
 55

ELECTRONICS AND ELECTRICAL ENGINEERING
 ISSN 1392 – 1215 2006. Nr. 4(68)

ELEKTRONIKA IR ELEKTROTECHNIKA

TELECOMMUNICATION ENGINEERING
 T180

TELEKOMUNIKACIJŲ INŽINERIJA

Neural Network Models for Internet Traffic Prediction

G. Rutka
Faculty of Electronics and Telecommunication, Riga Technical University,
Riga, Azenes str. 12, LV-1048, phone:+371 9627600, e-mail: gundegarutka@tvnet.lv

Introduction

Internet traffic prediction plays a fundamental role in
network design, management, control, and optimization.
The self-similar and non-linear nature of network traffic
makes high accurate prediction difficult. It has been found
in numerous studies that data traffic in high-speed
networks exhibits self-similarity that cannot be captured by
classical models, hence self-similar models have been
developed [1]. The problem with self-similar models is that
they are computationally complex. Their fitting procedure
is time consuming while their parameters cannot be
estimated based on the on-line measurements. The goal is
to forecast future traffic variations as precisely as possible,
based on the measured traffic history. Traffic prediction
requires accurate traffic models that can capture the
statistical characteristics of actual traffic. Our experiments
inspect performance using multilayer perceptrons and
radial basis function networks. There are no standard
network topologies and algorithms around which all design
efforts can be based.

Self- Similarity

The process is self-similar if its statistical behavior is
independent of the time-scale. This means that averaging
over equal periods of time does not change the statistical
characteristics of the process.

Suppose X={Xt: t=0,1,2…} is a covariance stationary
stochastic process with mean µ, variance σ2 and
autocorrelation function r(k), where k=0,1,2… In
particular, we assume that X has an autocorrelation
function of the form:

 L(k)k~r(k) 2H)(2− as k→∞, (1)

where H is called the Hurst parameter and L(k) is slowly
varying at infinity, that is:

 1
L(t)

L(zt)lim
t =∞→ for all z>0. (2)

An example of such slowly varying functions which
satisfies (2) is given by L(t)=log(t). The Hurst parameter H
in (1) is in the range 0.5<H<1 and it characterizes the

process in terms of the degree of self-similarity and long
time dependence. The degree of self-similarity and long-
range dependence increases as H→1. For each m=1,2,3…,
let X(m)={ Xk

(m):k=1,2,3…} denote a new time series
obtained by averaging the original series X over non-
overlapping blocks of size m. That means, for each
m=1,2,3… , Xk

(m) is given by:

m

km1mkm(m)
k

X...X
X

++
= +− , (3)

where k=1,2,3,… . Note that for each m, the aggregate
time series X(m) defines a covariance stationary process
[2,3].

In our experiments self-similarity will be estimated
by the use of variance-time plot method. This is one of the
easiest methods how to estimate Hurst’s coefficient. In the
process the variance of aggregate the self-similar process is
defined:

 VAR(X(m))= VAR(X)/mβ. (4)

In the (4) β is calculated from the equation:

 H=1-β/2. (5)

The (4) can be rewritten is the following form:

 log{ VAR (X(m))}~log{ VAR(X) }- β log {m}. (6)

If VAR(X) and m are plotted on a log-log graph then
by fitting a least square line through the resulting points we
can obtain a straight line with the slope of – β.

Neural Networks

Neural networks are composed of simple elements
operating in parallel. These elements are inspired by
biological nervous systems. As in nature, the network
function is determined largely by the connections between
elements. We can train a neural network to perform a
particular function by adjusting the values of the
connections (weights) between elements.

Many authors have applied many different neural
network architectures and algorithms to explore traffic
modeling task. For example, for the Internet traffic
prediction there is explored boosting feed forward neural

 56

network, for self-similar traffic generation is used
perceptron neural network with back propagation
algorithm etc.

Multilayer perceptrons

The Multilayer Perceptron (or MLP) network is
probably the most-often considered member of the neural
network family. The main reason for this is its ability to
model simple as well as very complex functional
relationships. This has been proven through a large number
of practical applications.

An MLP is a network of simple neurons called
perceptrons. The perceptron computes a single output from
multiple real-valued inputs by forming a linear
combination according to its input weights and then
possibly putting the output through some nonlinear
activation function. Mathematically this can be written as

 b)x(w)bxw(Tn

1i iiy +=∑ +=
=

ϕϕ , (7)

where w denotes the vector of weights, x is the vector of
inputs, b is the bias and φ is the activation function.

A single perceptron is not very useful because of its
limited mapping ability. No matter what activation
function is used, the perceptron is only able to represent an
oriented ridge-like function. The perceptrons can, however,
be used as building blocks of a larger, much more practical
structure. A typical MLP network (MLPN) consists of a set
of source nodes forming the input layer, one or more
hidden layers of computation nodes, and an output layer of
nodes. There are three activation functions used in MLPN:

1. Log sigmoid transfer function also known as the
logistic sigmoid (logsig):

 xe1

1
logsig(x) −+

= , (8)

2. Hyperbolic tangent sigmoid transfer function also
known as the hyperbolic tangent (tansig):

 xexe

xexetansig(x) −+

−−
= . (9)

The logistic sigmoid and the hyperbolic tangent are

related by:

 2xe1

1

2

1tansig(x)
−+

=
+

. (10)

Recalculating formula (10) we obtain:

 12xe1

2tansig(x) −
−+

= . (11)

3. Linear transfer function also known as simple

purelin function (purelin). The purelin transfer function is
simply a linear function that produces the same output as
its input:

 xpurelin(x) = . (12)

These functions are used because they are
mathematically convenient and are close to linear near
origin while saturating rather quickly when getting away
from the origin. This allows MLP networks to model well
both strongly and mildly nonlinear mappings.

Mean square error (MSE) or mean squared error
performance function is an accepted measure of prediction
and is very often used in MLP networks. MSE is
calculated:

∑
=

−=
m

1i

2
i T)(x

m
1MSE , (13)

where xi is i–value of a group of m values, T is a target or
intended, i.e., desired, value for the product variable of
interest.

Radial basis function networks

A general architecture of the radial basis function
networks (RBFN) consists of three layers. The first layer
consists of n inputs. They are fully connected to the
neurons in the second layer. A hidden node has a radial
basis function (RBF) as an activation function. The RBF is
a radially symmetric function (e.g., Gaussian):

 2

2

2σ

M)(x

ef(x)
−

−
= , (14)

where M and σ are two parameters meaning the mean and
the standard deviation of the input variable x.

For a particular intermediate node i, its RBFi is
centered at a cluster center ci in the n-dimensional input
space. The cluster center ci is represented by the vector
(w1i . . . ,wni) of connection weights between the n input
nodes and the hidden node i. The standard deviation for
this cluster defines the range for the RBFi.

The RBF is no monotonic, in contrast to the sigmoid
function. The second layer is connected to the output layer.
The output nodes perform a simple summation function
with a linear threshold activation function. The training of
an RBFN consists of two phases: (1) adjusting the RBF of
the hidden neurons by applying a statistical clustering
method; this represents an unsupervised learning phase; (2)
applying gradient descent (e.g., the back propagation
algorithm) or a linear regression algorithm for adjusting
the second layer of connections; this is a supervised
learning phase [4].

Research Models

Our research is emphasized to self- similar traffic
prediction using neural networks. Traffic data is taken
from website http://freestats.com/. This data was collected
for one year. For statistical analyses and neural network
testing we use program package “MATLAB p6.5”.

Firstly, we have deeply studied the character of the
statistical material (traffic data). Accordingly to that we
have calculated and proved that traffic data is self-similar.

Secondly, we modulate different neural network
models to verify reliability of made prediction. In our
research we work with two types of neural networks:

 57

RBFN and MLPN, the same as feed forward back
propagation network.

We have implemented several MLPN with two and
three layers, each layer containing one-neuron and several
RBFN. In our simulations with MPLN we use three kinds
of transfer functions: ‘tansig’, ‘logsig’ and ‘purelin’ and
for faster training we use Levenberg-Marquardt algorithm,
variable learning rate and conjugate gradient algorithms.
For RBFN we use performance goal =0 and spread
constant=1.0 .

Review Of Studied Cases

The maximum data (website access statistics) was
collected for one year - 365 days, 24 hours a day. In the
total we have obtained 8760 observations. With the help of
Matlab v.6.5 using method of variance-time plot we have
calculated the Hurst parameter H, which describes whether
the traffic is self-similar. From the sequence of obtained
observations as a function of the aggregation level m, we
estimate the Hurst parameter H. The obtained values of the
slope are shown in Table 1.

Table 1. The variance-time plot values

m log (m) VAR(X) log (VAR(X))
2 0.30103 3759 3.5751
3 0.47712 2881.1 3.4596
4 0.60206 2431.5 3.3859
6 0.77815 1912.1 3.2815
8 0.90309 1635.7 3.2137

12 1.0792 1037.7 3.0161
24 1.3802 629.26 2. 7988
40 1.6021 487.06 2.6876
73 1.8633 322.22 2.5082
146 2.1644 240.32 2.3808
730 2.8633 148.76 2.1725

1095 3.0394 147.01 2.1674
2190 3.3404 87.677 1.9429
2920 3.4654 109.73 2.0403
4380 3.6415 40.516 1.6076

The variance-time curve (Fig.1) shows an asymptotic slope
that is easily estimated to be about –0.51, resulting in a
practically identical estimate of the Hurst parameter H of
about 0.745.

Fig. 1. The variance- time plot

Our experimental continuous-time stochastic process
X(t) is considered to be statistical self-similar with
parameter H =0.745 (0.5<H<1).

The second step of our experiment was to predict
network traffic using different neural network models. For
our experiments we used the obtained data for self-
similarity calculations for m=2, 3, 4, 6, 8, 12, 24, 40, 73
and 146. We have created approximately 180 networks to
test the prediction possibility and accuracy with neural
networks. In Table 2–5 we have summarized the results of
made experiments.

Table 2. Results for m=2, 3, 4 and 6 using MLPN.

Transfer function
Aggregation level m

Performance

Layer1 Layer2 2 3 4 6
logsig purelin 1.7e-31 1.5e-29 5.9e-33 1.4e-28
logsig logsig 1.2e-16 1.8e-16 1.7e-17 7.1e-15
logsig tansig 1.5e-31 0 4.3e-33 0
tansig purelin 3.6e-35 8.3e-34 7.29e-32 6.9e-31
tansig logsig 1.4e-16 3.4e-16 3.6e-16 3.6e-16
tansig tansig 1.4e-34 0 0 1.1e-32
purelin purelin 3.2e-53 7.9e-36 1.6e-35 1.8e-34
purelin logsig 1.8e-16 7.5e-16 2.7e-16 0
purelin tansig 0 0 1e-31 3.2e-30

Table 3. Results for m=8, 12 and 24 using MLPN.

Transfer function
Aggregation level m

Performance

Layer1 Layer2 8 12 24
logsig purelin 1.6e-26 4.1e-28 9.7e-28
logsig logsig 9e-16 5.2e-14 3e-15
logsig tansig 2.1e-31 0 0
tansig purelin 8.1e-29 1.1e-29 3.5e-31
tansig logsig 2.1e-14 2.5e-16 8.1e-15
tansig tansig 3.1e-29 0 0
purelin purelin 4.6e-36 0 6e-41
purelin logsig 0 0 0
purelin tansig 5.3e-29 4.6e-30 1.9e-30

Table 4. Results for m=40, 73 and 146 using MLPN.

Transfer function
Aggregation level m

Performance

Layer1 Layer2 40 73 146
logsig purelin 3.3e-28 5.4e-28 2.9e-27
logsig logsig 2e-15 5.5e-15 4.8e-13
logsig tansig 2e-31 1.8e-26 4.9e-33
tansig purelin 1.3e-29 2.9e-33 3.1e-30
tansig logsig 6.7e-15 9.9e-16 2.7e-15
tansig tansig 0 0 3.9e-31
purelin purelin 6.6e-29 2e-28 0
purelin logsig 1.2e-15 1.4e-16 1
purelin tansig 7.2e-28 7e-30 1

As we see in Table 2 – Table 4, the best performance
(performance=0) was attempted with 2 layers MLPN using
such transfer functions: “logsig- tansig”, “tansig-tansig,”
“purelin-purelin”, “purelin-logsig” and “purelin-tansig”.
The worst results of performance using 2 layers MLPN
were cases with transfer functions “logsig-logsig” and

 58

“tansig-logsig”. We tried to improve the performance in
these cases, multiplying the number of layers. In the Table
5 we can see the results.

Table 5. Results of 3 layer MLPN.

Transfer functions for 3 layers
logsig-logsig- tansig-logsig- m

purelin logsig tansig purelin logsig tansig
2 4.9e-31 5.2e-15 0 4e-32 1e-14 5.6e-29
3 2.4e-30 4.9e-15 0 9e-29 4.1e-15 0
4 1.1e-29 1e-14 0 8.3e-29 2.5e-14 7.6e-34
6 7.4e-27 7.5e-15 0 1.3e-26 2e-14 3.3e-30
8 1.6e-27 1.7e-15 0 4.6e-31 3.1e-14 5.4e-32

12 3.3e-28 7.3e-14 0 4.8e-28 6.3e-15 0
24 2e-27 1.7e-13 0 1.3e-26 5.2e-15 4.9e-32
40 8.3e-28 1.3e-14 0 7.9e-27 6.7e-15 4.9e-32
73 1.8e-31 1.1e-13 0 2.8e-26 1.4e-14 1.2e-32
146 5.4e-30 3.3e-13 0 8.2e-29 5.2e-13 1.4e-30

Table 5 shows that the performance has been
improved. Ideally, in the case when MLPN has transfer
function “logsig-logsig-tansig”, the performance is 0. The
worst results of performance using 3 layers MLPN were
cases with transfer functions “logsig-logsig-logsig” and
“tansig-logsig-logsig”. It means that it is not recommended
to use transfer function “logsig” in the last layer of MLPN.

The prediction experiments we also made with RBFN.
The obtained results are in Table 6.

Table 6. The results of experiments made with RBFN.

Aggregation
level m Result

2 not available
3 not available
4 650 epochs, performance =2.9e-6
6 775 epochs, performance =6.6e-7
8 700 epochs, performance =1.1e-7
12 725 epochs, performance= 1.4e-5
24 350 epochs, performance =8.3e-8
40 200 epochs, performance =1.4e-11
73 100 epochs, performance =2.4e-9

146 50 epochs, performance =4.9e-5

Table 6 shows that prediction models using RBFN is
not very efficient. Depending on your personal PC
technical potential, the obtained results are calculated
within 20-60 minutes. In the cases of aggregation level
m=2 and m=3, the PC wasn’t able to produce result. The
RBFN features can explain it. RBFN needs the same
number of epochs as the number of neurons.

Conclusions

The performance of traffic prediction model of MLPN
can be improved by multiplying the number of layers.
There is no need to increase the number of neurons in each
layer.

Calculations using RBFN models take a long time and
the performance goal in all cases was not met. It is not
recommended to use RBFN to predict traffic in the
presence of self-similarity, because of the complex
calculation and long calculation period.

MLPN models are the best models for traffic
prediction in the presence of self-similarity.

This work has been partly supported by the European
Social Fund within the National Program “Support for the
carrying out doctoral study program’s and post- doctoral
researches” project “Support for the development of
doctoral studies at Riga Technical University”.

References

1. Bestavros A., Crovella M. E. Self-similarity in world wide

web traffic: Evidence and possible causes// IEEE/ACM
Trans. Networking, 1997. – Vol. 5. – P. 835–846.

2. Fower B., Thomas Dr. A short tutorial on fractals and
internet traffic// The telecommunications review, 1999.

3. Ghaderi M. On the Relevance of Self-Similarity in Network
Traffic Prediction// Tech. Rep., CS-2003-28, University of
Waterloo 2003.

4. Nørgaard M. Neural Network Based System Identification
toolbox, vers.2 for Matlab.

Presented for publication 2006 02 28

G. Rutka. Neural Network Models for Internet Traffic Prediction // Electronics and Electrical Engineering. - Kaunas:
Technologija, 2006. – No. 4(68). – P. 55–58.

This paper presents a view of models used for Internet data (traffic) prediction using neural network applications. We look at the
problem of traffic prediction in the presence of self-similarity. Self-similarity is an important characteristic of traffic in high-speed
networks that cannot be captured by traditional traffic models. Our experiments inspect performance using multilayer perceptrons and
radial basis function networks. Ill. 1, bibl. 4 (in English; summaries in English, Russian and Lithuanian).

Г. Рутка. Модели нейронных сетях для предсказания трафика Интернета //Электроника и электротехника. – Каунас:
Технология, 2006. – № 4(68). – С. 55–58.

В работе рассказано о моделях, которые используются для предсказания нагрузки в нейронных сетях. Мы рассматриваем
проблему предсказания трафика в случае самопохожести. Самопохожесть – это очень важная особенность трафика в
быстроскоростных сетях, которую невозможно встретить при обычной модели трафика. Наши эксперименты показывают
использование сетей, функционально основанных на использовании многослойных персептронов и радиальной базисной
функции. Ил 1, библ. 4 (на английском языке; рефераты на английском, русском и литовском яз.).

G. Rutka. Interneto duomenų srautų prognozavimo neuroninių tinklų modeliai // Elektronika ir elektrotechnika. – Kaunas:
Technologija, 2006. – Nr. 4(68). P. 55–58.

Straipsnyje tiriami modeliai, taikomi interneto duomenų srautams prognozuoti panaudojant neuroninius tinklus. Duomenų srauto
prognozavimo problema analizuojama savaiminio panašumo atvejais. Savaiminis panašumas yra svarbi duomenų srauto didelės spartos
tinkluose charakteristika, kuri neįvertinama tradiciniais duomenų srautų modeliais. Eksperimentuose tiriamas našumas naudojant
daugiasluoksnius perceptronus ir radialines bazines funkcijas. Il. 1, bibl. 4 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).

