
ar
X

iv
:1

00
1.

22
89

v1
  [

m
at

h-
ph

] 
 1

3 
Ja

n 
20

10

An Alternative Method for Solving a Certain Class of Fractional
Kinetic Equations

R.K. SAXENA
Department of Mathematics and Statistics, Jai Narain Vyas University

Jodhpur-342 004, India

A.M. MATHAI
Department of Mathematics and Statistics, McGill University

Montreal, Canada H3A 2K6
and

Centre for Mathematical Sciences, Pala Campus, Pala-686 574, Kerala, India

H.J. HAUBOLD
Office for Outer Space Affairs, United Nations

P.O.Box 500, A-1400 Vienna, Austria
and

Centre for Mathematical Sciences, Pala Campus, Pala-686 574, Kerala, India

Abstract. An alternative method for solving the fractional kinetic equations
solved earlier by Haubold and Mathai (2000) and Saxena et al. (2002, 2004a,
2004b) is recently given by Saxena and Kalla (2007). This method can also
be applied in solving more general fractional kinetic equations than the ones
solved by the aforesaid authors. In view of the usefulness and importance of
the kinetic equation in certain physical problems governing reaction-diffusion
in complex systems and anomalous diffusion, the authors present an alternative
simple method for deriving the solution of the generalized forms of the fractional
kinetic equations solved by the aforesaid authors and Nonnenmacher and Met-
zler (1995). The method depends on the use of the Riemann-Liouville fractional
calculus operators. It has been shown by the application of Riemann-Liouville
fractional integral operator and its interesting properties, that the solution of the
given fractional kinetic equation can be obtained in a straight-forward manner.
This method does not make use of the Laplace transform.

1 Introduction

The paper deals with the essential problem related to applications of Mittag-
Leffler function and Riemann-Liouville fractional calculus operators to fractional
order kinetic equations arising in modeling physical phenomena, governing diffu-
sion in porous media and relaxation processes. As such it reveals the important
role of these tools in applications of fractional calculus. The results are inter-
esting and useful for wide range of applied scientists dealing with fractional
order differential and fractional order integral equations. In a series of papers
the authors have demonstrated the use of integral transforms in the solution
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of certain fractional kinetic equations (2002, 2004a 2004b), reaction-diffusion
equations (2006a, 2006b), and fractional differential equations governing non-
linear waves (2006c, 2006d ). In the present paper it is shown by the application
of Riemann-Liouville fractional calculus operators and its interesting properties
that the given fractional kinetic equations can be easily solved. Fractional ki-
netic equations are studied by Zaslavsky (1994), Saichev and Zaslavsky (1997),
Gloeckle and Nonnenmacher (1991), and Saxena, Mathai and Haubold (2002,
2004a, 2004b) due to their importance in the solution of certain applied problems
governing reaction and relaxation in complex systems and anomalous diffusion.
The use of fractional kinetic equations in many problems arising in science and
engineering can be found in the monographs by Podlubny (1999), Hilfer (2000),
and Kilbas, Srivastava and Trujillo (2006) and the various papers given therein.
The Mittag-Leffler functions naturally occur as a solution of fractional order dif-
ferential equation or a fractional order integral equation. Mittag-Leffler (1903)
defined this function, known as Mittag-Leffler function in the literature, in terms
of the power series

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)
; (α ∈ C,Re(α) > 0). (1)

This function is generalized by Wiman (1905) in the form

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
, (α, β ∈ C,Re(α) > 0, Re(β) > 0). (2)

According to Dzherbashyan (1966, p.118), both the functions defined by the
equations (1) and (2) are entire functions of order ρ = 1/α and type σ =
1. A comprehensive detailed account of these functions is available from the
monographs of Erdélyi, Magnus, Oberhettinger and Tricomi (1995, Chapter
18) and Dzherbashyan (1966, Chapter 2). The Riemann-Liouville operators of
fractional calculus are defined in the books by Miller and Ross (1993), Oldham
and Spanier (1974), Podlubny (1999) and Kilbas, Srivastava and Trujillo (2006)
as

αD
−ν
t N(t) :=

1

Γ(ν)

∫ t

α

(t− u)ν−1 N(u)du,Re(ν) > 0, t > a (3)

with aD
0
tN(t) = N(t), and

aD
µ
t N(t) :=

dn

dtn
(aD

µ−n
t N(t)), Re(µ) > 0, n− µ > 0. (4)

By virtue of the definitions (3), it is not difficult to show that

aD
−ν
t (t− a)ρ−1 =

γ(ρ)

Γ(ρ+ ν)
(t− a)ρ+ν−1, (5)
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where Re(ν) > 0, Re(ρ) > 0; t > a. Also from (Podlubny, 1999, p.72, eq.(2.117)),
we have

aD
ν
t (t− a)ρ−1 =

γ(ρ)

Γ(ρ− ν)
(t− a)ρ−ν−1, (6)

where Re(ν) > 0, Re(ρ) > 0, t > a. When ρ = 1 (6) reduces to an interesting
formula

aD
−ν
t 1 =

1

Γ(1− ν)
(t− a)−ν , t > a; ν 6= 1, 2 . . . (7)

which is a remarkable result in the theory of fractional calculus and indicates
that the fractional derivative of a constant is not zero.

We now proceed to derive and solve the fractional kinetic equations in the
next section.

2 Derivation of the fractional kinetic equation

and its solution

If we integrate the standard kinetic equation

d

dt
Ni(t) = −ciNi(t), (ci > 0) (8)

we obtain (Haubold and Mathai, 2000, p.58)

N(t)−N(a) = −ci aD
−1
t Ni(t), (9)

where aD
−1
t is the standard Riemann integral operator. Here we recall that in

the original paper of Haubold and Mathai (2000), the number density of species,
Ni = Ni(t) is a function of time. Further we assume that Ni(t = a) = Na is
the number density of species i at time t = a. If we drop the index i in (9) and
generalize it, we arrive at the fractional kinetic equation

N(t)−Na = −cν aD
−ν
t N(t) (10)

Solution of (10). If we multiply both sides of (10) by (−cν)m aD
−mν)
t , we obtain

(−cν)m aD
−mν
t N(t)−(−cν)(−cν)m aD

−mν−ν
t N(t) = (−cν)m aD

−mν
t Na. (11)

Now summing up both sides of (2.4) for m from 0 to ∞, it yields

∞∑
m=0

(−cν)m aD
−mν
t N(t)−

∞∑
m=0

(−cν)m+1
aD

−mν−ν
t N(t)

= Na

∞∑
m=0

(−cν)m aD
−mν
t 1, (12)
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which on using the formula (5) yields

N(t) = Na

∞∑
m=0

(−cν)m[(t− a)mν/Γ(mν + 1)] (13)

= NaEν [−cν(t− a)ν ], t > a (14)

Thus we arrive at the following theorem:

Theorem 1. If Re(ν) > 0, Re(c) > 0 then there exists the unique solution of
the integral equation

N(t)−Na = −cν aD
−ν
t (t), (15)

given by
N(t) = NaEν(−cν(t− a)ν), t > a (16)

with the Mittag-Leffler function defined by (1).
When a → 0, (16) reduces to the following result given by Haubold and

Mathai (2000, p.63):

Corollary 1.1. If, Re(c) > 0 then the unique solution of the integral equation

N(t)−N0 = −cν 0D
−ν
t (t), (17)

is given by
N(t) = N0Eν(−cνtν). (18)

Remark 1. If we apply the operator aD
ν
t from the left to (10) and make use

of (7), we obtain the fractional differential equation

aD
ν
t N(t)−Na

(t− a)−ν

Γ(1− ν)
= −cνN(t), t > a (19)

whose solution is also given by (16). When a tends to zero in (16), it reduces
to one obtained by Nonnenmacher and Metzler (1995, p.156) for the fractional
relaxation equation with c replaced by 1/c.

Remark 2. The method adopted in deriving the solution of fractional kinetic
equation (8) is similar to that used by Al-Saqabi and Tuan (1996) for solving
differ integral equations.

3 Theorem 2.

If min {Re(ν), Re(µ)} > 0, Re(c) > 0, then there exists the unique solution of
the integral equation

‘N(t)−Nat
µ−1 = −cν aD

−ν
t (t), (20)
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given by
N(t) = NaΓ(µ)(t− a)µ−1 Eν,µ(−cν(t− a)ν), t > a (21)

where Eν,µ(t)is the generalized Mittag-Leffler function defined by (2).

Solution of (20). If we multiply both sides of (20) by (−cν)m aD
−mν
t , we

obtain

(−cν)m aD
−mν
t N(t)− (−cν)(−cν)m aD

−mν−ν
t N(t) = Na(−cν)m aD

−mν
t tµ−1.

(22)
Now summing up both sides of (22) for m from 0 to ∞, it yields

∞∑
m=0

(−cν)m aD
−mν
t N(t)−

∞∑
m=0

(−cν)m+1
aD

−mν−ν
t N(t) = Na

∞∑
m=0

(−cν)m aD
−mν
t tµ−1,

(23)
which on using the formula (5) gives

N(t) = NaΓ(µ)

∞∑
m=0

(−cν)m[(t− a)mν/γ(mν + µ)] (24)

= NaEν,µ[−cν(t− a)ν ], t > a. (25)

This completes the proof of Theorem 2.

For a = 0, (25) reduces to the following result given by Saxena, Mathai and
Haubold (2002, p.283).

Corollary 2.1. If min {Re(ν), Re(µ)} > 0, R(c) > 0 then the solution of the
integral equation

N(t)−N0t
µ−1 = −cν 0D

−ν
t (t) (26)

‘ is given by
N(t) = N0Γ(µ)t

µ−1 Eν,µ(−cνtν), (27)

where Eν,µ(t)is the generalized Mittag-Leffler function defined by (2).
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