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1.1 INTRODUCTION

1.1.1 Background

Since the seminal study of Leland, Taqqu, Willinger and Wilson [41] which set the

groundwork for considering self-similarity an important notion in the understand-

ing of network traffic including the modeling and analysis of network performance,

an explosion of work has ensued investigating the multifaceted nature of this phe-

nomenon.1 The long held paradigm in the communication and performance com-

munities has been that voice traffic and, by extension, data traffic are adequately

described by certain Markovian models (e.g., Poisson) which are amenable to accu-

rate analysis and efficient control. The first property stems from the well-developed

field of Markovian analysis which allows tight equilibrium bounds on performance

variables such as the waiting time in various queueing systems to be found. This also

1For a non-technical account of the discovery of the self-similar nature of network traffic, including parallel

efforts and important follow-up work, we refer the reader to [71].
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forms a pillar of performance analysis from the queueing theory side [38]. The sec-

ond feature is, in part, due to the simple correlation structure generated by Markovian

sources whose performance impact—e.g., as affected by the likelihood of prolonged

occurrence of “bad events” such as concentrated packet arrivals—is fundamentally

well-behaved. Specifically, if such processes are appropriately rescaled in time, the

resulting coarsified processes rapidly lose dependence, taking on the properties of

an independent and identically distributed (i.i.d.) sequence of random variables with

its associated niceties. Principal among them is the exponential smallness of rare

events, a key observation at the center of large deviations theory [70].

The behavior of a process under rescaling is an important consideration in per-

formance analysis and control since buffering and, to some extent, bandwidth provi-

sioning can be viewed as operating on the rescaled process. The fact that Markovian

systems admit to this avenue of taming variability has helped shape the optimism per-

meating the late 1980s and early 1990s regarding the feasibility of achieving efficient

traffic control for quality of service (QoS) provisioning. The discovery and, more

importantly, succinct formulation and recognition that data traffic may not exhibit the

hereto accustomed scaling properties [41] has significantly influenced the networking

landscape, necessitating a reexamination of some of its fundamental premises.

1.1.2 What is self-similarity?

Self-similarity and fractals are notions pioneered by Benoit B. Mandelbrot [47]. They

describe the phenomenonwhere a certain property of an object—e.g., a natural image,

the convergent subdomain of certain dynamical systems, a time series (the mathe-

matical object of our interest)—is preserved with respect to scaling in space and/or

time. If an object is self-similar or fractal, its parts, when magnified, resemble—in a

suitable sense—the shape of the whole. For example, the 2-dimensional Cantor set

living onA = [0; 1]� [0; 1] is obtained by starting with a solid or black unit square,

scaling its size by 1/3, then placing four copies of the scaled solid square at the

four corners ofA. If the same process of scaling followed by translation is applied

recursively to the resulting objects ad infinitum, the limit set thus reached defines the

2-D Cantor set. This constructive process is illustrated in Figure 1.1.1. The limiting

object—defined as the infinite intersection of the iterates—has the property that if any

of its corners are “blown up” suitably, then the shape of the zoomed-in part is similar

to the shape of the whole, i.e., it isself-similar. Of course, this is not too surprising

since the constructive process—by its recursive action—endows the limiting object

with the scale-invariance property.

The 1-dimensional Cantor set, e.g., as obtained by projecting the 2-D Cantor set
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Fig. 1.1.1 2-dimensional Cantor set.

onto the line, can be given an interpretation as a traffic seriesX(t) 2 f0; 1g—call it

“Cantor traffic”—whereX(t) = 1 means that there is a packet transmission at time

t. This is depicted in Figure 1.1.2 (left). If the constructive process is terminated at

iterationn � 0, then the contiguous line segments of length1=3n may be interpreted

ason-periodsor packet trains of duration1=3n, and the segments between successive

on-periods asoff-periodsor absence of traffic activity. Nonuniform traffic intensities

may be imparted by generalizing the constructive framework via the use of probability

measures. For example, for the 1-dimensional Cantor set, instead of letting the left

and right components after scaling have identical “mass,” they may be assigned

different mass, subject to the constraint that the total mass be preserved at each

stage of the iterative construction. This modification corresponds to defining a

probability measure� on the Borel subsets of[0; 1] and distributing the measure

at each iteration nonuniformly left and right. Note that the classical Cantor set

construction—viewed as a map—is not measure-preserving. Figure 1.1.2 (middle)

shows such a construction with weights�L = 2=3, �R = 1=3 for the left and right

components, respectively. The probability measure is represented by “height”; we

observe that scale-invariance is exactly preserved. In general, the traffic patterns

producible with fixed weights�L, �R are limited, but one can extend the framework

by allowing possibly different weights associated with every edge in the weighted

binary tree induced by the 1-dimensional Cantor set construction. Such constructions

arise in a more refined characterization of network traffic—called multiplicative

processes or cascades—and are discussed in Chapter 20. Further generalizations can

be obtained by defining different affine transformations with variable scale factors

and translations at every level in the “traffic tree.” The corresponding traffic pattern

is self-similar if, and only if, the infinite tree can be compactly represented as a finite

directed cyclic graph [8].

Whereas the previous constructions are given interpretations as traffic activity

per unit time, we will find it useful to consider their correspondingcumulative

processes which are nondecreasing processes whose differences—also called in-

crement process—constitute the original process. For example, for the on/off
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Fig. 1.1.2 Left: 1-dimensional Cantor set interpreted as on/off traffic. Middle: 1-dimensional

nonuniform Cantor set with weights�L = 2=3, �R = 1=3. Right: Cumulative process

corresponding to 1-dimensional on/off Cantor traffic.

Cantor traffic construction (cf. Figure 1.1.2 (left)), let us assign the interpreta-

tion that time is discrete such that at stepn � 0, it ranges over the values

t = 0; 1=3n; 2=3n; : : : ; (3n � 1)=3n; 1. Thus we can equivalently index the dis-

crete time steps byi = 0; 1; 2; : : : ; 3n. With a slight abuse of notation, let us

redefineX(�) asX(i) = 1 if, and only if, in the original processX(i=3n) = 1 and

X(i=3n � ") = 1 for all 0 < " < 1=3n. That is, fori values for which an on-period

in the original processX(t) begins att = i=3n, X(i) is defined to be zero. Thus, in

the case ofn = 2, we have

X(0) = 0; X(1) = 1; X(2) = 0; X(3) = 1; X(4) = 0;

X(5) = 0; X(6) = 0; X(7) = 1; X(8) = 0; X(9) = 1:

Now, consider the continuous time processY (t) shown in Figure 1.1.2 (right) defined

over[0; 3n] for iterationn. Y (t) is nondecreasing, continuous, and it can be checked

by visual inspection that

X(i) = Y (i)� Y (i� 1); i = 1; 2; : : : ; 3n;
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andX(0) = Y (0) = 0. ThusY (t) represents the total traffic volumeup to time

t whereasX(i) represents the traffic intensity during thei’th interval. Most im-

portantly, we observe that exact self-similarity is preserved even in the cumulative

process. This points toward the fact that self-similarity may be defined with respect

to a cumulative process with its increment process—which is of more relevance for

traffic modeling—“inheriting” some of its properties including self-similarity.

An important drawback of our constructions thus far is that they admit only a

strong form of recursive regularity—that ofdeterministicself-similarity—and needs

to be further generalized for traffic modeling purposes where stochastic variability is

an essential component.

1.1.3 Stochastic self-similarity and network traffic

Stochastic self-similarity admits the infusion of nondeterminism as necessitated by

measured traffic traces but, nonetheless, is a property that can be illustrated visually.

Figure 1.1.3 (top-left) shows a traffic trace,where we plot throughput, in bytes, against

time where time granularity is 100s. That is, a single data point is the aggregated

traffic volume over a 100 second interval. Figure 1.1.3 (top-right) is the same traffic

series whose first 1000 second interval is “blown up” by a factor of ten. Thus the

truncated time series has a time granularity of 10s. The remaining two plots zoom in

further on the initial segment by rescaling successively by factors of 10.

Unlike deterministic fractals, the objects corresponding to Figure 1.1.3 do not

possess exact resemblance of their parts with the whole at finer details. Here, we

assume that the measure of “resemblance” is the shape of a graph with the magnitude

suitably normalized. Indeed, for measured traffic traces, it would be too much to

expect to observe exact, deterministic self-similarity given the stochastic nature of

many network events (e.g., source arrival behavior) that collectively influence actual

network traffic. If we adopt the view that traffic series are sample paths of stochastic

processes and relax the measure of resemblance, say, by focusing on certain statistics

of the rescaled time series, then it may be possible to expect exact similarity of the

mathematical objects and approximate similarity of their specific realizations with

respect to these relaxed measures. Second-order statistics are statistical properties

that capture burstiness or variability, and the autocorrelation function is a yardstick

with respect to which scale-invariance can be fruitfully defined. The shape of the

autocorrelation function—above and beyond its preservation across rescaled time

series—will play an important role. In particular, correlation, as a function of time

lag, is assumed to decrease polynomially as opposed to exponentially. The existence

of nontrivial correlation “at a distance” is referred to aslong-range dependence. A
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Fig. 1.1.3 Stochastic self-similarity—in the “burstiness preservation sense”—across time

scales 100s, 10s, 1s, 100ms (top-left, top-right, bottom-left, bottom-right).

formal definition is given in Section 1.4.1.

1.2 PREVIOUS RESEARCH

1.2.1 Measurement-based traffic modeling

The research avenues relating to traffic self-similarity may be broadly classified

into four categories. In the first category are works pertaining tomeasurement-based

traffic modeling[13, 26, 34, 42, 56, 74] where traffic traces from physical networks are

collected and analyzed to detect, identify as well as quantify pertinent characteristics.

They have shown that scale-invariant burstiness or self-similarity is an ubiquitous

phenomenon found in diverse contexts, from local area and wide area networks to IP

and ATM protocol stacks to copper and fiber optic transmission media. In particular,

[41] demonstrated self-similarity in a LAN environment (Ethernet), [56] showed

self-similar burstiness manifesting itself in pre-World Wide Web WAN IP traffic,

and [13] showed self-similarity for WWW traffic. Collectively, these measurement

works constituted strong evidence that scale-invariant burstiness was not an isolated,
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spurious phenomenon but rather a persistent trait existing across a range of network

environments.

Accompanying the traffic characterization efforts has been works in the area

of statistical and scientific inference that has been essential to the detection and

quantification of self-similarity or long-range dependence2. This work has been

specifically geared toward network traffic self-similarity [28, 64], and has focused

on exploiting the immense volume, high quality, and diversity of available traffic

measurements; for a detailed discussion of these and related issues, see [72, 73].

At a formal level, the validity of an inference or estimation technique is tied to

an underlying process that presumably generated the data in the first place. Put

differently, correctness of system identification only holds when the data or sample

paths are known to originate from specific models. Thus, in general, a sample path

of unknown origin cannot be uniquely attributed to a specific model, and the main

(and only) purpose of statistical or scientific inference is to deal with this intrinsically

ill-posed problem by concluding whether or not the given data or sample paths

are consistent with an assumed model structure. Clearly, being consistent with an

assumed model does not rule out the existence of other models that may conform to

the data equally well. In this sense, the aforementioned works on measurement-based

traffic modeling have demonstrated that self-similarity is consistent with measured

network traffic, and have resulted in adding yet another class of models—i.e., self-

similar processes—to an already long list of models for network traffic. At a practical

level, many of the commonly-used inference techniques for quantifying the degree

of self-similarity or long-range dependence (e.g., Hurst parameter estimation) have

been known to exhibit different idiosyncrasies and robustness properties. Due to their

predominantly heuristic nature, these techniques have been generally easy to use and

apply, but the ensuing results have often been difficult to interpret [64]. The recent

introduction of wavelet-based techniques to the analysis of traffic traces [1, 23]

represented a significant step toward the development of more accurate inference

techniques that have been shown to possess increased sensitivity to different types

of scaling phenomena with the ability to discriminate against certain alternative

modeling assumptions, in particular, nonstationary effects [1]. Due to their ability to

localize a given signal in scale and time, wavelets have made it possible to detect,

identify, and describemultifractalscaling behavior in measured network traffic over

fine time scales [23]: a nonuniform (in time) scaling behavior that emerges when

2The relationship between self-similarity and long-range dependence—they need not be one and the

same—is explicated in Section 1.4.1.
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studying measured TCP traffic over fine time scales, one that allows for more general

scaling phenomena than the ubiquitous self-similar scaling property which holds for

a range of sufficiently large time scales.

1.2.2 Physical modeling

In the second category are works onphysical modelingthat try to explicate the

physical causes of self-similarity in network traffic based on network mechanisms and

empirically established properties of distributed systems that, collectively, collude to

induce self-similar burstiness at multiplexing points in the network layer. In view of

traditional time series analysis, physical modeling affects model selection by picking

among competing and—in a statistical sense—equally well fitting models those that

are most congruent to the physical networking environment where the data arose

in the first place. Put differently, physical modeling aims for models of network

traffic that relate to the physics of how traffic is generated in an actual network,

is capable of explaining empirically observed phenomena such as self-similarity in

more elementary terms, and provides new insights into the dynamic nature of the

traffic. The first type of causality—also the most mundane—is attributable to the

arrival pattern of a single data source as exemplified by variable bit rate (VBR)

video [10, 26]. MPEG video, for example, exhibits variability at multiple time scales

which, in turn, is hypothesized to be related to the variability found in the time duration

between successive scene changes [25]. This “single-source causality,” however, is

peripheral to our discussions for two reasons: one, self-similarity observed in the

original Bellcore data stems from traffic measurements collected during 1989–1991,

a period during which VBR video payload was minimal—if not nonexistent—to be

considered an influencing factor3, and two, it is well-known that VBR video can

be approximated by short-range dependent traffic models which, in turn, makes it

possible to investigate certain aspects of the impact on performance of long-range

correlation structure within the confines of traditional Markovian analysis [32, 37].

The second type of causality—also calledstructural causality[50]—is more

subtle in nature, and its roots can be attributed to an empirical property of distributed

systems: the heavy-tailed distribution of file or object sizes. For the moment, a

random variable obeying aheavy-taileddistribution can be viewed as giving rise to a

very wide range of different values, including—as its trademark— “very large” values

with non-negligible probability. This intuition is made more precise in Section 1.4.1.

3The same holds true for the LBL WAN data considered by Paxson and Floyd [56] and the BU WWW

data analyzed by Crovella and Bestavros [13].
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Returning to the causality description, in a nutshell, if end hosts exchange files whose

size is heavy-tailed, then the resulting network traffic at multiplexing points in the

network layer is self-similar [50]. This causal phenomenon was shown to be robust

in the sense of holding for a variety of transport layer protocols such as TCP—

e.g., Tahoe, Reno, and Vegas—and flow-controlled UDP, which make up the bulk of

deployed transport protocols,and a range of network configurations. [50] also showed

that research in UNIX file systems carried out during the 1980s give strong empirical

evidence based on file system measurements that UNIX file systems are heavy-tailed.

This is, perhaps, the most simple, distilled, yet high-level physical explanation of

network traffic self-similarity. Corresponding evidence for Web objects, which are

of more recent relevance due to the explosion of WWW and its impact on Internet

traffic, can be found in [13].

Of course, structural causality would be meaningless unless there were explana-

tions which showed why heavy-tailed objects transported via TCP- and UDP-based

protocols would induce self-similar burstiness at multiplexing points. As hinted at

in the original Lelandet al. paper [41] and formally introduced in [74], theon/off

modelof Willinger et al. establishes that the superposition of a large number of

independent on/off sources with heavy-tailed on- and/or off-periods leads to self-

similarity in the aggregated process—a fractional Gaussian noise process—whose

long-range dependence is determined by the heavy-tailedness of on or off-periods.

Space aggregation is inessential to inducing long-range dependence—it is responsi-

ble for the Gaussian property of aggregated traffic by an application of the Central

Limit Theorem—however, it is relevant to describing multiplexed network traffic.

The on/off model has its roots in a certain renewal reward process introduced by

Mandelbrot [46] (and further studied in [63]) and provides the theoretical underpin-

ning for much of the recent works on physical modeling of network traffic. This

theoretical foundation together with the empirical evidence of heavy-tailed on/off

durations (as, for example, given for IP flow measurements [74]) represents a more

low-level, direct explanation of physical causality of self-similarity, and form the

principal factors that distinguish the on/off model from other mathematical models

of self-similar traffic. The linkage between high-level and low-level descriptions of

causality is further facilitated by [50] where it is shown that the application layer

property of heavy-tailed file sizes is preserved by the protocol stack and mapped to

approximate heavy-tailed busy periods at the network layer. The inter-packet spacing

within a single session (or equivalently transfer/connection/flow), however, has been

observed to exhibit its own distinguishing variability. This refined short time scale

structure and its possible causal attribution to the feedback control mechanisms of

TCP are investigated in [22, 23], and is the topic of on-going work.
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1.2.3 Queueing analysis

In the third category are works that provide mathematical models of long-range

dependent traffic with a view toward facilitating performance analysis in the queueing

theory sense [2, 3, 17, 43, 49, 53, 66]. These works are important in that they

establish basic performance boundaries by investigating queueing behavior with

long-range dependent input which exhibit performance characteristics fundamentally

different from corresponding systems with Markovian input. In particular, the queue

length distribution in infinite buffer systems has aslower-than-exponentially(or

subexponentially) decreasing tail, in stark contrast with short-range dependent input

for which the decay is exponential. In fact, depending on the queueing model

under consideration, long-range dependent input can give rise toWeibullian [49]

or polynomial[66] tail behavior of the underlying queue length distributions. The

analysis of such non-Markovian queueing systems is highly nontrivial and provides

fundamental insight into the performance impact question. Of course, these works, in

addition to providing valuable information into network performance issues, advance

the state-of-the-art in performance analysis and are of independent interest. The

queue length distribution result implies that buffering—as a resource provisioning

strategy—is rendered ineffective when input traffic is self-similar in the sense of

incurring a disproportionate penalty in queueing delay vis-à-vis the gain in reduced

packet loss rate. This has led to proposals advocating asmall buffer capacity/large

bandwidthresource provisioningstrategy due to its simplistic, yet curtailing influence

on queueing: if buffer capacity is small, then the ability to queue or remember

is accordingly diminished. Moreover, the smaller the buffer capacity, the more

relevant short-range correlations become in determining buffer occupancy. Indeed,

with respect to first-order performance measures such as packet loss rate, they may

become the dominant factor. The effect of small buffer sizes and finite time horizons

in terms of their potential role in delimiting the scope of influence of long-range

dependence on network performance has been studied in [29, 58].

A major weakness of many of the queueing-based results [2, 3, 17, 43, 49, 53,

66] is that they areasymptotic, in one form or another. For example, in infinite

buffer systems, upper and lower bounds are derived for the tail of the queue length

distribution as the queue length variable approaches infinity. The same holds true

for “finite buffer” results where bounds on buffer overflow probability are proved

as buffer capacity becomes unbounded. There exist interesting results for zero

buffer capacity systems [18, 19] which are discussed in Chapter 17. Empirically

oriented studies [20, 33, 51] seek to bridge the gap between asymptotic results

and observed behavior in finite buffer systems. A further drawback of current
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performance results is that they concentrate on first-order performance measures

that relate to (long-term) packet loss rate but less so on second-order measures—

e.g., variance of packet loss or delay, generically referred to asjitter—which are of

import in multimedia communication. For example, two loss processes may have

the same first-order statistic but if one has higher variance than the other in the

form of concentrated periods of packet loss—as is the case in self-similar traffic—

then this can adversely impact the efficacy of packet-level forward error correction

used in the QoS-sensitive transport of real-time traffic [11, 52, 68]. Even less is

known about transient performance measures which are more relevant in practice

when convergence to long-term steady-state behavior is too slow to be of much

value for engineering purposes. Lastly, most queueing results obtained for long-

range dependent input are for open-loop systems that ignore feedback control issues

present in actual networking environments (e.g., TCP). Since feedback can shape and

influence the very traffic arriving at a queue [22, 50], incorporating their effect in

feedback controlled closed queueing systems looms as an important challenge.

1.2.4 Traffic control and resource provisioning

The fourth category deals with works relating to the control of self-similar network

traffic which, in turn, has two sub-categories: resource provisioning and dimensioning

which can be viewed as a form of open-loop control, and closed-loop or feedback

traffic control. Due to their feedback-free nature, the works on queueing analysis

with self-similar input have direct bearing on the resource dimensioning problem.

The question of quantitatively estimating the marginal utility of a unit of additional

resource such as bandwidth or buffer capacity is answered, in part, with the help of

these techniques. Of importance are also works on statistical multiplexing using the

notion of effective bandwidth which point toward how efficiently resources can be

utilized when shared across multiple flows [27]. A principal lesson learned in the

resource provisioning side is the ineffectiveness of allocating buffer space vis-à-vis

bandwidth for self-similar traffic, and the consequent role of short-range correlations

in affecting first-order performance characteristics when buffer capacity is indeed

provisioned to be “small” [29, 58].

On the feedback control side is the work onmultiple time scale congestion con-

trol [67, 68] which tries to exploit correlation structure that exists across multiple time

scales in self-similar traffic for congestion control purposes. In spite of the negative

performance impact of self-similarity, on the positive side, long-range dependence

admits the possibility of utilizing correlation at large time scales, transforming the

latter to harness predictability structure which, in turn, can be affected to guide con-
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gestion control actions at smaller time scales to yield significant performance gains.

The problem of designing control mechanisms that allow correlation structure at large

time scales to be effectively engaged is a nontrivial technical challenge for two prin-

cipal reasons: one, the correlation structure in question exists at time scales typically

an order of magnitude or more above that of the feedback loop, and two, the infor-

mation extracted is necessarily imprecise due to its probabilistic nature4. [67, 68]

show that large time scale correlation structure can be employed to yield significant

performance gains both for throughput maximization—using TCP and rate-based

control—and end-to-end QoS control within the framework of adaptive redundancy

control [52, 68]. An important by-product of this work is that thedelay-bandwidth

product problemof broadband networks, which renders reactive or feedback traffic

controls ineffective when subject to long round-trip times (RTT), is mitigated by ex-

ercising control across multiple time scales. Multiple time scale congestion control

allows uncertainty stemming from outdated feedback information to be compensated

or “bridged” by predictability structure present at time scales exceeding the RTT or

feedback loop (i.e., seconds vs. milliseconds). Thus even though traffic control in

the 1990s has been occupied by the dual theme of large delay-bandwidth product

and self-similar traffic burstiness, when combined, they lend themselves to a form of

attack which imparts proactivity transcending the limitation imposed by RTT, thereby

facilitating the metaphor of “catching two birds with one stone.”

A related, but more straightforward, traffic control dimension isconnection dura-

tion prediction. The works from physical modeling tell us that connections or flows

tend to obey a heavy-tailed distribution with respect to their time duration or lifetime,

and this information may be exploitable for traffic control purposes. In particular,

heavy-tailedness implies that most connections are short-lived, but the bulk of traffic

is contributed by a few long-lived flows [50]. By Amdahl’s Law [4], it becomes

relevant to carefully manage the impact exerted by the long-lived flows even if they

are few in number5. The idea of employing “connection” duration was first ad-

vanced in the context of load balancing in distributed systems where UNIX processes

have been observed to possess heavy-tailed lifetimes [30, 31, 40]. In contrast to

the exponential distribution whose memoryless property renders prediction obsolete,

heavy-tailedness impliespredictability—a connection whose measured time duration

4We remark that understanding the correlation structure of network traffic at time scales below the feedback

loop may be of relevance but remains, at this time, largely unexplored [22].
5A form of Amdahl’s Law states that to improve a system’s performance, its functioning with respect to

its most frequently encountered states must be improved. Conversely, performance gain is delimited by

the latter.
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exceeds a certain threshold is more likely to persist into the future. This information

can be used, e.g., in the case of load balancing, to decide whether it is worthwhile

to migrate a process given the fixed, high overhead cost of process migration [31].

The ensuing opportunities have numerous applications in traffic control, one recent

example being the discrimination of long-lived flows from short-lived flows such

that routing table updates can be biased toward long-lived flows which, in turn, can

enhance system stability by desensitizing against “transient” effects of short-lived

flows [61]. In general, the connection duration information can also come from

directly available information in the application layer—e.g., a Web server, when

servicing a HTTP request, can discern the size of the object in question—and if this

information is made available to lower layers, decisions such as whether to engage

in open-loop (for short-lived flows) or closed-loop control (for long-lived flows) can

be made to enhance traffic control [67].

1.3 ISSUES AND REMARKS

1.3.1 Traffic measurement and estimation

The area of traffic measurements—since the collection and analysis of the original

Bellcore data [41]—has been tremendously active yielding a wealth of traffic mea-

surements across a wide spectrum of different contexts supporting the view that net-

work traffic exhibits self-similar scaling properties over a wide range of time scales.

This finding is noteworthy given the fact that networks, over the past decade, have un-

dergone significant changes in their constituent traffic flows, user base, transmission

technologies, and scale with respect to system size. The observed robustness property

or insensitivity to changing networking conditions justified calling self-similarity a

traffic invariantand motivated focusing on underlying physical explanations that are

mathematically rigorous as well as empirically verifiable. Robustness, in part, is

explained by the fact that the majority of Internet traffic has been TCP traffic, and

while in the pre-WWW days the bulk of TCP traffic stemmed from FTP traffic, in

today’s Internet, it is attributable to HTTP-based Web traffic. Both types of traffic

have been shown to transport files whose size distribution is heavy-tailed [13, 56].

Physical modeling carried out in [50] showed that the transport of heavy-tailed files

mediated by TCP (as well as flow-controlled UDP) induces self-similarity at multi-

plexing points in the network layer; it also showed that this is a robust phenomenon

insensitive to details in network configuration and control actions in the protocol
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stack6. Measurement work has culminated in refined workload characterization at

the application layer, including the modeling of user behavior [6, 7, 24, 48]. At the

network layer, measurement analyses of IP traffic over fine time scales have lead

to the multifractal characterization of wide area network traffic which, in turn, has

bearing on physical modeling raising new questions about the relationship between

feedback congestion control and short-range correlation structure of network traf-

fic [22, 23]. The tracking of Internet workload and its characterization is expected

to remain a practically important activity of interest in its own right. Demonstrating

the relevance of ever refined workload models to networking research, however, will

loom as a nontrivial challenge.

As with experimental physics, the measurement- or data-driven approach to net-

working research—rejuvenated by [41]—provides a balance to the more theoretical

aspects of networking research, in the ideal situation, facilitating a constructive in-

terplay of “give-and-take.” A somewhat less productive consequence has been the

discourse on short-range vs. long-range dependent mathematical models to describe

measured traffic traces starting with the original Bellcore Ethernet data. At one level,

both short-range and long-range dependent traffic models are parameterized systems

that are sufficiently powerful to give rise to sample paths in the form of measured

traffic time series. Mathematical system identification, under these circumstances,

therefore, is an intrinsically ill-posed problem. Viewed in this light, the fact that

different works can assign disparate modeling interpretations to the same measure-

ment data, with differing conclusions, is not surprising [26, 33]. Put differently, it is

well known that with a sufficiently parameterized model class, it is always possible

to find a model that fits a given data set. Thus, the real challenge lies less in in

mathematical model fitting but inphysical modeling, an approach that in addition to

describing the given data provides insight into the causal and dynamic nature of the

processes that generated the data in the first place. On the positive side, the discus-

sions about short-range vs. long-range dependence have brought out into the open

concerns about nonstationary effects [16]—3pm traffic cannot be expected to stem

from the same source behavior conditions as 3am traffic—that can influence certain

types of inference and estimation procedures for long-range dependent processes.

These concerns have spurned the development and adoption of estimation techniques

based on wavelets which are sensitive to various types of nonstationary variations in

6Not surprisingly, extremities in control actions and resource configurations do affect the property of

induced network traffic, in some instances, diminishing self-similar burstiness altogether [50]. Moreover,

refined structure in the form of multiplicative scaling over sub-RTT time scales has only recently been

discovered [23].
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the data [1]. What is not in dispute are computed sample statistics—e.g., autocor-

relation functions of measured traffic series—which exhibit nontrivial correlations

at time lags on the order of seconds and above. Whether to call these time scales

“long-range” or “short-range” is a matter of subjective choice and/or mathematical

convenience and abstraction. What impact these correlations exert on queueing be-

havior is a function of how large the buffer capacity, the level of traffic intensity,

and link capacity—among other factors—are [29, 58]. As soon as one deviates from

empirical evaluation based on measurement data and adopts a model of the data, one

is faced with the same ill-posed identification problem.

1.3.2 Traffic modeling

There exist a wide range of mathematical models of self-similar or long-range depen-

dent traffic each with its own idiosyncrasies [5, 21, 23, 35, 43, 49, 53, 59, 74]. Some

facilitate queueing analysis [43, 49, 53], some are physically motivated [5, 23, 74],

and yet others show that long-range dependence may be generated in diverse

ways [21, 35]. The wealth of mathematical models—while, in general, an asset—

can also distract from an important feature endowed of the networking domain:

the physics and causal mechanisms underlying network phenomena including

traffic characteristics. Since network architecture—either by implementation or

simulation—isconfigurable, from a network engineering perspective physical traffic

models that trace back the roots of self-similarity and long-range dependence to ar-

chitectural properties such as network protocols and file size distribution at servers

have a clear advantage with respect to predictability and verifiability over “black

box” models associated with traditional time series analysis. Contrast this with, say,

economic systems where human behavior cannot be reprogrammed at will to test the

consequences of different assumptions and hypotheses on system behavior. Physical

models, therefore, are in a unique position to exploit this “reconfigurability trait”

afforded by the networking domain, and use it to facilitate an intimate, mechanistic

understanding of the system.

The on/off model [74] is a mathematical abstraction which provides a foundation

for physical traffic modeling by advancing an explicit causal chain of verifiable net-

work properties or events which can be tested against empirical data. For example,

the factual basis of heavy-tailed on-periods in network traffic has been shown in [74],

a corresponding empirical basis for heavy-tailed file sizes in UNIX file systems of

the past whose transport may be the cause of heavy-tailed on-periods in packet trains

has been shown in [50], and a more modern interpretation for the World Wide Web

has been demonstrated in [13]. One weakness of the on/off model is its assumption
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of independenceof on/off sources. This has been empirically addressed in [50] by

studying the influence of dependence arising from multiple sources coupled at bottle-

neck routers sharing resources when the flows are governed by feedback congestion

control protocols such as TCP in the transport layer. It was found that coupling did

not significantly impact long-range dependence. A more recent study [22] shows

that dependence due to feedback and inter-flow interaction may be the cause for

multiplicative scaling phenomena observed in the short-range correlation structure, a

refined physical characterization that may complement the previous findings which

focused on coarser structure at larger time scales. We remark that the on/off model

is able to induce both fractional Gaussian noise—upon aggregation over multiple

flows and normalization—and a form of self-similarity and long-range dependence

called asymptotic second-order self-similarity—a single process with heavy-tailed

on/off periods—which constitute two of the most commonly used self-similar traffic

models in performance analysis.

Finally, physical models, because of their grounding in empirical facts, influence

the general argument advanced in Section 1.3.1 on the ill-posed nature of the iden-

tification problem. They can be viewed as tilting the scale in favor of long-range

dependent traffic models. That is, since file sizes in various network related con-

texts have been shown to be heavy-tailed and the physical modeling works show

that resulting traffic is long-range dependent, other things being equal, empirical

evidence afforded by physical models biases toward a more consistent and parsimo-

nious interpretation of network traffic as being long-range dependent as opposed to

the mathematically equally viable short-range dependence hypothesis. Thus phys-

ical models, by virtue of their causal attribution, can also influence the choice of

mathematical modeling and performance analysis.

1.3.3 Performance analysis and traffic control

The works on queueing analysis with self-similar input have yielded fundamental

insights into the performance impact of long-range dependence, establishing the

basic fact that queue length distribution decays slower-than-exponentially vis-à-vis

the exponential decay associated with Markovian input [2, 3, 17, 43, 49, 53, 66].

In conjunction with observations advanced in [29, 58] on ways to curtail some

of the effect of long-range dependence, a very practical impact of the queueing

based performance analysis works has been the growing adoption of the resource

dimensioning paradigm which states that buffer capacity at routers should be kept

small while link bandwidth is to be increased. That is, the marginal utility of buffer

capacity has diminished significantly vis-à-vis that of bandwidth. This is illustrated
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in Figure 1.3.1 which shows mean queue length as a function of buffer capacity at a

bottleneck router when fed with self-similar input with varying degrees of long-range

dependence but equal traffic intensity (roughly,�-values close to1 imply strong

long-range dependence whereas�-values close to2 correspond to weak long-range

dependence). In other words, when long-range correlation structure is weak, a buffer
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Fig. 1.3.1 Mean queue length as a function of buffer capacity for input traffic with varying

long-range dependence (� = 1:05; 1:35; 1:65; 1:95).

capacity of about 60kB suffices to contain the input’s variability and, moreover,

the average buffer occupancy remains below 5kB. However, when the long-range

correlation structure is strong, an increase in buffer capacity is accompanied by a

corresponding increase in buffer occupancy with the buffer capacity horizon at which

the mean queue length saturates pushed out significantly.

In spite of the fundamental contribution and insight afforded by queueing analysis,

as a practical matter, all the known results suffer under the limitation that the analysis

is asymptotic in the buffer capacity: either the queue is assumed be infinite and

asymptotic bounds on the tail of the queue length distribution are derived, or the

queue is assumed to be finite but its overflow probability is computed as the buffer

capacity is taken to infinity. There is, as yet, a chasm between these asymptotic results

and their finitistic brethren which have alluded tractability. It is unclear whether the

asymptotic formulae—beyond their qualitative relevance—are also practically useful

as resource provisioning and traffic engineering tools. Further work is needed in this

direction to narrow the gap. Another significant drawback of the performance analysis

results—also related to the asymptotic nature of queueing results—is the focus on

first-order performance indicators such as packet loss rate and mean queue length,

which is even true in experimental studies. Second-order performance measures

such as packet loss variance or delay variance—generically denoted jitter—play an
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important role in multimedia payload transport with real-time constraints. Even

when a small buffer capacity resource provisioning policy is adopted to delimit

the queueing aspect of self-similar traffic, if time-sensitive traffic flows are subject

to concentrated periods of packet loss or severe inter-packet delay variation (even

though packet loss rate may be small), then performance—as reflected by QoS—has

degraded. The effectiveness of real-time QoS control techniques such as packet-level

forward error correction are directly impacted by burstiness structure [11, 52, 68]

and explicit incorporation of second-order performance measures must be affected

to yield a balanced account of the performance impact question.

On the traffic control front, self-similarity—in spite of its detrimental performance

aspect—implies the existence of correlation structure at a distance which may be

exploitable for traffic control purposes. The framework of multiple time scale traffic

control [67, 68, 69] exercises control actions across multiple time scales, using

the information extracted at large time scales to modulate the output behavior of

feedback congestion controls acting at the time scale of RTT. An important by-

product of multiple time scale congestion control is the mitigation of the delay-

bandwidth product problem which has been a pariah of reactive controls due to the

outdatedness of feedback information in WAN environments which diminishes the

effectiveness of reactive control actions. Figure 1.3.2 shows the performance gain of

imparting multiple time scale capabilities on top of TCP Reno, Vegas, and Rate (a

rate-based version of TCP) as a function of RTT. We observe that as RTT increases,

performance enhancement vis-à-vis ordinary TCP due to multiple scale congestion

control is amplified accordingly.
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The area of self-similar traffic control faces a number of challenges. First,
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self-similar traffic control, in the past, has received less attention than measure-

ment/estimation, traffic modeling, and queueing analysis which is not too surprising

since the problem of control is, in some sense, a natural continuation of research

into “what is” type of questions that is followed by “what if” questions. Research

into utilizing predictability stemming from long-range dependence and heavy-tailed

connection durations is far from exhaustive, and further work is needed to explore the

wide array of traffic control possibilities. Second, whereas long-lived connections—

although few in number but contributing the bulk of traffic—constitute the primary

target of traffic control, the effective management of short-lived connections—due

to their sheer number—looms as an important problem. Maintenance ofpersistent

state at end systems that is shared across multiple flows is a promising avenue that

would allow open-loop traffic control to be sensitive to network state, thus imparting

a measure of proactivity. Last but not least, analysis of feedback loop systems with

respect to their stability and optimality including those arising in multiple time scale

traffic control for self-similar traffic remains a challenge. New ideas and approaches

are needed to succeed in our attempts to tractably analyze and understand large-scale,

coupled, interacting complex systems such as the Internet.

1.4 TECHNICAL BACKGROUND

1.4.1 Self-similar processes and long-range dependence

1.4.1.1 Second-order self-similarity and stationarityConsider a discrete time

stochastic process or time seriesX(t), t 2 Z, whereX(t) is interpreted as the traffic

volume—measured in packets, bytes, or bits—at time instancet. Of interest is also

the interpretation thatX(t) is the total traffic volumeup totimet, say, from time 0. To

minimize confusion, when a “cumulative” view is taken, we will denote the process

by Y (t). We will then reserveX(t) to be theincrement processcorresponding to

Y (t), i.e.,X(t) = Y (t)� Y (t� 1).

For traffic modeling purposes, we would likeX(t) to be “stationary” in the sense

that its behavior or structure is invariant with respect to shifts in time. In other words,

t’s responsibility as anabsolutereference frame is relieved. Without some form of

stationarity, “anything” is allowed and a model loses much of its usefulness as a

compact description of (assumed) tractable phenomena.X(t) is strictly stationary

if (X(t1); X(t2); : : : ; X(tn)) and(X(t1 + k); X(t2 + k); : : : ; X(tn + k)) possess

the same joint distribution for alln 2 Z+, t1; : : : ; tn; k 2 Z. Denoting thek-shifted

process or time seriesXk, X andXk are said to be equivalent in the sense offinite-
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dimensional distributions, X =d Xk. Imposing strict stationarity, it turns out, is too

restrictive and we will be interested in a weaker form of stationarity—second-order

stationarity7—which requires that the autocovariance function(r; s) = E[(X(r)�

�)(X(s)� �)] satisfies translation invariance, i.e.,(r; s) = (r + k; s+ k) for all

r; s; k 2 Z. The first two moments are assumed to exist and be finite, and we set

� = E[X(t)], �2 = E[(X(t) � �)2] for all t 2 Z. We will also assume� = 0.

Since, by stationarity,(r; s) = (r � s; 0), we denote the autocovariance by(k).

To formulate scale-invariance, first define theaggregated processX(m) of X at

aggregation levelm,

X(m)(i) =
1

m

miX
t=m(i�1)+1

X(t):

That is,X(t) is partitioned into non-overlapping blocks of sizem, their values are

averaged, andi is used to index these blocks. Let(m)(k) denote the autocovariance

function ofX(m). Under the assumption of second-order stationarity we arrive at the

following definitions of second-order self-similarity.

Definition1.4.1(Second-order Self-similarity) X(t) is exactly second-order self-

similar with Hurst parameterH (1=2 < H < 1) if

(k) =
�2

2
((k + 1)2H � 2k2H + (k � 1)2H) (1.4.2)

for all k � 1. X(t) is asymptotically second-order self-similarif

lim
m!1

(m)(k) =
�2

2
((k + 1)2H � 2k2H + (k � 1)2H): (1.4.3)

It can be checked that (1.4.2) implies(k) = (m)(k) for all m � 1. Thus, second-

order self-similarity captures the property that correlation structure is exactly—

condition (1.4.2)—or asymptotically—the weaker condition (1.4.3)—preserved un-

der time aggregation. The form of(k) = ((k+1)2H � 2k2H + (k� 1)2H)�2=2 is

not accidental and implies further structure—long-range dependence—to which we

will return later. Second-order self-similarity (in the exact or asymptotic sense) has

been a dominant framework for modeling network traffic and this is also reflected in

the chapters of this book.

7Equivalent names areweak, covariance, andwide sensestationarity.
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1.4.1.2 An allegory into distributional self-similarity To understand the partic-

ular form of(k) in the definition of second-order self-similarity, we will make a

short detour and discuss self-similar processes in slightly more generality. Further

extensions and detailed treatments can be found in [9, 60].

Consider the cumulative processY (t), albeit in continuous timet 2 R. Following

is a definition of self-similarity for continuous time processes in the sense of finite

dimensional distributions.

Definition1.4.4(H-ss) Y (t) is self-similar with self-similarity parameter, i.e.,

Hurst parameter,H (0 < H < 1), denotedH-ss, if for all a > 0 andt � 0,

Y (t) =d a
�HY (at): (1.4.5)

ThusY (t) and its time scaled versionY (at)—after normalizing bya�H—must

follow the same distribution. In the traffic modeling context, it is convenient to think

of Y (t) as the cumulative or total traffic up to timet. Fora > 1—time is stretched

or dilated—a contraction factora�H is applied to make the magnitude ofY (at)

comparable to that ofY (t). For a < 1, the opposite holds true. Asa varies, the

scaling exponentH remains invariant. This is a most natural definition, however, it

has an important drawback: unlessY (t) is degenerate, i.e.,Y (t) = 0 for all t 2 R,

Y (t) cannot be stationary due to the normalization factora�H . Its increment process

X(t) = Y (t) � Y (t � 1), however, is another matter. In particular, consider the

case whereY (t) is H-ss and hasstationary increments; in this case we sayY (t) is

H-sssi. Let us further assume thatY (t) has finite variance. It can be checked that

E[Y (t)] = 0, E[Y 2(t)] = �2jtj2H , and

(k) =
�2

2
(jtj2H � jt� sj2H + jsj2H): (1.4.6)

This is achieved by noting that8

Y (t) =d t
HY (1)

from which it follows E[Y 2(t)] = �2t2H . The latter, then, can be used in the

derivation of the autocovariance function (1.4.6). The increment processX(t) has

mean 0 and autocovariance(k) as given in (1.4.2). The derivation is similar to that

of Y (t).

How does distributional self-similarity (of a continuous time process) tie in with

8FromaHY (t) =d Y (at), substitutet = 1 anda = t.
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second-order self-similarity (of a discrete time process) which requires exact or

asymptotic invariance with respect to second-order statistical structure of the aggre-

gated time seriesX(m)? A key observation lies in noting thatX(m) can be viewed

as computing a sample mean

X(m) =
1

m

mX
t=1

X(t) = m�1(Y (m)� Y (0))

=d m
�1mH(Y (1)� Y (0)) = mH�1X:

Thus, ifY (t) is aH-sssi process then its increment processX(t) satisfies

X =d m
1�HX(m) (1.4.7)

which shows howX(m) is related toX via a simple scaling relationship involvingH

in the sense of finite dimensional distributions. (1.4.2) and (1.4.3), then, express the

fact that,X andm1�HX(m) are required to have exactly or asymptotically the same

second-order structure. As a result, depending on whether a discrete time process

X(t) satisfies (1.4.7) for allm � 0 or only in the limit asm ! 1, X(t) is said to

beexactly self-similaror asymptotically self-similar. Note that in the Gaussian case,

this definition coincides with second-order self-similarity.

As a lead-in to the role of the parameterH , recall that the variance of the sample

mean �Z of a random variableZ satisfies var( �Z) = �2Z=m wherem is the sample

size. From (1.4.7) it follows that var(X(m)) = �2m2H�2. When viewed as a sample

mean where the samples are drawnindependently, var(X(m)) reduces to�2m�1 if

H = 1=2. If H 6= 1=2, in particular,1=2 < H < 1, then

var(X(m)) = �2m��

with 0 < � < 1 (andH = 1 � �=2) which hints at certain—and not just any—

dependency structurein the “samples” (i.e., time series in our case) which causes

var(X(m)) to converge to zero slower than the ratem�1.

1.4.1.3 Long-range dependenceThus far we have focused on explicating the role

of self-similarity in the second-order stationary and distributional senses with little

regard to the role ofH and its range of values. Let us return to the definition of

second-order self-similarity and its autocovariance(k). Letr(k) = (k)=�2 denote

theautocorrelation function. For0 < H < 1, H 6= 1=2, it holds

r(k) � H(2H � 1)k2H�2; k !1: (1.4.8)
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In particular, if1=2 < H < 1, r(k) asymptotically behaves asc k�� for 0 < � < 1

wherec > 0 is a constant,� = 2� 2H , and we have

1X
k=�1

r(k) =1: (1.4.9)

That is, the autocorrelation function decays slowly—i.e., hyperbolically—which is

the essential property that causes it to be not summable. Whenr(k) decays hy-

perbolically such that condition (1.4.9) holds, we call the corresponding stationary

processX(t) long-range dependent. X(t) is short-range dependentif the autocor-

relation function is summable9. An essentially equivalent definition can be given in

the frequency domain where thespectral density�(�) = (2�)�1
P
1

k=�1 r(k)eik�

is required to satisfy the property

�(�) � cj�j��; � ! 0:

Herec > 0 is a constant and0 < � = 2H � 1 < 1. Thus�(�) diverges around the

origin implying ever larger contributions by low frequency components.

Following are some simple facts regarding the value ofH and its impact onr(k).

First, if H = 1=2, thenr(k) = 0, andX(t) is trivially short-range dependent by

virtue of being completely uncorrelated. In the case where0 < H < 1=2, we haveP
1

k=�1 r(k) = 0, an artificial condition rarely encountered in applications.H = 1

is uninteresting since it leads to the degenerate situationr(k) = 1 for all k � 1.

Finally, H-values bigger than1 are prohibited due to the stationarity condition on

X(t).

1.4.1.4 Self-similarity vs. long-range dependenceThe preceding discussion in-

dicates that there are self-similar processes that are not long-range dependent, and

vice versa. For example, Brownian motion is 1/2-sssi with white Gaussian noise

as its increment process, but the latter is not long-range dependent. Conversely,

certain fractional ARIMA time series generate long-range dependence but they are

not self-similar in the distributional sense. In the case of asymptotic second-order

self-similarity, however, by the restriction1=2 < H < 1 in the definition, self-

similarity implies long-range dependence, and vice versa. It is for this reason and

the fact that asymptotic second-order self-similar processes are employed as “canoni-

cal” traffic models, that we sometimes useself-similarityandlong-range dependence

9Technically more subtle definitions of long-range dependence are possible, but in this book, we will

mainly rely on our working definition involving condition (1.4.9).
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interchangeably when the context does not lead to confusion.

1.4.2 Impact of heavy tails

1.4.2.1 Heavy-tailed distribution There is an intimate relationship between

heavy-tailed distributions and long-range dependence which we will discuss in the

next sections. First, a few definitions and basic facts. A random variableZ has a

heavy-tailed distributionif

PrfZ > xg � c x��; x!1 (1.4.10)

where0 < � < 2 is called thetail index or shape parameterandc is a positive

constant10. That is, the tail of the distribution, asymptotically, decays hyperbolically.

This is in contrast tolight-tailed distributions—e.g., exponential and Gaussian—

which possess an exponentially decreasing tail. A distinguishing mark of heavy-tailed

distributions is that they have infinite variance for0 < � < 2, and if 0 < � � 1,

they also have an unbounded mean. In the networking context, we will be primarily

interested in the case1 < � < 2. A frequently used heavy-tailed distribution is the

Pareto distributionwhose distribution function is given by

PrfZ � xg = 1�

�
b

x

��
; b � x;

where0 < � < 2 is the shape parameter andb is called thelocation parameter.

The mean is given by�k=(� � 1). We remark that there are distributions—e.g.,

Weibull and log-normal—that havesubexponentiallydecreasing tails but possess

finite variance.

The main characteristic of a random variable obeying a heavy-tailed distribution

is that it exhibits extreme variability. Practically speaking, a heavy-tailed distribution

gives rise to very large values with nonnegligible probability so that sampling from

such a distribution results in the bulk of values being “small” but a few samples having

“very” large values. Not surprisingly, heavy-tailedness impacts sampling by slowing

down the convergence rate of the sample mean to the population mean, dilating it as

the tail index� approaches 1. For example, pending on the sample sizem, the sample

mean�Zm of a Pareto distributed random variableZ may significantly deviate from

the population mean�k=(�� 1), oftentimes underestimating it. In fact, the absolute

10Technically more subtle definitions involving slowly varying functions are possible and can be found in

some chapters of this book. However, for practical purposes and to convey the main ideas, our working

definition, centered around condition (1.4.10), will suffice.
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estimation errorj �Zm �E(Z)j asymptotically behaves asm(1=�)�1 (see, e.g., [15]),

and thus for�-values close to1, care must be given when sampling from heavy-

tailed distributions such that conclusions about network behavior and performance

attributable to sampling error are not advanced. A more detailed discussion of

sampling issues is given in Chapter 3.

1.4.2.2 Heavy tails and predictabilityHeavy-tailedness of certain network related

variables—e.g., file sizes and connection durations—can be shown to underlie the root

cause of long-range dependence and self-similarity in network traffic. First, a simple

fact on the intrinsic predictability associated with heavy-tailed random variables.

Let Z be a heavy-tailed random variable interpreted as thedurationor lifetimeof a

network connection (e.g., TCP connection, IP-flow, or session). Since connection

durations are physically measurable events, assume that we observe—in time—that

a connection has been active for� > 0 seconds. To simplify the discussion, assume

time is discrete (t 2 Z+) andA : Z+ ! f0; 1g is an indicator function such that

A(t) = 1 iff Z � t. We are interested in the probability that the connection will

persist into the future given that it has been active for� seconds. That is, we would

like to estimate the conditional probability

L(�) = PrfA(� + 1) = 1 j A(t) = 1; 1 � t � � g: (1.4.11)

L(�) can be expressed as

L(�) = 1�
PrfZ = �g

PrfZ � �g
: (1.4.12)

Let us first computeL(�) for light tails, in particular, distributions with asymptot-

ically exponential tailsPrfZ > xg � c1 e
�c2x wherec1; c2 > 0 are constants. The

second term in (1.4.12) is computed by

PrfZ = �g

PrfZ � �g
�

c1 e
�c2� � c1 e

�c2(�+1)

c1 e�c2�
= 1� e�c2

for large� , and we getL(�) � e�c2 . Thus for exponentially light tails, prediction is

not enhanced by conditioning on ever longer periods of observed activity. For heavy

tails, the corresponding derivations are

PrfZ = �g

PrfZ � �g
�

c ��� � c (� + 1)��

c ���
= 1�

�
�

� + 1

��
;
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which yields

L(�)% 1; � !1: (1.4.13)

Thus, the longer the period of observed activity, the more certain that it will persist

into the future. In fact, it is straightforward to generalize (1.4.11) so that we can

measure thepersistenceof activity � � 1 time units into the future, i.e.,

L(�) = PrfA(� + s) = 1; 1 � s � � j A(t) = 1; 1 � t � � g:

This does not change the qualitative results: for the light-tailed case,L(�) � e�c2�;

for the heavy-tailed case,L(�)’s asymptotic behavior follows(1 + �=�)�� % 1.

Since(1 + �=�)�� � e���=� , we observe that in both cases predictability is expo-

nentially sensitive to the prediction interval�. However, in the heavy-tailed case, for

any desired� time unit “peek into the future,” by conditioning the prediction on a

sufficiently long past observation of activity, the prediction error can be reduced to

an arbitrarily small level.

We remark that the mathematical implications of asymptotic analysis need not

deter from the practical relevance of its conclusions, even considering the fact that

tails are always finite in a physical network environment. First, if heavy-tails are

modeled using the Pareto distribution, then its shape is hyperbolic across itsentire

range—not just asymptotically—and accurate finitary computations can be carried

out. Second, given an empirical distribution with finite support, the fact that it has

a finite cut-off point will not significantly influence the predictability computations

carried out in practice as long as the tail is “sufficiently”—e.g., several orders of

magnitude beyond the mean—long. As with time series, the identification problem

of whether an empirical distribution is best modeled by heavy-tailed or light-tailed

distributions is intrinsically ill-posed and secondary to the fact that the predictability

structure as computed by (1.4.12) fromempirical distributionsis significant.

1.4.2.3 Heavy tails and long-range dependenceAs we saw in the previous sec-

tion, heavy tails lead to predictability, and for a related reason, they lead to long-range

dependence in network traffic. First, we give a definition of fractional Brownian mo-

tion (FBM) and its increment process—fractional Gaussian noise (FGN)—which are

Gaussian self-similar processes with, and without, long-range dependence, first intro-

duced by Mandelbrot [45]. Their Gaussian structure renders them especially useful

asaggregatetraffic models where aggregation of independent traffic sources—by the

central limit theorem—leads to the Gaussian property. In practice, of course, traffic

flows need not be independent if they engage in feedback control and share common
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resources at bottleneck routers. The definitions of FBM and FGN are couched in the

framework of distributional self-similarity given in Section 1.4.1.2.

Definition1.4.14(FBM) Y (t), t 2 R, is calledfractional Brownian motionwith

parameterH , 0 < H < 1, if Y (t) is Gaussian andH-sssi.

Definition1.4.15(FGN) X(t), t 2 Z+, is calledfractional Gaussian noisewith

parameterH if X(t) is the increment process of FBM with parameterH .

By the definition ofH-sssi, FBM reduces to Brownian motion—and FGN to white

Gaussian noise—whenH = 1=2. ThusX(t), t 2 Z+, becomes completely uncor-

related. Since Gaussian processes are characterized by their second-order structure,

for eachH , 0 < H < 1, there is a unique Gaussian process that is the stationary

increment of aH-sssi process. FBM is the corresponding unique GaussianH-sssi

process. By the same token, for Gaussian processes, distributional self-similarity and

second-order self-similarity yield equivalent definitions.

Now to why heavy tails are considered the root cause of long-range dependence in

network traffic. We take a constructive approach by presenting input processes—in

various guises—with probabilistic activity times which, then, are shown to lead to

long-range dependence if, and only if, they are heavy-tailed. We first present the

on/off model by Willingeret al.[74] followed by a related model used by Likhanovet

al. [43] which has a slightly different, but complementary, source arrival perspective.

The on/off model considersN independent traffic sourcesXi(t), i 2 [1; N ], where

each is a 0/1reward renewal processwith i.i.d. on-periods and i.i.d. off-periods. This

just means thatXi(t) takes on the values 1 (“on”) and 0 (“off”) on alternating, non-

overlapping time intervals called on- and off-periods, respectively.Xi(t) = 1 is

interpreted as there being a packet transmission. Thus, an on-period can be viewed

as constituting a “packet train” [36]. Three such on/off sources and their aggregation

is depicted in Figure 1.4.1. LetSN (t) =
PN

i=1Xi(t) denote the aggregate traffic at

time t. Consider thecumulativeprocessYN (T t) defined as

YN (T t) =

Z Tt

0

� NX
i=1

Xi(s)

�
ds; (1.4.16)

whereT > 0 is a scale factor that is explicitly incorporated. ThusYN (T t) measures

the total traffic up to timeT t. What is the behavior ofYN (T t) for largeT andN?

We will simplify the discussion so as to concentrate on the single salient feature

of how heavy-tailedness influences long-range dependence. Let�on be the random

variable describing the duration of the on-periods and let�off be the random variable
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X (t)

time

ON ON ONOFF OFF OFFX (t)

3

1

X (t)2

S (t)3

Fig. 1.4.1 N = 3 on/off sourcesX1(t); X2(t); X3(t), and their aggregationS3(t) =

X1(t) +X2(t) +X3(t).

associated with the durations of the off-periods. Let

Prf�on > xg � c x��; x!1

where1 < � < 2 andc > 0 is a constant. As to�off , it can be either heavy-tailed or

light-tailed with finite variance. It can be shown [62, 74] thatYN (T t) behaves like

FBM in the following sense.

Theorem 1.4.17 (On-Off Model & FBM) YN (T t) behaves statistically as

E(�on)

E(�on) +E(�off)
NTt+ CN1=2THBH(t) (1.4.18)

for largeT ,N , whereH = (3��)=2,BH(t) is FBM with parameterH , andC > 0

is a quantity depending only on the distributions of�on and�off.

Thus YN (T t) asymptotically behaves as fractional Brownian motion fluctuating

aroundNTtE(�on)=(E(�on) + E(�off)) when suitably normalized. It is long-range

dependent (1=2 < H < 1) iff 1 < � < 2, i.e., �on’s distribution is heavy-tailed.

If neither �on nor �off is heavy-tailed, thenYN (T t) is short-range dependent. It is

in this sense that heavy-tailedness (in this case, of the on- or off-periods) is an es-

sential component to inducing long-range dependence in the aggregated time series.

Of less practical import in the networking context is the case when the off-period

is heavy-tailed but the on-period is not, which nonetheless also yields long-range

dependence.
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A related but slightly different source model is obtained when viewing each source

i 2 Z+ as emitting asingularpacket train but being otherwise silent [43]. Thus, a

single on/off source in the on/off model can be construed to be the output behavior of

a network host which may service multiple TCP connections, whereas in the singular

packet train case, the source corresponds to a single TCP connection transporting

a byte stream such as a file. To each sourcei 2 Z+, we associate a time interval

[ti; ti + �i), ti; �i 2 Z+, whereXi(t) = 1 if t 2 [ti; ti + �i), and 0 otherwise. We

assume that the�i, i 2 Z+, are i.i.d. andti is determined by a Poisson process�(t)

which indicates how manynewconnections arrive at timet.

X(t) =
X
i2Z+

Xi(t) <1

then counts how many connections are active at timet. Alternatively,X(t) can

be viewed as the aggregate (over flows) traffic rate emitted at time instancet. The

behavior ofX(t) and its generalized brethren can be analyzed directly [43, 65, 66], but

a more succinct and elegant approach that reveals the influence of heavy-tailedness

on long-range dependence can be found in a result due to Cox involving the M/G/1

queueing system [12]. An M/G/1 queue is defined to be thebusy server process

where connection arrivals are Poisson and each connection is serviced by a server—

there are infinitely many—with a general service time. Thus, at any instance of time,

we count how many servers are busy servicing requests. If the i.i.d. service times are

given by� = �i, i 2 Z+, then it is easy to see that the busy server process in the

M/G/1 queue corresponds to the aggregate traffic rateX(t) in the Poisson source

model with a single on-period. Let� be heavy-tailed with tail index1 < � < 2.

Theorem 1.4.19 (M/G/1 and LRD) X(t), t 2 Z+, is asymptotically second-

order self-similar with parameterH = (3� �)=2.

Thus1 < � < 2, via 1=2 < H = (3 � �)=2 < 1, is directly tied to long-range

dependence. Theorem 1.4.19, in turn, implies by the previous correspondence that

when connections with a single heavy-tailed on-period arrive in a Poisson manner,

then the resulting aggregate traffic is long-range dependent. In its raw form,X(t) has

Poisson marginals [57], but it can be shown that FBM arises naturally as a limiting

process by appropriately scaling the Poisson arrival rate and service times [39].

The M/G/1 approach to modeling network traffic has proved useful in analyzing

queueing behavior fed by long-range dependent input [54, 55].

We remark that from a purelymathematical modelingpoint-of-view, heavy-

tailedness is not necessary to generate long-range dependence in aggregate traffic.

As pointed out in [9] (and further explored in Chapter 11), aninfinite aggrega-
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tion of short-range dependent sources—in particular, heterogeneous on/off sources

with exponential on/off times—can produce long-range dependence when suitably

calibrated. Finite aggregations of short-range dependent sources, however, cannot

induce long-range dependence, hence the assumption of infinite aggregation is cru-

cial. Empirical traffic measurements provide strong evidence that file sizes and

connection durations are heavy-tailed, and hence theheavy-tailedness causes long-

range dependencerule-of-thumb is supported by physical modeling. The practical

implications—if any—of the short-range dependent flows can produce long-range

dependence observation are not clear, and we include them for completeness.

1.5 ORGANIZATION OF THE BOOK

This book is a collection of chapter contributions which brings together relevant

works spanning a cross-section of topics covering traffic measurement, modeling,

performance analysis, and traffic control for self-similar network traffic.

The first part of the book deals with traffic characterization,estimation, and simula-

tion issues. Wavelet analysis is introduced as a powerful technique for both modeling

and estimation of self-similar traffic. The wavelet based approach naturally lends

itself to a multifractal view of network traffic where a shift in traffic properties at

long and short time scales is captured using cascade constructions superimposed on

heavy-tailed renewal processes. This is further discussed in Chapter 20. Comple-

menting the theme of traffic modeling is the issue surrounding simulation, such as

in the generation of synthetic workloads and self-similar traffic, which entails, in

many instances, sampling from heavy-tailed distributions. Due to the slow conver-

gence of sample statistics to population statistics, special care needs to be exercised

when performing simulations that involve sampling from heavy-tailed distributions

so as to not advance erroneous conclusions attributable to sampling effects including

underestimation.

The second part of the book focuses on performance evaluation issues, in particular,

queueing behavior of finite and infinite buffer systems when fed with long-range

dependent input. Due to the breakdown of Markovian assumptions which are key

to tractability in traditional queueing analysis, the technical challenges encountered

with self-similar input are great. This part of the book gives an exposition of

what is known about queueing with self-similar input, starting with the trademark

phenomenon that queue length distribution decays polynomially—as opposed to

exponentially—and advancing to packet scheduling, transient analysis, tight buffer

asymptotics, and impact of resource boundedness and finite time horizons. Queueing
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based performance analysis also forms the foundation of traffic control based on

resource provisioning and dimensioning. The traffic models considered can be

viewed as variants of on/off renewal reward processes where session arrivals are

allowed to be Poisson, however, on- or off-periods are assumed to be heavy-tailed.

Some of the input processes are intimately related to fractional Brownian motion and

its increment process, fractional Gaussian noise, which in turn can be analyzed by

various techniques including large deviations theory.

The third part of the book covers traffic control issues that arise under self-similar

traffic conditions. There are two main facets to the question, one centered on the

problem of resource provisioning and dimensioning—a form of open-loop control—

and ensuing trade-off relations, and the other based on the traditional traffic control

framework of feedback control and its realization in network protocols including

TCP. With respect to resource provisioning, due to the amplified queueing delay

incurred when employing buffer dimensioning, an alternative resource provisioning

strategy based on bandwidth dimensioning as the principal control variable has been

advanced. In this “bufferless” traffic engineering regime, by reserving sufficient

resources to meet the peak rate of multiplexed input traffic—i.e., over-provisioning—

a desired level of quality of service in the form of statistical guarantees can be

achieved. Feedback traffic control, on the other hand, represents a more subtle

challenge where the central idea revolves around exploiting correlation structure

at multiple time scales—in particular, “large” time scales exceeding the round-trip

time associated with the feedback loop—as afforded by long-range dependence and

self-similarity, to affect traffic control decisions executed at smaller time scales.

When effectively facilitated, this can result in significant performance improvements

including mitigation of the delay-bandwidth product problem in broadband wide area

networks due to proactivity.

The last part of the book takes a bird’s eye view of the manifold accomplishments

and projects into the future promising research directions including those based on

most recent developments. Chapter 20 focuses on traffic characterization and model-

ing issues with emphasis on a program for achieving a comprehensive understanding

of network traffic and workloads, spanning both large- and small-time scale behav-

iors. Chapter 21 provides a complementary view concentrating on traffic control and

performance evaluation issues which are expected to be of relevance in the design

and management of the future Internet.
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1.6 CHAPTER CONTRIBUTIONS

In the following, we give a brief outline of the various chapter contributions organized

into three parts: (i) estimation and simulation, (ii) queueing with self-similar input,

and (iii) traffic control and resource provisioning. We describe how each chapter

fits into the overall picture and comment on the potential role and relevance of each

chapter for future advances in these areas. The threefold categorization is not strict in

the sense that some chapters encompass subject matters that cross the set boundaries.

Also, part (ii) may be more generally characterized as performance evaluation with

self-similar input as queueing is the predominant, but not exclusive, theme contained

therein.

Chapter 1 by Park and Willinger serves as an introductory chapter that provides

the necessary technical background including definitions for following the rest of the

book. The chapter is self-contained and thus can also be read as a modern introduction

to the topic of self-similar network traffic. It gives an overview of the various research

activities surrounding self-similar traffic and outlines the principal issues in the areas

of traffic modeling, statistical and scientific inference, performance analysis, and

traffic control. Chapter 1 concludes with an overview of the book including the

present section describing each chapter contribution.

1.6.1 Estimation and simulation

The chapter by Abry, Flandrin, Taqqu, and Veitch (Chapter 2) discusses the state-of-

the-art in identification of scaling phenomena in traffic series—the crucial component

of self-similarity—using the framework of wavelets. Due to their ability to localize

a given signal or time series both in time and scale (or frequency), wavelets provide

a powerful and refined technique for detecting and quantifying scaling behavior in

measured traffic. Since wavelets are, in part, parameterized by scaling parameters,

this lends itself naturally to a multi-scale representation and analysis of time series

which, in turn, allows a qualitatively more informative and quantitatively more accu-

rate estimation of underlying scaling properties. Abryet al. present a comprehensive

overview of the fundamentals of wavelet analysis and its application to estimating

scaling behavior in self-similar traffic, focusing on properties related to self-similar

scaling. The chapter concludes with a discussion of the “inverse” operation, i.e., that

of generatingsynthetic self-similar time series using wavelet expansions.

Chapter 20 by Riedi and Willinger describes an even further refined modeling

based, in part, on the wavelet framework where a notion of large time scale and

small time scale behavior and their observed empirical differences are captured. The



CHAPTER CONTRIBUTIONS xxxv

novel aspect here is that the resulting representation combines in a natural manner

self-similar andmultifractal scaling behaviors. In one interpretation, multifractals

can viewed as being composed of heavy-tailed renewal processes which collectively

determine the large time scale behavior leading to long-range dependence, and a

more fine-granular “within-connection” structure that reveals itself in a locally highly

irregular scaling behavior and conforms to multifractality over fine time scales. The

fact that long-range dependence of such processes does not depend on the finer details

underlying variations within on-periods or connection times is shown by a result of

Kurtz [39]. Riedi and Willinger, however, show that the fine granular structure

at smaller time scales deviates significantly from the self-similar scaling behavior

over large time scales and may therefore be relevant for traffic modeling purposes.

They argue that multifractals in the form of certain cascade models or multiplicative

processes provide a natural modeling framework, and also give initial evidence to

suggest that the deviation from self-similar scaling observed in the short-correlation

structure may be due to protocol stack effects such as those stemming from TCP’s

feedback congestion control.

Chapter 20 also provides a high-level overview of recent developments in traffic

modeling with foundations in physical modeling. In this capacity, it serves to de-

lineate a future program for traffic characterization and modeling with emphasis on

achieving a comprehensive understanding of network traffic and workloads and their

scaling behavior across multiple time scales.

Chapter 3 by Crovella and Lipsky serves to draw attention to issues surrounding

simulation under self-similar traffic conditions which, in many instances, involve

sampling from heavy-tailed distributions such as those arising in the context of

generating long-range dependent traffic series as well as generating heavy-tailed

workloads in related contexts (e.g., WWW). Slowly decaying tails lead to slow

convergence of sample statistics to their corresponding population statistics, in fact,

leading to biasedness in terms of underestimation. In other words, the sample mean

is consistent but biased which has ramifications when performing simulations whose

sampling frequency may not be sufficiently large. Crovella and Lipsky discuss various

issues and possible remedies associated with this important practical problem.

1.6.2 Queueing with self-similar input

The chapter by Norros (Chapter 4) gives an updated overview of the fundamental

queueing results associated with fractional Brownian motion (FBM) input processes,

also called fractional Brownian storage. Due to the fundamental importance played

by FBM and its increment process fractional Gaussian noise (FGN) as a model of
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aggregatetraffic, understanding the queueing behavior under self-similar input as

captured by FBM is of import to many other results, serving as a reference point.

Norros derives the Weibullian tail behavior of the queue length distribution arising in

fractional Brownian storage models with Hurst parameter in the range1=2 < H < 1,

and discusses the importance of the Gaussian property of the input process and the

role that it plays in the analysis.

In Chapter 5, Brichet, Massoulié, Simonian, and Veitch give a more refined exten-

sion of Gaussian input processes stemming from superposition of on-off processes in

the heavy-load case where the arrival rate is close to the service rate. As the number

of i.i.d. on-off sources increases, they are able to derive limit results that characterize

the queue length distribution asymptotics and show it to be Weibullian, consistent

with the result in the FBM case.

The chapter by Boxma and Cohen (Chapter 6) discusses queueing behavior as

a function of the service discipline, in particular, first-come-first-served (FCFS),

processor sharing (PS), and last-come-first-served preemptive resume (LCFS-PR),

in the context of the M/G/1 queueing model. Due to the close connection between

heavy-tailed on-off processes and the M/G/1 system when the service time is heavy-

tailed, the latter represents a natural queueing model in which to incorporate the

impact of long-range dependence. Their main contribution is toward deriving heavy-

traffic—utilization approaches 1—limit theorems for the M/G/1 queue under the

aforementioned service disciplines and showing that the tail of the queue length

distribution can indeed be significantly less heavy when using PS and LCFC-PR in

place of FCFS. The conclusions advanced have potential applications to packet and

workload scheduling in router and Web server design.

Chapter 7 by Resnick and Samorodnitsky investigates performance issues for three

classes of input models where heavy tails induce long-range dependence on the input

side and a single server works at constant rate. In particular, they consider a single

on-off renewal process with heavy-tailed on-periods, a finite number of i.i.d. heavy-

tailed renewal processes, and lastly, an infinite number of sources whose transmission

times or on-periods are heavy-tailed. In all three cases, the input process is long-range

dependent and queueing affected performance leads to polynomial (vs. exponential)

dependence which agrees with related queueing results.

The chapter by Likhanov (Chapter 8) derives results for the queueing behavior

for a broad class of asymptotic second-order self-similar processes—also related to

the M/G/1 model—which can be viewed as superposition of sessions that arrive

in a Poisson fashion and whose session durations are heavy-tailed. Each session

or connection, however, can be viewed as having a finite lifetime—after a burst

of activity, it is silent forever thereafter—which distinguishes it from the on/off
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model where connections alternate between active and idle periods ad infinitum. The

author establishes asymptotic bounds for the queue length distribution which relate

the various parameters of the asymptotic second-order self-similar arrival process

model to performance, giving rise to polynomially decaying tails of the queue length

distribution.

In Chapter 9, Makowski and Parulekar present a comprehensive treatment of

the large buffer asymptotics for the M/G/1 input model—a constant rate server

fed with M/G/1 inputs—using large deviation techniques to approximate the tail

behavior. They show that there exist compact relationships between buffer occupancy

asymptotics and the service time distribution of M/G/1, but the tightness of buffer

asymptotics is influenced by the shape of the service time distribution—exponential

or subexponential—the latter leading to upper and lower bounds that collapse only

under certain restrictions. In addition to its technical content, the chapter provides a

detailed discussion on why the M/G/1model is a useful queueing model under which

to study performance issues relating to long-range dependence, and explicate their

performance results with respect to other well-known results in buffer asymptotics

for long-range dependent input. In particular, the authors point out that the same

buffer asymptotics can be induced by vastly different input streams—long-range and

short-range dependent.

Chapter 10 by Jelenković investigates the subexponential queueing behavior of

very general queueing systems when subject to subexponential arrival processes.

In particular, he considers the class of GI/GI/1 queueing systems and some of its

variations, including finite buffers and truncated heavy-tailed arrivals. It is shown

that the asymptotic approximation for the loss rate in a finite buffer GI/GI/1 queue

is independent of the service process, and buffer capacity dimensioning—in certain

buffer size regimes—can exert a significant impact on performance. The chapter

concludes with a study of multiplexingbehavior under long-rangedependent input for

fluid queues. It is shown that dominance is at play which allows simplified reasoning

of multiplexing effects by suitable replacement of dominated input processes by more

simple ones (e.g., constant bit rate).

The chapter by Jacquet (Chapter 11) is concerned with long-range dependent

processes that are the superposition of an infinite number of suitably calibrated on-

off sources withexponentialon-off times. While in the networking context such

constructions are artificial and have little in common with empirical information

gained from measured traffic, it serves to show that mathematically—underinfinite

aggregation—light-tailedon- and off-periods can induce long-range dependence, and

due to the inherently Markovian nature of the individual components they may be

useful when studying the behavior of queueing systems. For example, Jacquet uses



xxxviii SELF-SIMILAR NETWORK TRAFFIC: AN OVERVIEW

Mellin transforms, a transform technique used in traditional teletraffic theory, to track

the polynomial tails of the ensuing queue length distribution in a simple queueing

system.

Chapter 12 by Heyman and Lakshman discusses the relative import of short-

range and long-range dependence for performance analysis in certain networking

contexts—e.g., where buffer capacities are sufficiently “small,” for certain types of

applications such as variable bit rate video, and for certain first-order performance

measures such as long-term packet loss rate—where short-range dependence can

dominate queueing. The existence of such regimes is not surprising but worthwhile

remarking as with other manifold qualifications on the impact and role of self-

similarity and heavy-tailedness discussed in the book. In these cases, given the

choice between equally well-fitting short-range dependent “black-box” processes

and long-range dependent “physical” models, the short-range dependent one can be

effectively employed for performance analysis purposes. However, a change in the

underlying assumptions—different networking context, application, or performance

measures—renders this approach inflexible in contrast with physical models which

are more robust and parsimonious. The limitation of short-range dependent black

box models is most pronounced when studying “what if” questions, in particular,

those involving traffic control with feedback.

Chapter 13 by Li and Li is the last chapter of the second part of the book and

presents a transient analysis of queueing behavior under long-range dependent input.

The analysis is “transient” in the sense that loss probabilities are derivedconditioned

on the state of the system at a previous time instance which facilitates tractability

while utilizing the correlation structure present in the stationary i.i.d. increments of

the long-range dependent input considered. This work can be viewed as an effort

toward understanding genuinely transient phenomena in queueing systems with self-

similar input, noting that complete transient analysis is a difficult task even for simple

Markovian systems such as M/M/1 which involves modified Bessel functions. The

practical relevance of transient results becomes obvious in the presence of heavy-

tailed distributions which can slow down convergence to steady-state to the point

where its value for engineering purposes is greatly diminished. Chapter 17—in

the third part of the book—gives a complementary and more sophisticated form of

transient analysis geared toward an application to traffic control.

1.6.3 Traffic control and resource provisioning

Chapter 14 by Park, Kim, and Crovella discusses how the causality of self-similar

network traffic can be traced back to a high-level structural property of the underlying
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networked system, namely, the heavy-tailed nature of file size or Web document

distributions at the application layer. The authors show that when objects sampled

from such distributions are exchanged via the mediation of a “typical” protocol

stack—application layer (e.g.,FTP, HTTP), transport layer (e.g.,TCP, flow-controlled

UDP), network layer (e.g., IP)—with focus on the transport layer which governs

congestion control and reliability (if so desired), then the transfer and manifestation

of the application layer causal seed of self-similarity at multiplexing points in the

network layer in the form of self-similar traffic is robust, being largely impervious to

the details of the actions carried out in the protocol stack and network configuration.

In conjunction with evidence of heavy-tailed file size distribution observed in UNIX

file systems of the past—i.e., in the 1980’s well before the onset of the World Wide

Web and its constituent traffic—the chapter provides a causal, physical explanation

for why self-similar traffic may be so ubiquitous, and is a phenomenon likely to

persist in the future Internet. The chapter also shows that if the transport protocol

behaves in “extreme” ways—e.g., minimal or no congestion control—it is possible

for the protocol stack to exert sufficient influence such that the transfer mechanism

of causality is significantly impeded.

Chapter 20 and its discussion of multifractal IP traffic with different scaling

behavior at small and large time scales where the multiplicative scaling at small time

scales—at roughly sub-RTT times—is taken to stem from the actions associated with

TCP’s feedback congestion control, can be viewed as a refined characterization of

the influence of the protocol stack, in this case, for short-term correlation structure

of network traffic.

In Chapter 15, Feldmann presents an empirical study of the characteristics of TCP

connection arrivals and shows that in today’s Internet, in addition to self-similarity

at the packet level, self-similar scaling is already encountered at the session or

application layer when analyzing time series of the number of TCP connections per

time unit. To this end, Feldmann relies on wavelet-based inference techniques and

uncovers that various facets of TCP connection arrival characteristics conform to

Weibullian-type distributions. This detailed workload characterization is relevant

from both traffic modeling and control perspectives since knowing the structure of

TCP connection arrivals and their durations can help in devising improved traffic

control mechanisms.

The chapter by Roberts (Chapter 16) gives a high-level discussion of traffic control

and resource provisioning issues under long-range dependent traffic conditions. The

basic premise is predicated on segmenting traffic into two broad classes—stream

and elastic traffic—where the former are subjected to open-loop control, i.e., re-

source reservation, and the latter are handled using closed-loop control. Due to the
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heavy queueing cost associated with provisioning resources using buffer sizing, it

is explicitly proposed that for stream traffic, bandwidth allocation with small buffer

capacity be the default resource allocation policy employed. Roberts sketches the

components of a multiservice network architecture advocating measurement-based

admission control for stream traffic considered effective for self-similar traffic, and

end-to-end feedback control for elastic traffic, with pricing applicable to both. The

influence of self-similarity and heavy-tailedness on architectural considerations and

traditional traffic control are discussed throughout.

In Chapter 17, Duffield and Whitt adopt a bufferless model for performance anal-

ysis and traffic control where instantaneous offered load is given by a long-term level

process (i.e., “DC” component shifts across a range of traffic levels) with “within-

level” fluctuations. They investigate the problem of approximating the conditional

mean of aggregate traffic—conditioned on past traffic profile or demand parame-

terized by level and age (or duration)—using numerical transform inversion. They

show that the age variable plays an important role in facilitating prediction. Duffield

and Whitt show applications of the “transient analysis framework” by estimating

the probability of high levels of congestion in steady state using a large deviation

principle approximation. They also analyze the converse situation captured by the

time to recover—i.e., return to a traffic level corresponding to a given resource

capacity—after the excursion. The approach advanced in Chapter 17 is interesting

due to its focus on the long-range dependent aggregate input process, dispensing with

its impact on queueing, and directly analyzing the transient or dynamic variability

structure based on the predictability inherent to long-range dependent processes. A

similar “on-line” framework is adopted in Chapter 18 where long-term predictability

structure is exploited for feedback congestion control.

Tuan and Park (Chapter 18) show that in spite of the “bad news” associated with

scale-invariant burstiness, there is “good news” in the sense of there being the po-

tential of exploiting long-term correlation structure present in long-range dependent

traffic for traffic control purposes. They advance themultiple time scale congestion

control framework and show that nonnegligible correlations at large time scales can

be effectively detected on-line and engaged to improve the performance of feed-

back congestion controls in rate-based settings. The central idea underlying the

technology isselective aggressiveness controlwhich allows explicit prediction of

large time scale network state to be used to modulate the aggressiveness of band-

width consumption behavior exhibited by feedback congestion control acting at small

time scales (i.e., time scale of RTT). An important consequence is the mitigation of

the delay-bandwidth product problem of reactive controls in broadband wide area

networks.
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Finally, Chapter 19 by Adas and Mukherjee addresses the problem of how resource

reservation in a time-division multiplexing set-up—per-VC framing—can be used

to facilitate end-to-end quality of service (QoS) under long-range dependent traffic

conditions. The asynchronous framing approach described follows the resource

provisioning paradigm espoused for long-range dependent traffic, namely, that of

bufferless queueing, which then allows computation of QoS guarantees by appealing

to the Central Limit Theorem and equivalent bandwidth computations.
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