
Pre-breakdown cavitation development in the dielectric fluid 

in the inhomogeneous, pulsed electric fields 
 

Mikhail N. Shneider
1,* 

and Mikhail Pekker
2 

 
1
 Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544 

2
 MMSolution, 6808 Walker Street, Philadelphia, PA, 19135 

 

Abstract 

We consider the development of pre-breakdown cavitation nanopores appearing in the dielectric 

fluid under the influence of the electrostrictive stresses in the inhomogeneous pulsed electric 

field. It is shown that three characteristic regions can be distinguished near the needle electrode. 

In the first region, where the electric field gradient is greatest, the cavitation nanopores, occurring 

during the voltage nanosecond pulse, may grow to the size at which an electron accelerated by the 

field inside the pores can acquire enough energy for excitation and ionization of the liquid on the 

opposite pore wall, i.e., the breakdown conditions are satisfied. In the second region, the negative 

pressure caused by the electrostriction is large enough for the cavitation initiation (which can be 

registered by optical methods), but, during the voltage pulse, the pores do not reach the size at 

which the potential difference across their borders becomes sufficient for ionization or excitation 

of water molecules. And, in the third, the development of cavitation is impossible, due to an 

insufficient level of the negative pressure: in this area, the spontaneously occurring micropores do 

not grow and collapse under the influence of surface tension forces. This paper discusses the 

expansion dynamics of the cavitation pores and their most probable shape. 

 

I. Introduction. 

A mechanism for the rapid breakdown in the fluid, associated with the occurrence of cavitation 

ruptures under the influence of the electrostrictive forces near the needle electrode, was proposed 

in [1]. Later, a hydrodynamic model of compressible fluid motion under the influence of the 

ponderomotive electrostrictive forces in a non-uniform time dependent electric field was 

suggested in [2]. As shown in [2], if the voltage on the needle electrode is growing fast enough (a 

few nanoseconds), the negative stress is created in liquid, and it may be sufficient for the 

cavitation formation. A nanosecond breakdown, the beginning of which can be explained by the 

formation of cavitation in a stretched liquid due to electrostriction, was investigated 

experimentally in [3-7]. In [8], based on a theoretical model [2], it had been shown 

experimentally that the initial stage of development of a nanosecond breakdown in liquids is 

associated with the appearance of discontinuities in the liquid (cavitation) under the influence of 

electrostriction forces. The comparison of the experimentally measured area dimensions and its 

temporal development was found to be in a good agreement with the theoretical calculations. A 

theory of the cavitation initiation in inhomogeneous pulsed electric field was developed in [9], as 

well as the method that allows to determine the critical parameters, at which cavitation begins, on 

the basis of the comparison between the experiment and the simulation results within the 

framework of hydrodynamics of compressible fluids, was proposed.  

 

In Part II, it is shown in the model example of a spherical electrode that if the applied voltage on 

the electrode is growing fast enough (~ few nanoseconds), the negative stress induced in liquid by 

the ponderomotive electrostrictive forces does not have time to be compensated by the rising of 

the positive hydrostatic pressure, related to the fluid influx into the negative pressure region. 

Тherefore, the conditions arise for the formation of the fluid discontinuities (nanovoids), i.e., 
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cavitation.  

 

Part III presents the equations for the nanovoid expansion in the presence of a strong 

inhomogeneous electric field and the approaches to this problem, which will be considered, are 

formulated. The presented numerical results of the nanopores expansion in the case of the 

spherical electrode can be easily generalized to an arbitrarily shaped electrode. It is shown that 

there are three characteristic regions in the vicinity of the electrode. In the first region, where the 

electric field gradient is greatest, the occurring cavitation nanopores have enough time during the 

nanosecond voltage pulse to grow to a size at which an electron can gain enough energy for the 

excitation and ionization of the liquid molecules on the pore wall. In the second region, the 

electrostrictive negative pressure reaches values at which the cavitation development becomes 

possible (that can be registered by the optical methods), but the nanovoids, appearing during the 

voltage pulse, do not have enough time to grow to the size at which the potential difference across 

their borders becomes sufficient for the ionization or excitation of water molecules. And, in the 

third, the development of cavitation is impossible, since the spontaneously occurring nanovoids 

do not grow, because the value of the electrostrictive negative pressure is relatively small and 

cannot compete with the forces of surface tension. 

 

Part IV discusses the form of an expanding cavitation micropore. It is shown that a perturbation 

of the electric field caused by the micropores near the equator (in the plane perpendicular to the 

direction of the undisturbed electric field) produces a flow directed to the pore, and near the poles 

– out of the pore. The velocities of the arising flow are comparable to the velocities of the 

spherical pores expansion and an order of magnitude greater than the flow velocities caused by 

the unperturbed nonuniform electric field due to the applied voltage on the electrode. As a 

consequence, the micropore is stretched along the electric field, as its extension is decelerated in 

the equatorial plane due to the counterflow of the liquid, and the electrostrictive negative pressure 

is compensated by the hydrostatic pressure.  

 

Note, that the evolution of gas filled bubbles in a dielectric liquid within a strong electric field is 

theoretically and experimentally studied [10, 11]. Their elongation along the field was due to the 

fact that the component of the compressive pressure on the poles of the electric field in a 

spherical bubble in /1  (  is the dielectric permittivity of the liquid) times smaller than at the 

equator. In these papers, the effect of the ponderomotive force on the bubble has not been 

considered because in a stationary (or slowly varying in time) electric field, the negative pressure 

in the fluid is compensated by the hydrostatic pressure. In this paper, we consider the case of a 

rapid variation of the nonuniform electric field when the ponderomotive forces cannot be 

neglected and they (not the gas in the bubble) lead to a rapid expansion of the micropore.  

 

In the final part of this work, the conclusions are formulated. 

 

II. Motion of the fluid under the action of the ponderomotive forces 

The dynamics of a dielectric liquid (water) in a pulsed inhomogeneous electric field in the 

approximation of the compressible fluid dynamics can be consider within the standard system of 

the continuity of mass and momentum equations [12]: 
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where the first and the second terms in the right part of the equation (1) are the volumetric 

densities of ponderomotive forces [13,14,15], 0 is the vacuum dielectric permittivity,   is the 

liquid density, u


- velocity,  is the electric field, 610  m
2
/s is the kinematic viscosity of 

water.  The relation of the hydrodynamic pressure p with the compressible fluid density  (in 

our case - water) is given by the Tait equation of the state [16,17]: 
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For the polar dielectrics fluid (water)  

 










           (3)  

 

where 5.13.1~   is the empirical factor for most of the studied polar dielectric liquids, 

including water, [18, 19] and for the nonpolar dielectrics      3/21   [20].  

 

In the Figures 1 and 2, the results of the calculations performed for a spherical electrode of radius 

m 1000 r  are shown for the voltage amplitude kV 540 U , 81  and the electric field 

varying linearly with time: 
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Here, 0t  is the duration of the pulse front. The results shown in Fig. 1 correspond to nst 30  , and 

in Fig. 2, to nst 1000  . 
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Fig. 1. (a) The pressure dependence on the distance from the electrode at  t=t0=3ns. 1 - 
EP  is the 

pressure associated with the electrostriction forces, 2 – the hydrostatic pressure associated with 

the change in density of the fluid, 3 - the total pressure equal to the sum of the electrostrictive and 

the hydrostatic pressures. The line indicates the distance, at which the pressure is greater than the 

critical, assumed, for example, crP -30 MPa. (b) The dependence of the velocity of fluid from 

the electrode distance. 
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Fig. 2. Same as in Fig. 1, at t=t0=100ns. There is no region of developed cavitation. 

 

With the rapid rise of the applied voltage on the electrode (on the order of a few nanoseconds), 

the liquid (water) does not have enough time to come in motion and results in a change of the 

hydrostatic pressure, compensating the ponderomotive force (Fig. 1). Consequently, the 

ponderomotive forces cause a significant electrostrictive tensile stress in the dielectric liquid, 

which can lead to a disruption of the continuity of liquid (creating nanopores), similar to those 

observed in [21, 22, 23]. For the formation of discontinuities, it is necessary that the absolute 

value of the negative pressure in the fluid reach the values on the order of 10–30MPa [22]. In this 

case, the density fluctuations, which always exist due to thermal motion, lead to the formation of 

growing cavitation voids.  

 

With a relatively slow increase in the voltage on the electrode, the fluid moves to the electrode, 

and the total pressure does not reach the critical value, at which the conditions required to initiate 

the fluid discontinuities (Fig. 2) are created. It should be noted that with the rapid and slow 

increase in voltage, the fluid velocity is less than the speed of sound by more than two orders of 

magnitude (Fig. 1 (b), 2 (b)) and less than the expansion velocity of nanopores by more than an 

order of magnitude (see Part III). 

 

If the voltage on the electrodes grows relatively slowly (the voltage pulse front durations are 

hundreds nanoseconds or longer), the influence of ponderomotive forces on the fluid dynamics 

can be neglected. In this case, the conditions of works [10,11], in which the dynamics of a gas 

bubble in a strong electric field was studied, are valid.   

 

The probability of the appearance of the critical bubble in the volume V over the time t  due to 

the development of thermal fluctuations, in accordance with the theory [24, 25], is   
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Here,   [m
-3

s
-1

] characterizes the rate of the cavitation voids appearance in unit volume per 

second. 
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Here, T  is the temperature of fluid in Kelvin, 
Bk  is the Boltzmann constant,  - Plank constant. 

The parameter  crRk /21/1    characterizes the dependence of the coefficient of surface 

tension on the critical radius of the nanopores 
crR ,   is the so-called Tolman coefficient [26], 

which is determined from the experiment. 

 

If the critical pressure, at which cavitation begins is 30crP MPa [22], then, as follows from 

[9], 26.0k , 24.1crR  nm, and the Tolman coefficient 8.1  nm. That allows calculating 

the probability of cavitation, the region where cavitation develops, and the concentration of the 

cavitation ruptures generated during the voltage pulse. Figure 3 shows the normalized 

dependencies of the rate of generation of cavitation voids   on the distance from the electrode at 

different time moments during the voltage pulse. The calculations were made at nst 30  , 

μm 1000 r , and kV 540 U . For all generated cavitation nanopores, regardless of the local 

negative pressure value crPtrP ),( , 26.0k  was assumed.   
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Fig. 3. The computed dependencies of the rate of cavitation voids generation ),( tr , normalized 

by   25105.9 MPa30at  Pnorm  m
-3

s
-1

. The curve 1 corresponds to t = 2 ns, 2 - 2.5ns, 

3 - 3ns.  

 

According to [1], the main reason of the breakdown developing in fluid in a nonuniform field at 

nanosecond times may be related to a rupture of the continuity of fluid induced by the 

electrostrictive forces in the inhomogeneous electric field. Thus, in the vicinity of a needle 

electrode, a region saturated by micropores is created. In the pores, the primary electrons are 

accelerated by the electric field to the energies exceeding the potential of ionization of a water 

molecule. The sources of primary electrons in the microcavities can include a background 

radiation, as well as the field emission from the surface of the cavities. 

 

Figure 4 shows a schematic picture of the development of cavitation micropores arising in the 

vicinity of the electrode. 



 
Fig. 4. Schematic picture of cavitation pore formation and growth in the vicinity of the electrode. 

In the region 1, where the electric field gradient is greatest, the occurring cavitation nanopores 

have enough time during the nanosecond voltage pulse to grow to a size at which an electron can 

gain enough energy for the excitation and the ionization of molecules of the liquid on the pore 

wall. In the region 2, the electrostrictive negative pressure reaches values at which the cavitation 

development becomes possible (which can be registered by the optical methods), but nanovoids 

appearing during the voltage pulse do not have enough time to grow to the size at which the 

potential difference across their borders becomes sufficient for the ionization or the excitation of 

water molecules. And, in the region 3 - the development of cavitation is impossible, since the 

spontaneously occurring nanovoids do not grow, because the value of the electrostrictive negative 

pressure is relatively small and cannot compete with the forces of surface tension.   

 

 

IV. Development of micropores in а dielectric liquid in inhomogeneous pulsed electric fields 

 

Let us assume a spherical microcavity of the radius 



R formed in water as a result of thermal 

fluctuations. Considering the discontinuity of the dielectric constant at the liquid-vacuum 

boundary, the surface forces exerted by the electric field on the surface of the pore per unit area 

are [15]:  
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Here, 
npE ,

, 
tpE ,
 are the normal and tangential components of the electric field inside the pore. 

In (7) we took into account the surface tension of the liquid.  Since the critical initial sizes of the 

cavitation pores are about a few nanometers, and the unperturbed electric field induced by the 

high voltage potential of the electrode is changing on a length scale of order of the electrode size 

(~ 10-100 microns, typical for experimental conditions in [3-8]). Therefore, the external 

unperturbed electric field 0E  in the vicinity of the pore can be considered as homogeneous with 

good accuracy  
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In this case, the electric field is uniform inside the ellipsoidal pore [13]. Wherein the expressions 

for the normal and tangential components of the electric field on the surface of the spherical pore 

are [13], [15]: 
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Here, 



  is the azimuthal angles in a spherical coordinate system. 

 

Since the objective of this work is to give the quantitative estimates and a qualitative picture of 

the development the cavitation micropores during the pulse strong nonuniform electric field, we 

will not consider changing the shape of the pores. Also, we assume that the force averaged over 

the surface acts on the surface of micropores. A form of the expanding micropore in a pulsed 

electric field will be discussed in Section V.    

 

We obtain the mean pressure acting on the micropore surface, averaging (7) over the sphere 

surface, 
24 R : 

  pRkEPav  /21)4/3( 2

0   ,      (10) 

Wherein, if 0avP , then the formed micropore collapses, but if 0avP , the micropore starts to 

expand.  

 

Let us consider the problem of expanding the spherical pores under the influence of the 

electrostrictive ponderomotive forces and the surface tension. As was shown above, during the 

relatively short voltage pulse ( 51~0 t ns), the fluid does not have enough time to be set in 

motion (see Fig.1 (b), 2 (b)), and, consequently, a hydrostatic pressure component in (10), p , is 

much smaller than an electrostrictive. Therefore, we can neglect with the hydrostatic pressure. 

Next, we follow the analogy with the problem considered in the classic work of Rayleigh [27]. 

However, in contrast to [27], where the bubble was kept from collapsing by the gas pressure 

inside, in our case, the bubble is held by the electrostriction forces induced in the liquid.  

 

The fluid velocity at the distance r from the center of an expanding nanopores follows from the 

continuity equation (1), at which   is assumed to be constant, is:    
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Here, 
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R is the radius of nanopores, Rr  ; U  is the rate of expansion. In this case, the kinetic 

energy of the fluid is: 
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Since the rate of expansion is 



U 
dR

dt
, the equation (12) can be rewritten as:  
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The relevant work of the pressure forces (10) for the pores expansion is:   
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Since the change in the kinetic energy of the fluid is equal to the work of the pressure forces, we 

obtain from (13) and (14):  
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In (15), we explicitly substituted avP with (10) and neglected the hydrostatic pressure component.  

 

As in Part I, we assume that the electric field, from the spherical electrode to which the voltage is 

applied linearly, is increasing over time. Also, to simplify the formulas and the calculations 

presented below, we assume the parameter 1const)( Rk . This assumption is justified since 

we are interested in a significant expansion of the nanovoids compared to the size of the critical 

pores, i.e. ~crRR  .   

 

When substituting (4) into (15), we obtain: 
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It is convenient to introduce a variable   2/5

0/ RRx  , where 0R is the initial size of the pores. In 

this case, the equation (16) can be rewritten as 
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It follows from (17) that at the distance from the center of the electrode, r , the micropore expands 
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All calculations presented below were conducted with the same parameters as in Section II: 0r  

100 µm, 81 , 5.1 , 540 U keV, 30 t ns ), 072.0 N/m, 20 R nm and 

correspond to the time moment 30  tt ns.  

 

Figure 5 shows the dependence of the maximum electrostrictive pressure 

 40max /
~

),( rrPrEFPelec  and the pore radius R on the distance from the electrode 0rr  . 

It is seen that, under these conditions, an area, in which, for example, the nanopores of the size 2 

nm may be created and expanded, is slightly greater than 1 μm, whereas, the region, in which the 

tension generated by the ponderomotive force, is insufficient to cause cavitation at  

140  rr μm.   

 

Figure 6 shows the dependence of the kinetic energy that an electron gets in the growing pore 

REΔ in2 depending on the distance from the pore to the electrode. It is seen that the electron 

kinetic energy can significantly exceed ~ 10 eV, i.e., the characteristic ionization potential of 

water molecules (IH2O ≈ 12.6 eV), in the region 43.00  rr μm. Thus, the excitation 

(accompanied by UV and visible light) and the ionization starts in the vicinity of the electrode 

surface, in accordance with the observations of a nanosecond breakdown in the liquid (see, eg, [3-

7]). It is apparent that the relative size of the area, in which Δ >10 eV, increases at a higher 

value U0 or a smaller radius of the electrode 0r . 

 

Figure 7 shows the dependence of the rate of micropores growth on time. It is seen that the rate of 

expansion is much less than the velocity of sound and much more than the characteristic velocity 

of the fluid under the action of ponderomotive forces.  Therefore, the assumptions that during the 

voltage pulse a micropore center is not shifted and the discussed above modification of the 

Rayleigh model are applicable. 
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Fig.5. Dependencies of elecP  (a) and R  (b) on 0rr   at the time moment 30  tt  ns. The 

area to the left of the dotted vertical line shows where the pores of the initial size 2nm are 

expanding, and to the right, it shows where they are collapsing. The area where the 

electrostriction tension (negative pressure) exceeds the cavitation threshold, 30elecP MPa [32] 

is to the left of the solid vertical line.  
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Fig.6. Parameter REin2  dependence on 0rr  . The solid vertical line corresponds to

 10 eV.  

 

 

 

Fig.7. Dependencies of the rates of expansion of the pores on time at different 0rr  . Curve 

1 corresponds to 0 ; 2 - 25.0 ; 3 - 5.0 ; 4 - 75.0  and 5 - μm 1 . 

 

 V. On the shape of the expanding micropores 

We did not consider the fluid motion caused by the ponderomotive forces in the model of the 

nanopores expansion discussed above, since the rate of expansion (Fig.7) exceeds essentially the 

fluid velocity near the electrode (Fig. 1b, 2b). This statement is valid if the distortion of the 

electric field caused by the presence of the micropore is not taken into account. When considering 

the potential in the vicinity of the pores determined by an external potential and the dipole 

potential created by the polarization charges at the boundaries of the pores [13, 15], the 

expression for the square of the electric field near the spherical pore ),( rEout
  in the assumption 

2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

5432

V
=

d
R

/d
t 

 [
m

/s
]

t (ns)

1



of a constant external electric field 0E  (induced by the applied voltage) is: 
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Here, the angle 0 corresponds to the north pole of the pores (to the direction of the external 

unperturbed electric field), and 2/  relates to the equator (normal to the direction of the 

external unperturbed electric field). The dependencies 
2

0

2 / EE on Rr / at different angles   are 

shown in Fig. 8:  
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Fig. 8. Dependencies 
2

0

2 / EE on Rr / at different angles  . Line 1 coresponds to =0, 2 – 

=3 – =4 – =5 – = 

  

Taking into account (18) and (3) and neglecting the hydrostatic pressure and viscous friction, the 

volumetric electrostrictive force near the pore in the equation of fluid motion (1) has the form: 
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The dependencies on the volumetric force ),( rF  , referred to

   



















12

1
21

12

1

2

3
2

0
00










R

E
F , are shown in Fig.9. 



1.0 1.5 2.0 2.5 3.0 3.5 4.0
-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

4

5

2

3

1

r'/R

F
/F

0

    
Fig. 9. Normalized volumetric force ),( rF   in the vicinity of the pores at different angles . a) 

– radial dependencies. Line 1 coresponds to =0, 2 – =3 – =4 – =5 – 

=b) Two-dimensional contour plot 

 

The fluid moves toward the pore in the vicinity of the equator, due to the volumetric 

electrostrictive force directed toward the center of the pore (negative direction). However, at the 

pole, it moves away from the pore, because the electrostrictive force is positive. Therefore, the 

micropore will be stretched along the electric field, since its expansion in the equatorial plane will 

be inhibited by the fluid counterflow at the equator (Fig. 10). 

 

 
 

Fig. 10. Qualitative picture of the micropores form formation. 0E


 is the unperturbed external 

field produced by the voltage applied to the electrode. The red arrows indicate the “electrostatic” 

pressure inside the pores, the blue arrows demonstrate the directions of the fluid motion in the 

outer region of the pore induced by the electrostrictive volumetric force.  

 

It should be noted that the above considerations are mostly qualitative and valid only for the fluid 

outside the pore assumed as an elastic medium, i.e., for a very small deformation of the micropore 

and fluid in its vicinity. In order to determine the exact shape of the expanding pore we need to 

consider in the vicinity of the pore following factors, such as: boundary conditions for the 

ponderomotive forces, tension forces, the hydrostatic pressure, and, finally, the appearance of 

new microscopic discontinuities (nanopores) in the fluid in the region of large tensile stresses.  

 

Conclusions 

 

1. The equations describing the nanopore expansion in the presence of a strong inhomogeneous 

pulsed electric field are obtained, and the corresponding approaches are formulated.  



2. It is shown that the three characteristic regions appear in a liquid dielectric in the vicinity of 

the electrode. In the first region, where the electric field gradient is greatest, the occurring 

cavitation nanopores have enough time during the nanosecond voltage pulse to grow to a size 

at which an electron can gain enough energy for the excitation and ionization of the liquid 

molecules on the pore wall. In the second region, the electrostrictive negative pressure 

reaches values at which cavitation development becomes possible (and can be recorded by 

the optical methods). However, the nanovoids appearing during the voltage pulse do not have 

enough time to grow to the size at which the potential difference across their borders becomes 

sufficient for the ionization or excitation of water molecules. And, in the third region, the 

development of cavitation is impossible, since the spontaneously occurring nanovoids do not 

grow, because the value of the electrostrictive negative pressure is relatively small and cannot 

compete with the forces of surface tension. 

3. The physical processes affecting the shape of the expanding nanopores are considered. It is 

shown that a perturbation of the electric field caused by а micropore near its equator (in the 

plane perpendicular to the direction of the unperturbed external electric field) produces the 

fluid flow directed towards the pore, and in the vicinity of poles, away from the pore. As a 

consequence, a micropore will extend along the external electric field. 
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