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Introduction 
 

Internet traffic prediction plays a fundamental role in 
network design, management, control, and optimization. 
The self-similar and non-linear nature of network traffic 
makes high accurate prediction difficult. It has been found 
in numerous studies that data traffic in high-speed 
networks exhibits self-similarity that cannot be captured by 
classical models, hence self-similar models have been 
developed [1]. The problem with self-similar models is that 
they are computationally complex. Their fitting procedure 
is time consuming while their parameters cannot be 
estimated based on the on-line measurements. The goal is 
to forecast future traffic variations as precisely as possible, 
based on the measured traffic history. Traffic prediction 
requires accurate traffic models that can capture the 
statistical characteristics of actual traffic. Our experiments 
inspect performance using multilayer perceptrons and 
radial basis function networks. There are no standard 
network topologies and algorithms around which all design 
efforts can be based.  
 
Self- Similarity 
 

The process is self-similar if its statistical behavior is 
independent of the time-scale. This means that averaging 
over equal periods of time does not change the statistical 
characteristics of the process. 

Suppose X={Xt: t=0,1,2…} is a covariance stationary 
stochastic process with mean µ, variance σ2 and 
autocorrelation function r(k), where k=0,1,2… In 
particular, we assume that X has an autocorrelation 
function of the form: 

 

     L(k)k~r(k) 2H)(2−  as k→∞,   (1) 
 

where H is called the Hurst parameter and L(k) is slowly 
varying at infinity, that is:  
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An example of such slowly varying functions which 
satisfies (2) is given by L(t)=log(t). The Hurst parameter H 
in (1) is in the range 0.5<H<1 and it characterizes the 

process in terms of the degree of self-similarity and long 
time dependence. The degree of self-similarity and long-
range dependence increases as H→1. For each m=1,2,3…, 
let X(m)={ Xk

(m):k=1,2,3…} denote a new time series 
obtained by averaging the original series X over non-
overlapping blocks of size m. That means, for each 
m=1,2,3… , Xk

(m) is given by: 
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where k=1,2,3,… . Note that for each m, the aggregate 
time series X(m) defines a covariance stationary process 
[2,3]. 

In our experiments self-similarity will be estimated 
by the use of variance-time plot method. This is one of the 
easiest methods how to estimate Hurst’s coefficient. In the 
process the variance of aggregate the self-similar process is 
defined: 
 

                        VAR(X(m))= VAR(X)/mβ.                                      (4) 
 

In the (4) β is calculated from the equation: 
 

       H=1-β/2.                                      (5) 
 

The (4) can be rewritten is the following form: 
 

         log{ VAR (X(m))}~log{ VAR(X) }- β log {m}.      (6) 
 

If VAR(X) and m are plotted on a log-log graph then 
by fitting a least square line through the resulting points we 
can obtain a straight line with the slope of  – β. 

 
Neural Networks 
 

Neural networks are composed of simple elements 
operating in parallel. These elements are inspired by 
biological nervous systems. As in nature, the network 
function is determined largely by the connections between 
elements. We can train a neural network to perform a 
particular function by adjusting the values of the 
connections (weights) between elements. 

Many authors have applied many different neural 
network architectures and algorithms to explore traffic 
modeling task. For example, for the Internet traffic 
prediction there is explored boosting feed forward neural 
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network, for self-similar traffic generation is used 
perceptron neural network with back propagation 
algorithm etc. 
 
Multilayer perceptrons 
 

The Multilayer Perceptron (or MLP) network is 
probably the most-often considered member of the neural 
network family. The main reason for this is its ability to 
model simple as well as very complex functional 
relationships. This has been proven through a large number 
of practical applications.   

An MLP is a network of simple neurons called 
perceptrons. The perceptron computes a single output from 
multiple real-valued inputs by forming a linear 
combination according to its input weights and then 
possibly putting the output through some nonlinear 
activation function. Mathematically this can be written as 
 

               b)x(w)bxw( Tn

1i iiy +=∑ +=
=

ϕϕ ,      (7) 
 

where w denotes the vector of weights, x is the vector of 
inputs, b is the bias and  φ is the activation function.  

A single perceptron is not very useful because of its 
limited mapping ability. No matter what activation 
function is used, the perceptron is only able to represent an 
oriented ridge-like function. The perceptrons can, however, 
be used as building blocks of a larger, much more practical 
structure. A typical MLP network (MLPN) consists of a set 
of source nodes forming the input layer, one or more 
hidden layers of computation nodes, and an output layer of 
nodes. There are three activation functions used in MLPN:  

1. Log sigmoid transfer function also known as the 
logistic sigmoid (logsig): 
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2. Hyperbolic tangent sigmoid transfer function also 
known as the hyperbolic tangent (tansig): 
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The logistic sigmoid and the hyperbolic tangent are 

related by: 
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Recalculating formula (10) we obtain: 
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3. Linear transfer function also known as simple 

purelin function (purelin). The purelin transfer function is 
simply a linear function that produces the same output as 
its input: 
 
                               xpurelin(x) = .      (12) 

These functions are used because they are 
mathematically convenient and are close to linear near 
origin while saturating rather quickly when getting away 
from the origin. This allows MLP networks to model well 
both strongly and mildly nonlinear mappings. 

Mean square error (MSE) or mean squared error 
performance function is an accepted measure of prediction 
and is very often used in MLP networks. MSE is 
calculated:  
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where xi is i–value of a group of m values, T is a target or 
intended, i.e., desired, value for the product variable of 
interest. 
 
Radial basis function networks 
 

A general architecture of the radial basis function 
networks (RBFN) consists of three layers. The first layer 
consists of n inputs. They are fully connected to the 
neurons in the second layer. A hidden node has a radial 
basis function (RBF) as an activation function. The RBF is 
a radially symmetric function (e.g., Gaussian): 
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where M and σ are two parameters meaning the mean and 
the standard deviation of the input variable x. 

For a particular intermediate node i, its RBFi is 
centered at a cluster center ci in the n-dimensional input 
space. The cluster center ci is represented by the vector  
(w1i . . . ,wni) of connection weights between the n input 
nodes and the hidden node i. The standard deviation for 
this cluster defines the range for the RBFi. 

The RBF is no monotonic, in contrast to the sigmoid 
function. The second layer is connected to the output layer. 
The output nodes perform a simple summation function 
with a linear threshold activation function. The training of 
an RBFN consists of two phases: (1) adjusting the RBF of 
the hidden neurons by applying a statistical clustering 
method; this represents an unsupervised learning phase; (2) 
applying gradient descent (e.g., the back propagation 
algorithm) or a linear regression algorithm for adjusting 
the second layer of connections; this is a supervised 
learning phase [4]. 
 
Research Models  
 

Our research is emphasized to self- similar traffic 
prediction using neural networks. Traffic data is taken 
from website http://freestats.com/. This data was collected 
for one year. For statistical analyses and neural network 
testing we use program package “MATLAB p6.5”. 

Firstly, we have deeply studied the character of the 
statistical material (traffic data).  Accordingly to that we 
have calculated and proved that traffic data is self-similar. 

Secondly, we modulate different neural network 
models to verify reliability of made prediction. In our 
research we work with two types of neural networks: 
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RBFN and MLPN, the same as feed forward back 
propagation network. 

We have implemented several MLPN with two and 
three layers, each layer containing one-neuron and several 
RBFN.  In our simulations with MPLN we use three kinds 
of transfer functions: ‘tansig’, ‘logsig’ and ‘purelin’ and 
for faster training we use Levenberg-Marquardt algorithm, 
variable learning rate and conjugate gradient algorithms. 
For RBFN we use performance goal =0 and spread 
constant=1.0 . 

 
Review Of Studied Cases  
 

The maximum data (website access statistics) was 
collected for one year - 365 days, 24 hours a day. In the 
total we have obtained 8760 observations. With the help of 
Matlab v.6.5 using method of variance-time plot we have 
calculated the Hurst parameter H, which describes whether 
the traffic is self-similar. From the sequence of obtained 
observations as a function of the aggregation level m, we 
estimate the Hurst parameter H. The obtained values of the 
slope are shown in Table 1.  

 
Table 1. The variance-time plot values 
 

m log (m) VAR(X) log (VAR(X)) 
2 0.30103 3759 3.5751 
3 0.47712 2881.1 3.4596 
4 0.60206 2431.5 3.3859 
6 0.77815 1912.1 3.2815 
8 0.90309 1635.7 3.2137 

12 1.0792 1037.7 3.0161 
24 1.3802 629.26 2. 7988 
40 1.6021 487.06 2.6876 
73 1.8633 322.22 2.5082 
146 2.1644 240.32 2.3808 
730 2.8633 148.76 2.1725 

1095 3.0394 147.01 2.1674 
2190 3.3404 87.677 1.9429 
2920 3.4654 109.73 2.0403 
4380 3.6415 40.516 1.6076 

       
The variance-time curve (Fig.1) shows an asymptotic slope 
that is easily estimated to be about –0.51, resulting in a 
practically identical estimate of the Hurst parameter H of 
about 0.745. 

 
Fig. 1. The variance- time plot 

Our experimental continuous-time stochastic process 
X(t) is considered to be statistical self-similar with 
parameter H =0.745 (0.5<H<1).  

The second step of our experiment was to predict 
network traffic using different neural network models. For 
our experiments we used the obtained data for self- 
similarity calculations for m=2, 3, 4, 6, 8, 12, 24, 40, 73 
and 146.  We have created approximately 180 networks to 
test the prediction possibility and accuracy with neural 
networks. In Table 2–5 we have summarized the results of 
made experiments. 

 
Table 2. Results for m=2, 3, 4 and 6 using MLPN. 

 

Transfer function 
Aggregation level m 

Performance 

Layer1 Layer2 2 3 4 6 
logsig purelin 1.7e-31 1.5e-29 5.9e-33 1.4e-28 
logsig logsig 1.2e-16 1.8e-16 1.7e-17 7.1e-15 
logsig tansig 1.5e-31 0 4.3e-33 0 
tansig purelin 3.6e-35 8.3e-34 7.29e-32 6.9e-31 
tansig logsig 1.4e-16 3.4e-16 3.6e-16 3.6e-16 
tansig tansig 1.4e-34 0 0 1.1e-32 
purelin purelin 3.2e-53 7.9e-36 1.6e-35 1.8e-34 
purelin logsig 1.8e-16 7.5e-16 2.7e-16 0 
purelin tansig 0 0 1e-31 3.2e-30 

 
Table 3. Results for m=8, 12 and 24 using MLPN. 

 

Transfer function 
Aggregation level m 

Performance 

Layer1 Layer2 8 12 24 
logsig purelin 1.6e-26 4.1e-28 9.7e-28 
logsig logsig 9e-16 5.2e-14 3e-15 
logsig tansig 2.1e-31 0 0 
tansig purelin 8.1e-29 1.1e-29 3.5e-31 
tansig logsig 2.1e-14 2.5e-16 8.1e-15 
tansig tansig 3.1e-29 0 0 
purelin purelin 4.6e-36 0 6e-41 
purelin logsig 0 0 0 
purelin tansig 5.3e-29 4.6e-30 1.9e-30 

 
Table 4. Results for m=40, 73 and 146 using MLPN. 

 

Transfer function 
Aggregation level m 

Performance 

Layer1 Layer2 40 73 146 
logsig purelin 3.3e-28 5.4e-28 2.9e-27 
logsig logsig 2e-15 5.5e-15 4.8e-13 
logsig tansig 2e-31 1.8e-26 4.9e-33 
tansig purelin 1.3e-29 2.9e-33 3.1e-30 
tansig logsig 6.7e-15 9.9e-16 2.7e-15 
tansig tansig 0 0 3.9e-31 
purelin purelin 6.6e-29 2e-28 0 
purelin logsig 1.2e-15 1.4e-16 1 
purelin tansig 7.2e-28 7e-30 1 

 

As we see in Table 2 – Table 4, the best performance 
(performance=0) was attempted with 2 layers MLPN using 
such transfer functions:  “logsig- tansig”, “tansig-tansig,” 
“purelin-purelin”, “purelin-logsig” and “purelin-tansig”. 
The worst results of performance using 2 layers MLPN 
were cases with transfer functions “logsig-logsig” and 
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“tansig-logsig”. We tried to improve the performance in 
these cases, multiplying the number of layers. In the Table 
5 we can see the results. 

 
Table 5. Results of 3 layer MLPN. 

 

Transfer functions for 3 layers 
logsig-logsig- tansig-logsig- m 

purelin logsig tansig purelin logsig tansig 
2 4.9e-31 5.2e-15 0 4e-32 1e-14 5.6e-29 
3 2.4e-30 4.9e-15 0 9e-29 4.1e-15 0 
4 1.1e-29 1e-14 0 8.3e-29 2.5e-14 7.6e-34 
6 7.4e-27 7.5e-15 0 1.3e-26 2e-14 3.3e-30 
8 1.6e-27 1.7e-15 0 4.6e-31 3.1e-14 5.4e-32 

12 3.3e-28 7.3e-14 0 4.8e-28 6.3e-15 0 
24 2e-27 1.7e-13 0 1.3e-26 5.2e-15 4.9e-32 
40 8.3e-28 1.3e-14 0 7.9e-27 6.7e-15 4.9e-32 
73 1.8e-31 1.1e-13 0 2.8e-26 1.4e-14 1.2e-32 
146 5.4e-30 3.3e-13 0 8.2e-29 5.2e-13 1.4e-30 

 

Table 5 shows that the performance has been 
improved. Ideally, in the case when MLPN has transfer 
function “logsig-logsig-tansig”, the performance is 0. The 
worst results of performance using 3 layers MLPN were 
cases with transfer functions “logsig-logsig-logsig” and 
“tansig-logsig-logsig”. It means that it is not recommended 
to use transfer function “logsig” in the last layer of MLPN. 

The prediction experiments we also made with RBFN. 
The obtained results are in Table 6.  

 
Table 6. The results of experiments made with RBFN. 

 

Aggregation 
level m Result 

2 not available 
3 not available 
4 650 epochs, performance =2.9e-6 
6 775 epochs, performance =6.6e-7 
8 700 epochs, performance =1.1e-7 
12 725 epochs, performance= 1.4e-5 
24 350 epochs, performance =8.3e-8 
40 200 epochs, performance =1.4e-11 
73 100 epochs, performance =2.4e-9 

146 50 epochs, performance =4.9e-5 
 

Table 6 shows that prediction models using RBFN is 
not very efficient. Depending on your personal PC 
technical potential, the obtained results are calculated 
within 20-60 minutes. In the cases of aggregation level 
m=2 and m=3, the PC wasn’t able to produce result. The 
RBFN features can explain it. RBFN needs the same 
number of epochs as the number of neurons.  

 
Conclusions 
 

The performance of traffic prediction model of MLPN 
can be improved by multiplying the number of layers. 
There is no need to increase the number of neurons in each 
layer. 

Calculations using RBFN models take a long time and 
the performance goal in all cases was not met.  It is not 
recommended to use RBFN to predict traffic in the 
presence of self-similarity, because of the complex 
calculation and long calculation period.  

MLPN models are the best models for traffic 
prediction in the presence of self-similarity. 
 
This work has been partly supported by the European 
Social Fund within the National Program “Support for the 
carrying out doctoral study program’s and post- doctoral 
researches” project “Support for the development of 
doctoral studies at Riga Technical University”. 
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