a decline.

A. Robust methods and use of exhaustive data

We often face argument of the type "the method of mea-
suring concentration from quantile contributions ̂ is robust
and based on a complete set of data". Robust methods, alas,

4Financial Times, May 23, 2014 "Piketty findings undercut by errors" by
Chris Giles.

5Using Richardson’s data, [10]: "(Wars) followed an 80:2 rule: almost
eighty percent of the deaths were caused by two percent (his emph.) of
the wars". So it appears that both Pinker and the literature cited for the
quantitative properties of violent conflicts are using a flawed methodology, one
that produces a severe bias, as the centile estimation has extremely large biases
with fat-tailed wars. Furthermore claims about the mean become spurious at
low exponents.
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tend to fail with fat-tailed data, see [6]. But, in addition, the
problem here is worse: even if such "robust" methods were
deemed unbiased, a method of direct centile estimation is
still linked to a static and specific population and does not
aggregage. Accordingly, such techniques do not allow us to
make statistical claims or scientific statements about the true
properties which should necessarily carry out of sample.

Take an insurance (or, better, reinsurance) company. The
"accounting" profits in a year in which there were few claims
do not reflect on the "economic" status of the company and it
is futile to make statements on the concentration of losses per
insured event based on a single year sample. The "accounting"
profits are not used to predict variations year-on-year, rather
the exposure to tail (and other) events, analyses that take into
account the stochastic nature of the performance. This dif-
ference between "accounting" (deterministic) and "economic"
(stochastic) values matters for policy making, particularly
under fat tails. The same with wars: we do not estimate the
severity of a (future) risk based on past in-sample historical
data.

B. How Should We Measure Concentration?

Practitioners of risk managers now tend to compute CVaR
and other metrics, methods that are extrapolative and noncon-
cave, such as the information from the ↵ exponent, taking
the one closer to the lower bound of the range of exponents,
as we saw in our extension to Theorem 2 and rederiving the
corresponding , or, more rigorously, integrating the functions
of ↵ across the various possible states. Such methods of
adjustment are less biased and do not get mixed up with
problems of aggregation –they are similar to the "stochastic
volatility" methods in mathematical finance that consist in ad-
justments to option prices by adding a "smile" to the standard
deviation, in proportion to the variability of the parameter
representing volatility and the errors in its measurement. Here
it would be "stochastic alpha" or "stochastic tail exponent"6

By extrapolative, we mean the built-in extension of the tail in
the measurement by taking into account realizations outside
the sample path that are in excess of the extrema observed.7 8
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bracket with conditional average bracket contribution, which is not the same
thing as using full power-law extension; such a method retains a significant
bias.

7Even using a lognormal distribution, by fitting the scale parameter, works
to some extent as a rise of the standard deviation extrapolates probability mass
into the right tail.

8We also note that the theorems would also apply to Poisson jumps, but
we focus on the powerlaw case in the application, as the methods for fitting
Poisson jumps are interpolative and have proved to be easier to fit in-sample
than out of sample, see [6].
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I. INTRODUCTION

You observe data and get some confidence that the average
is represented by the sample thanks to a standard metrified "n".
Now what if the data were fat tailed? How much more do you
need? What if the model were uncertain –we had uncertainty
about the parameters or the probability distribution itself? Let
us call "sample equivalence" the sample size that is needed to
correspond to a Gaussian sample size of n.

It appears that 1) the statistical literature has been silent on
the subject of sample equivalence –since the sample mean is
not a good estimator under fat tailed distributions, 2) errors in
the estimation of the mean can be several order of magnitudes
higher than under corresponding thin tails, 3) many operators
writing "scientific" papers aren’t aware of it (which includes
many statisticians), 4) model error compounds the issue.

We show that fitting tail exponents via ML methods have a
small error in delivering the mean.

Main Technical Results In addition to the qualitative
discussions about commonly made errors in violating
the sample equivalence, the technical contribution is as
follows:

• explicit extractions of partial expectations for alpha
stable distributions

• the expression of how uncertainty about parameters
(quantified in terms of parameter volatility) trans-
lates into a larger (or smaller) required n. In other
words, the effect of model uncertainty, how the
degree of model uncertainty worsens inference, in
a quantifiable way.

II. SUMMARY OF THE FIRST RESULT

The first discussion examines the issue of "sample equiva-
lence" without any model uncertainty.

A. The problem
Let us summarize the standard convergence theorem. By

the weak law of large numbers, a sum of random variables
X1, . . . , Xn with finite mean m, that is E(X) < ∞, then
1
n

∑
1≤i≤n Xi converges to m in probability, as n → ∞. Or,

for any ϵ > 0 limn→∞ P
(
|Xn −m|> ϵ

)
= 0. In other words:

the sample mean will end up converging to the true mean,
should the latter exist.

But the result holds at infinity, while we live with finite n.
There are several regimes of convergene.

• Case 1a when the variance and all other moments exist,
and the data is i.i.d., there are two convergence effects at
play, one, convergence to the Gaussian (by central limit),

Fig. 1: How thin tails (Gaussian) and fat tails (1< α ≤2)
converge to the mean.

the second, the l.l.n., which accelerates the convergence.
Some subcategories with higher kurtosis than the Gaus-
sian, such as regime switching situations, or distributions
entailing Poisson jumps or similar large deviations with
small probability converge more slowly but these are
special cases that we can ignore in this discussion since
Case 2 is vastly more consequential in effect (it requires
an extremely high kurtosis to slow down the central limit).

• Case 1b when the variance exists, but higher moments
don’t, the central limit theorem doesn’t really work in
practice (it is too slow for "real time") and the law of
large numbers works more slowly than Case 1a, but
works nevertheless. We consider this as "intermediate"
case, more particularly with finite-variance power laws,
those with the tail exponent ≥ 2 (or, more accurately, if
the distribution is two-tailed, the lower of the left or right

1
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tail exponent equal to or exceeding 2).
• Case 2 when the mean exists, but the variance doesn’t,

the law of large numbers converges very, very slowly.
It is Case 2 that is the main object of this paper. More
particularly cases where the lowest tail exponent 1 < α ≤ 2.
Of particular relevance is "80/20" where the α ≈ 1.16.

B. Discussion of the result about sample equivalence for fat
tails

We assume that Case 1a converge to a Gaussian, hence
approach the "Gaussian basin" which is the special case of
stable distributions.

Table I shows the equivalence of number of summands
between processes.

TABLE I: Corresponding nα, or how many for equivalent α-
stable distribution. The Gaussian case is the α = 2. For the
case with equivalent tails to the 80/20 one needs 1011 more
data than the Gaussian.

α nα n
β=± 1

2
α nβ=±1

α
Symmetric Skewed One-tailed

1 Fughedaboudit - -

9
8 6.09× 1012 2.8× 1013 1.86× 1014

5
4 574,634 895,952 1.88× 106

11
8 5,027 6,002 8,632

3
2 567 613 737

13
8 165 171 186

7
4 75 77 79

15
8 44 44 44

2 30. 30 30

The "equivalence" is not straightforward.

Exposition of the problem
Let Xα,1, Xα,2, . . . , Xα,nα be a sequence of i.i.d. powerlaw

distributed variables with tail exponent 1 < α ≤ 2 in at least
one of the tails, that is, belonging to the class of distributions
with at least one "power law" tail, that is:

P(|Xα|> |x|) ∼ L(x) |x|−α (1)

where L : [x0,±∞) → (0,±∞) is a slowly varying function,
defined as limx→±∞

L(kx)
L(x) = 1 for any k > 0.

Let Xg,1, Xg,2, . . . , Xg,n be a sequence of Gaussian vari-
ables with mean µ and scale σ. We are looking for values of
n′ corresponding to a given ng:

nmin = inf

{
nα : E

(∣∣∣∣∣

nα∑

i=1

Xα,i −mp

nα

∣∣∣∣∣

)

≤ E
(∣∣∣∣∣

ng∑

i=1

Xg,i −mg

ng

∣∣∣∣∣

)
, nα > 0

}
(2)

Instability of Mean Deviation and use of L1 norm

And since we know that convergence for the Gaussian
happens at speed n

1
2
g (something we will redo using stable dis-

tributions), we can compare to convergence of other classes.

The idea is to limit convergence to L1 norm; we know
clearly that there is no point using the L2 norm, and even
when (as in finite variance power laws, there is some con-
vergence in L2 (central limit), we ignore such situation
for its difficulties in real time. As to the distribution of
the maximum, that is, L∞, fughedoubadit.

1.0 1.5 2.0 2.5 3.0
�

1.4

1.5

1.6

1.7

C2

C1
(�)

Fig. 2: The ratio of cumulants C2
C1

for a symmetric powerlaw,
as a function of the tail exponent α.

We are expressing in Equation 2 the expected error (that
is, a risk function) in L1 as mean absolute deviation from the
observed average, to accommodate absence of variance –but
assuming of course existence of first moment without which
there is no point discussing averages.

Typically, in statistical inference, one uses standard devia-
tions of the observations to establish the sufficiency of n. But
in fat tailed data standard deviations do not exist, or, worse,
when they exist, as in powerlaw with tail exponent > 3, they
are extremely unstable, particularly in cases where kurtosis is
infinite.

Using mean deviations of the samples (when these exist)
doesn’t accommodate the fact that fat tailed data hide proper-
ties. The "volatility of volatility", or the dispersion around the
mean deviation increases nonlinearly as the tails get fatter. For
instance, a stable distribution with tail exponent at 3

2 matched
to exactly the same mean deviation as the Gaussian will deliver
measurements of mean deviation 1.4 times as unstable as the
Gaussian.

Using mean absolute deviation for "volatility", and its mean
deviation "volatility of volatility" expressed in the L1 norm,
or C1 and C2 cumulant:

C1 = ∥.∥1= E(|X −m|)

C2 = ∥(∥.∥1) ∥1= E (|X − E(|X −m|)|)
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We can compare that matching mean deviations does not
go very far matching cumulants.(see Appendix 1)

Further, a sum of Gaussian variables will have its extreme
values distributed as a Gumbel while a sum of fat tailed will
follow a Fréchet distribution regardless of the the number of
summands. The difference is not trivial, as shown in figures ,
as in 106 realizations for an average with 100 summands, we
can be expected observe maxima > 4000× the average while
for a Gausthsian we can hardly encounter more than > 5×.

III. GENERALIZING MEAN DEVIATION AS PARTIAL
EXPECTATION

It is unfortunate that even if one matches mean deviations,
the dispersion of the distributions of the mean deviations (and
their skewness) would be such that a "tail" would remain
markedly different in spite of a number of summands that
allows the matching of the first order cumulant ∥.∥1. So we
can match the special part of the distribution, the expectation
> K or < K, where K can be any arbitrary level.

Let Ψ(t) be the characteristic function of the random
variable. Let θ be the Heaviside theta function. Since sgn(x) =
2θ(x)− 1

Ψθ,K(t) =

∫ ∞

−∞
eitx (2θ(x−K)− 1) dx =

2ieiKt

t

And define the partial expectation as E+
K :=

∫∞
K x dF (x) =

E(X|X>K)P(X > K). The special expectation becomes, by
convoluting the Fourier transforms; where F is the distribution
function for x:

E+
K = −i

∂

∂t

∫ ∞

−∞
Ψ(t− u)Ψθ,K(u)du|t=0 (3)

Our method allows the computation of a conditional tail or
"CVar" in the language of finance and insurance.

Note a similar approach using the Hilbert Transform for the
absolute value of a Lévy stable r.v., see Hlusel, [1], Pinelis [2].

Mean deviation (under a symmetric distribution with mean
µ, i.e. P(X > µ) = 1

2 ) becomes a special case of equation 3,
E(|X − µ|) =

(∫∞
µ (x− µ) dF (x)−

∫ µ
−∞(x− µ) dF (x)

)
=

E+
µ .

IV. CLASS OF STABLE DISTRIBUTIONS

Assume alpha-stable the class S of probability distribution
that is closed under convolution: S(α,β, µ,σ) represents the
stable distribution with tail index α ∈ (0, 2], symmetry
parameter β ∈ [0, 1], location parameter µ ∈ R, and scale
parameter σ ∈ R+. The Generalized Central Limit Theorem
gives sequences an and bn such that the distribution of the
shifted and rescaled sum Zn = (

∑n
i Xi − an) /bn of n i.i.d.

random variates Xi the distribution function of which FX(x)
has asymptotes 1 − cx−α as x → +∞ and d(−x)−α as
x → −∞ weakly converges to the stable distribution

S(∧α,2, 0<α<2
c− d

c+ d
, 0, 1).

We note that the characteristic functions are real for all
symmetric distributions. [We also note that the convergence is

not clear across papers [3] but this doesn’t apply to symmetric
distributions.]

Note that the tail exponent α used in non stable cases is
somewhat, but not fully, different for α = 2, the Gaussian
case where it ceases to be a powerlaw –the main difference is
in the asymptotic interpretation. But for convention we retain
the same symbol as it corresponds to tail exponent but use it
differently in more general non-stable power law contexts.

The characteristic function Ψ(t) of a variable Xα with scale
σ will be, using the expression for α > 1, See Zolotarev [4],
Samorodnitsky and Taqqu [5]:

Ψα = exp
(
iµt− |tσ|α

(
1− iβ tan

(πα
2

)
sgn(t)

))

which, for an n-summed variable (the equivalent of mixing
with equal weights), becomes:

Ψα(t) = exp
(
iµnt−

∣∣∣n
1
α tσ

∣∣∣
α (

1− iβ tan
(πα

2

)
sgn(t)

))

A. Results

Let Xα ∈ S, be the centered variable with a mean of
zero, Xα = (Y α − µ) . We write E+

K(α,β, µ,σ,K) :=
E(Xα|Xα>K P(Xα > K)) under the stable distribution
above. From Equation 3:

(4)

E+
K(α,β, µ,σ,K)

=
1

2π

∫ ∞

−∞
ασα |u|α−2

(
1

+ iβ tan
(πα

2

)
sgn(u)

)
exp

(
|uσ|α

(
−1

− iβ tan
(πα

2

)
sgn(u)

)
+ iKu

)
du

with explicit solution for K = µ = 0:

E+
K(α,β, 0,σ, 0) =−σ 1

πα
Γ

(
− 1

α

)((
1+ iβ tan

(πα
2

))1/α

+
(
1− iβ tan

(πα
2

))1/α)
.

(5)

and semi-explicit generalized form for K ̸= µ:

(6)E+
K(α,β, µ,σ,K)

=σ
Γ
(
α−1
α

) ((
1 + iβ tan

(
πα
2

))1/α
+
(
1− iβ tan

(
πα
2

))1/α)

2π

+
∞∑

k=1

ik(K − µ)kΓ
(
k+α−1

α

) (
β2 tan2

(
πα
2

)
+ 1
) 1−k

α

2πσk−1k!
(
(−1)k

(
1+iβ tan

(πα
2

)) k−1
α

+
(
1−iβ tan

(πα
2

)) k−1
α

)

Our formulation in Equation 6 generalizes and simplifies the
commonly used one from Wolfe [6] from which Hardin [7]
got the explicit form, promoted in Samorodnitsky and Taqqu
[5] and Zolotarev [4]:
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(7)E(|X|) = 1

π
σ

(
2Γ

(
1− 1

α

)(
β2 tan2

(πα
2

)
+ 1
) 1

2α

cos

(
tan−1

(
β tan

(
πα
2

))

α

))

Which allows us to prove the following statements:
1) Relative convergence: The general case with β ̸= 0: for

so and so, assuming so and so, (precisions) etc.,

nβ
α = 2

α
1−απ

α
2−2α

(
Γ

(
α− 1

α

)
√
ng

((
1− iβ tan

(πα
2

)) 1
α

+
(
1 + iβ tan

(πα
2

)) 1
α

))
α

α−1

(8)

with alternative expression:

nβ
α = π

α
2−2α

⎛

⎜⎜⎝

sec2
(
πα
2

)− 1
2/α sec

(
tan−1(tan(πα

2 ))
α

)

√
ng Γ

(
α−1
α

)

⎞

⎟⎟⎠

α
1−α

(9)
Which in the symmetric case β = 0 reduces to:

nα = π
α

2(1−α)

(
1

√
ng Γ

(
α−1
α

)
) α

1−α

(10)

2) Speed of convergence: ∀k ∈ N+ and α ∈ (1, 2]

E
(∣∣∣∣∣

knα∑

i

Xα
i −mα

knα

∣∣∣∣∣

)
/E
(∣∣∣∣∣

nα∑

i

Xα
i −mα

nα

∣∣∣∣∣

)
= k

1
α−1 (11)
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Fig. 3: Asymmetries and Mean Deviation.

Remark 1. The ratio mean deviation of distributions in S is
homogeneous of degree k

1
. α−1. This is not the case for other

classes "nonstable".

Proof. (Sketch) From the characteristic function of the stable
distribution. Other distributions need to converge to the basin
S.
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Fig. 4: Mixing distributions: the effect is pronounced at lower
values of α, as tail uncertainty creates more fat-tailedness.

B. Stochastic Alpha or Mixed Samples
Define mixed population Xα and ξ(Xα) as the mean

deviation of ...

Proposition 1. For so and so

ξ(Xᾱ) ≥
m∑

i=1

ωiξ(Xαi)

where ᾱ =
∑m

i=1 ωiαi and
∑m

i=1 ωi = 1.

Proof. A sketch for now: ∀α ∈ (1, 2), where γ is the Euler-
Mascheroni constant ≈ 0.5772, ψ(1) the first derivative of the
Poly Gamma function ψ(x) = Γ′[x]/Γ[x], and Hn the nth

harmonic number:
∂2ξ

∂α2
=

2σΓ

πα4

(
α− 1

α

)
n

1
α−1

(
ψ(1)

(
α− 1

α

)

+
(
−H− 1

α
+log(n)+γ

)(
2α−H− 1

α
+log(n)+γ

))

which is positive for values in the specified range, keeping
α < 2 as it would no longer converge to the Stable basin.

Which is also negative with respect to alpha as can be
seen in Figure 4. The implication is that one’s sample under-
estimates the required "n". (Commentary).

V. SYMMETRIC NONSTABLE DISTRIBUTIONS IN THE
SUBEXPONENTIAL CLASS

A. Symmetric Mixed Gaussians, Stochastic Mean
While mixing Gaussians the kurtosis rises, which makes

it convenient to simulate fattailedness. But mixing means
has the opposite effect, as if it were more "stabilizing".
We can observe a similar effect of "thin-tailedness" as far
as the n required to match the standard benchmark. The
situation is the result of multimodality, noting that stable
distributions are unimodal (Ibragimov and Chernin) [8] and
infinitely divisible Wolfe [9]. For Xi Gaussian with mean µ,
E = µ erf

(
µ√
2σ

)
+
√

2
πσe

− µ2

2σ2 , and keeping the average µ±δ
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VIII. ALTERNATIVE METHODS FOR MEAN

We saw that there are two ways to get the mean:
• The observed mean from data,
• The observed α from data, with corresponding distribu-

tion of the mean.
We will compare both –in fact there is a very large difference
between the properties of both estimators.

Where L is the lognormal distribution, the idea is

α
d∼ L

[
log(α0)−

σ2

2
,σ

]

For the most simplified Pareto distribution,

f(x) = αLαx−α−1 , x ∈ [L,∞)

with expectation E(X) = αL
α−1 . Since

f(α) =
e−

(
log(α)−log(α0)+σ2

2

)2

2σ2

√
2πασ

,α ∈ (0,∞)

we have z(α) : R+ → R\[0, L); z ! αL
α−1 , with distribution:

g(z) =

L exp

(
− (−2 log(α0)+2 log( z

z−L )+σ2)2

8σ2

)

√
2πσz(z − L)

, z ∈ R\[0, L)

which we can verify as, interestingly
∫ 0
−∞ g(z)dz +∫∞

L g(z)dz = 1. Further, P(Z > 0) = P(Z > L) =
1
2erfc

(
σ2−2 log(α0)

2
√
2σ

)
. The mean determined by the Hill es-

timator is unbiased since: we can show that

lim
σ→0

∫∞
L z g(z) dz
∫∞
L g(z) dz

= L
α

α− 1
(13)

The standard deviation of in sample α:
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