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Abstract.  In the literature of Electromagnetism, the electromotive force of a “circuit” 
is often defined as work done on a unit charge during a complete tour of the latter 
around the circuit. We explain why this statement cannot be generally regarded as 
true, although it is indeed true in certain simple cases. Several examples are used to 
illustrate these points.  

 
 
1.  Introduction  
 
In a recent paper [1] the authors suggested a pedagogical approach to the electromo-
tive force (emf ) of a “circuit”, a fundamental concept of Electromagnetism. Rather 
than defining the emf in an ad hoc manner for each particular electrodynamic system, 
this approach begins with the most general definition of the emf and then specializes 
to certain cases of physical interest, thus recovering the familiar expressions for the 
emf.  
      Among the various examples treated in [1], the case of a simple battery-resistor 
circuit was of particular interest since, in this case, the emf was shown to be equal to 
the work, per unit charge, done by the source (battery) for a complete tour around the 
circuit. Now, in the literature of Electrodynamics the emf is often defined as work per 
unit charge. As we show in this paper, this is not generally true except for special 
cases, such as the aforementioned one.  
      In Section 2, we give the general definition of the emf, E, and, separately, that of 

the work per unit charge, w, done by the agencies responsible for the generation and 
preservation of a current flow in the circuit. We then state the necessary conditions in 
order for the equality E=w to hold. We stress that, by their very definitions, E and w 

are different concepts. Thus, the equation E=w suggests the possible equality of the 

values of two physical quantities, not the conceptual identification of these quantities!  
      Section 3 reviews the case of a circuit consisting of a battery connected to a resis-
tive wire, in which case the equality E=w is indeed valid.  

      In Sec. 4, we study the problem of a wire moving through a static magnetic field. 
A particular situation where the equality E=w is valid is treated in Sec. 5.  

      Finally, Sec. 6 examines the case of a stationary wire inside a time-varying mag-
netic field. It is shown that the equality E=w is satisfied only in the special case where 

the magnetic field varies linearly with time.  
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2.  The general definitions of emf and work per unit charge  
 
Consider a region of space in which an electromagnetic (e/m) field exists. In the most 
general sense, any closed path C (or loop) within this region will be called a “circuit”  
(whether or not the whole or parts of C consist of material objects such as wires, resis-
tors, capacitors, batteries, etc.).  
      We arbitrarily  assign a positive direction of traversing the loop C, and we con-

sider an element dl
���

 of C oriented in the positive direction. Imagine now a test charge 

q located at the position of dl
���

, and let F
�

 be the force on q at time t :  
 

dl
���

•

C

+

q

F
�

 
 

Figure 1 
 
This force is exerted by the e/m field itself, as well as, possibly, by additional energy 
sources (e.g., batteries or some external mechanical action) that may contribute to the 
generation and preservation of a current flow around the loop C. The force per unit 

charge at the position of dl
���

 at time t, is  
 

      
F

f
q

=

�
�

                                                             (1) 

 

Note that f
�

 is independent of q, since the electromagnetic force on q is proportional 

to the charge. In particular, reversing the sign of q will have no effect on f
�

 (although 

it will change the direction of F
�

).  
      In general, neither the shape nor the size of C is required to remain fixed. More-
over, the loop may be in motion relative to an external inertial observer. Thus, for a 
loop of (possibly) variable shape, size or position in space, we will use the notation 
C(t) to indicate the state of the curve at time t.  
      We now define the electromotive force (emf ) of the circuit C at time t as the line 

integral of f
�

 along C, taken in the positive sense of C :  
 

           E (t) 
( )

( , )
C t

f r t d l= ⋅∫
���� �

�                                                   (2) 

 

(where r
�

 is the position vector of dl
���

 relative to the origin of our coordinate system). 
Note that the sign of the emf is dependent upon our choice of the positive direction of 
circulation of C: by changing this convention, the sign of E is reversed.  

      As mentioned above, the force (per unit charge) defined in (1) can be attributed to 
two factors: the interaction of q with the e/m field itself and the action on q due to any 
additional energy sources. Eventually, this latter interaction is electromagnetic in na-
ture even when it originates from some external mechanical action. We write:  
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      em appf f f= +
� � �

                                                      (3) 

 

where emf
�

 is the force due to the e/m field and appf
�

 is the applied force due to an ad-

ditional energy source. We note that the force (3) does not include any resistive (dis-
sipative) forces that oppose a charge flow along C; it only contains forces that may 
contribute to the generation and preservation of such a flow in the circuit.  
      Now, suppose we allow a single charge q to make a full trip around the circuit C 
under the action of the force (3). In doing so, the charge describes a curve C΄ in space 

(not necessarily a closed one!) relative to an external inertial observer. Let dl′
���

 be an 
element of C΄ representing an infinitesimal displacement of q in space, in time dt. We 
define the work per unit charge for this complete tour around the circuit by the inte-
gral:  
 

      
C

w f dl
′

′= ⋅∫
����

                                                        (4) 

 
For a stationary circuit of fixed shape, C΄ coincides with the closed curve C and (4) 
reduces to  
 

     ( )
C

w f dl fixed C= ⋅∫
����

�                                               (5) 

 
      It should be noted carefully that the integral (2) is evaluated at a fixed time t, while 
in the integrals (4) and (5) time is allowed to flow! In general, the value of w depends 
on the time t0 when q starts its round trip on C. Thus, there is a certain ambiguity in 
the definition of work per unit charge. On the other hand, the ambiguity (so to speak) 
with respect to the emf is related to the dependence of the latter on time t.  
      The question now is: can the emf be equal in value to the work per unit charge, 
despite the fact that these quantities are defined differently? For the equality E=w to 

hold, both E and w must be defined unambiguously. Thus, E must be constant, inde-

pendent of time (dE/dt=0) while w must not depend on the initial time t0 of the round 

trip of q. These requirements are necessary conditions in order that the equality E=w 

be meaningful.  
      In the following sections we illustrate these ideas by means of several examples. 
As will be seen, the satisfaction of the above-mentioned conditions is an exception 
rather than a rule!  
 
 
3.  A resistive wire connected to a battery  
 
Consider a circuit consisting of an ideal battery (i.e., one with no internal resistance) 
connected to a metal wire of total resistance R. As shown in [1] (see also [2]), the emf 
of the circuit in the direction of the current is equal to the voltage V of the battery. 
Moreover, the emf in this case represents the work, per unit charge, done by the 
source (battery). Let us review the proof of these statements:  
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Figure 2 
 
A (conventionally positive) moving charge q is subject to two forces around the circuit 

C: an electrostatic force eF qE=
� �

 at every point of C and a force appF
�

 inside the bat-

tery, the latter force carrying q from the negative pole a to the positive pole b through 
the source. According to (3), the total force per unit charge is  
 

e app appf f f E f= + = +
� � � ��

 

 
The emf in the direction of the current (i.e., counterclockwise), at any time t, is  
 

E 
b

app appC C C a
f dl E dl f dl f d l= ⋅ = ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫
��� ��� ��� ���� � ��

� � �                          (6) 

 

where we have used the facts that 0
C

E dl⋅ =∫
����

�  for an electrostatic field and that the 

action of the source on q is limited to the region between the poles of the battery.  
      Now, in a steady-state situation (Ι = constant) the charge q moves at constant 
speed along the circuit. This means that the total force on q in the direction of the path 
C is zero. In the interior of the wire, the electrostatic force eF qE=

� �
 is counterbal-

anced by the resistive force on q due to the collisions of the charge with the positive 
ions of the metal (as mentioned previously, this latter force does not contribute to the 
emf ). In the interior of the (ideal) battery, however, where there is no resistance, the 
electrostatic force must be counterbalanced by the opposing force exerted by the 

source. Thus, in the section of the circuit between a and b, app ef f E=− = −
� � �

. By (6), 

then, we have:  
 

        E
b

b aa
E dl V V V= − ⋅ = − =∫
����

                                            (7) 

 
where Va and Vb are the electrostatic potentials at a and b, respectively. We note that 
the emf is constant in time, as expected in a steady-state situation.  
      Next, we want to find the work per unit charge for a complete tour around the cir-
cuit. To this end, we allow a single charge q to make a full trip around C and we use 
expression (5) (since the wire is stationary and of fixed shape). In applying this rela-
tion, time is assumed to flow as q moves along C. Given that the situation is static 
(time-independent), however, time is not really an issue since it doesn’t matter at what 
moment the charge will pass by any given point of C. Thus, the integration in (5) will 
yield the same result (7) as the integration in (6), despite the fact that, in the latter 
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case, time was assumed fixed ! We conclude that the equality w=E is valid in this 

case: the emf does represent work per unit charge.  
 
 
4.  Moving wire inside a static magnetic field  
 
Consider a wire C moving in the xy-plane. The shape and/or size of the wire need not 

remain fixed during its motion. A static magnetic field ( )B r
� �

 is present in the region 
of space where the wire is moving. For simplicity, we assume that this field is normal 
to the plane of the wire and directed into the page:  
 

r
�

dl
���

cυ
�

x

y
+

( )rυ
� �

( )C t

da⊗
���

( )B r⊗
� �

z⊙  
 

Figure 3 
 
In Fig. 3, the z-axis is normal to the plane of the wire and directed towards the reader. 

We call da
���

 an infinitesimal normal vector representing an element of the plane sur-
face bounded by the wire (this vector is directed into the plane, consistently with the 
chosen clockwise direction of traversing the loop C ). If ˆzu  is the unit vector on the z-

axis, then ˆ( ) zda da u= −
���

 and ˆ( ) zB B r u= −
� �

, where ( ) | ( ) |B r B r=
�� �

.  

      Consider an element dl
���

 of the wire, located at a point with position vector r
�

 rela-
tive to the origin of our inertial frame of reference. Call ( )rυ

� �
 the velocity of this ele-

ment relative to our frame. Let q be a (conventionally positive) charge passing by the 
considered point at time t. This charge executes a composite motion, having a velocity 

cυ
�

 along the wire and acquiring an extra velocity ( )rυ
� �

 due to the motion of the wire 

itself. The total velocity of q relative to us is tot cυ υ υ= +
� � �

.  

 

θ
θ

dl
���

dl′
���

dl′′
����

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�( )B r⊗

� �

m totf υ⊥
� �

app cf υ⊥
� �

r cf υ↑↓
� �

 
 

Figure 4 
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      The balance of forces acting on q is shown in the diagram of Fig. 4. The magnetic 

force on q is normal to the charge’s total velocity and equal to ( )m totF q Bυ= ×
� ��

. 

Hence, the magnetic force per unit charge is m totf Bυ= ×
� ��

. Its component along the 

wire (i.e., in the direction of dl
���

) is counterbalanced by the resistive force rf
�

, which 

opposes the motion of q along C (this force, as mentioned previously, does not con-
tribute to the emf ). However, the component of the magnetic force normal to the wire 
will tend to make the wire move “backwards” (in a direction opposing the desired mo-
tion of the wire) unless it is counterbalanced by some external mechanical action 
(e.g., our hand, which pulls the wire forward). Now, the charge q takes a share of this 
action by means of some force transferred to it by the structure of the wire. This force 
(which will be called an applied force) must be normal to the wire (in order to coun-
terbalance the normal component of the magnetic force). We denote the applied force 

per unit charge by appf
�

. Although this force originates from an external mechanical 

action, it is delivered to q through an electromagnetic interaction with the crystal lat-
tice of the wire (not to be confused with the resistive force, whose role is different!).  
      According to (3), the total force contributing to the emf of the circuit is 

m appf f f= +
� � �

. By (2), the emf at time t is  

 

E (t) 
( ) ( )m appC t C t

f d l f d l= ⋅ + ⋅∫ ∫
��� ���� �

� �  

 
The second integral vanishes since the applied force is normal to the wire element at 
every point of C. The integral of the magnetic force is equal to  
 

( ) ( ) ( )tot cC C C
B dl B dl B dlυ υ υ× ⋅ = × ⋅ + × ⋅∫ ∫ ∫
��� ��� ���� � �� � �

� � �  

 
The first integral on the right vanishes, as can be seen by inspecting Fig. 4. Thus, we 
finally have:  
 

E (t) 
( )

[ ( ) ( )]
C t

r B r dlυ= × ⋅∫
����� � �

�                                          (8) 

 
      As shown analytically in [1], the emf of C is equal to  
 

   E (t) ( )m
d

t
dt

= − Φ                                                   (9) 

 
where we have introduced the magnetic flux through C,  
 

  
( ) ( )

( ) ( ) ( )m S t S t
t B r da B r daΦ = ⋅ =∫ ∫

���� � �
                                  (10) 

 
[By S(t) we denote any open surface bounded by C at time t ; e.g., the plane surface 
enclosed by the wire.]  
      Now, let C΄ be the path of q in space relative to the external observer, for a full 
trip of q around the wire (if every part of the wire is moving, C΄ will be an open 
curve). According to (4), the work done per unit charge for this trip is  
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m appC C
w f dl f dl

′ ′
′ ′= ⋅ + ⋅∫ ∫
��� ���� �

 

 
The first integral vanishes (cf. Fig. 4), while for the second one we notice that  
 

app app app appf d l f dl f d l f d l′ ′′ ′′⋅ = ⋅ + ⋅ = ⋅
��� ��� ���� ����� � � �

 

 
(since the applied force is normal to the wire element everywhere; see Fig. 4). Thus 
we finally have:  
 

    appC
w f dl

′
′= ⋅∫
����

     with     app app appf d l f d l f dtυ′ ′′⋅ = ⋅ = ⋅
��� ����� � � �

                 (11) 

 

where dl dtυ′′ =
���� �

 is the infinitesimal displacement of the wire element in time dt.  
 
 
5.  An example: Motion inside a uniform magnetic field  
 
Consider a metal bar (ab) of length h, sliding parallel to itself with constant speed υ 
on two parallel rails that form part of a U-shaped wire, as shown in Fig. 5:  
 

x

y

O
z⊙

x

h

I

+

.constυ =
�

dl
���

a

bc

d
B⊗
�

da
���

⊙

 
 

Figure 5 
 
A uniform magnetic field B

�
, pointing into the page, fills the entire region. A circuit 

C(t) of variable size is formed by the rectangular loop (abcda). The field and the sur-

face element are written, respectively, as ˆzB Bu= −
�

 (where | | .B B const= =
�

) and 

ˆ( ) zda da u=
���

 (note that the direction of traversing the loop C is now counterclock-
wise).  
      The general diagram of Fig. 4, representing the balance of forces, reduces to the 
one shown in Fig. 6, below. Note that this latter diagram concerns only the moving 
part (ab) of the circuit, since it is in this part only that the velocity υ

�
 and the applied 

force appf
�

 are nonzero.  

      The emf of the circuit at time t is, according to (8),   
 

E (t) 
( )

( )
b b

C t a a
B dl B dl B dl Bhυ υ υ υ= × ⋅ = = =∫ ∫ ∫
�����

�  
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θ
θ

dl
���

dl′
���

dl′′
����

cυ
�

υ
�

totυ
�

appf
�

mf
�

rf
�B⊗

�

cυ υ⊥
� �

x
 

 
Figure 6 

 
Alternatively, the magnetic flux through C is  
 

( ) ( ) ( )
( ) ( )m S t S t S t
t B r da B da B da BhxΦ = ⋅ = − = − = −∫ ∫ ∫

���� �
 

 
(where x is the momentary position of the bar at time t), so that  
 

E (t) ( )m
d d x

t Bh Bh
dt dt

υ= − Φ = =  

 
We note that the emf is constant (time-independent).  
      Next, we want to use (11) to evaluate the work per unit charge for a complete tour 
of a charge around C. Since the applied force is nonzero only on the section (ab) of C, 
the path of integration, C΄ (which is a straight line, given that the charge moves at 
constant velocity in space) will correspond to the motion of the charge along the metal 
bar only, i.e., from a to b. (Since the bar is being displaced in space while the charge 
is traveling along it, the line C΄ will not be parallel to the bar!) According to (11),  
 

appC
w f dl

′
′= ⋅∫
����

    with    app app app appf d l f d l f d l f dtυ′ ′′ ′′⋅ = ⋅ = =
��� ����� �

 

 
(cf. Fig. 6). Now, the role of the applied force is to counterbalance the x-component of 
the magnetic force in order that the bar may move at constant speed in the x direction. 
Thus, cos cosapp m tot cf f B Bθ υ θ υ= = =  and app cf dt B dt B dlυ υυ υ= =  (since υc dt 

represents an elementary displacement dl of the charge along the metal bar in time dt). 
We finally have:  
 

b b

a a
w B dl B dl B hυ υ υ= = =∫ ∫  

 
We note that, in this specific example, the value of the work per unit charge is equal 
to that of the emf, both these quantities being constant and unambiguously defined. 
This would not have been the case, however, if the magnetic field were nonuniform!  
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6.  Stationary wire inside a time-varying magnetic field  
 
Our final example concerns a stationary wire C inside a time-varying magnetic field 

of the form ˆ( , ) ( , ) zB r t B r t u= −
� � �

 (where ( , ) | ( , ) |B r t B r t=
�� �

), as shown in Fig. 7:  

 

r
�

dl
���

cυ
�

x

y
+

da⊗
���

z⊙

C

( , )B r t⊗
� �

 
 

Figure 7 
 
As is well known [1-6], the presence of a time-varying magnetic field implies the 
presence of an electric field E

�
 as well, such that  

 
B

E
t

∂
∇× = −

∂

�
� �

                                               (12) 

 
As discussed in [1], the emf of the circuit at time t is given by  
 

E (t) ( , ) ( )mC

d
r t dl t

dt
Ε Φ= ⋅ = −∫

���� �

�                                   (13) 

 
where  
 

( ) ( , ) ( , )m S S
t B r t da B r t daΦ = ⋅ =∫ ∫

���� � �
                                 (14) 

 
is the magnetic flux through C at this time.  
      On the other hand, the work per unit charge for a full trip around C is given by (5): 

C
w f dl= ⋅∫

����

� , where ( )em cf f E Bυ= = + ×
� � � ��

, so that  

 

( )cC C
w E dl B dlυ= ⋅ + × ⋅∫ ∫

��� ���� ��

� �  

 
As is easy to see (cf. Fig. 7), the second integral vanishes, thus we are left with  
 

   
C

w E dl= ⋅∫
����

�                                                    (15) 

 
      The similarity of the integrals in (13) and (15) is deceptive! The integral in (13) is 
evaluated at a fixed time t, while in (15) time is allowed to flow as the charge moves 
along C. Is it, nevertheless, possible that the values of these integrals coincide? As 
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mentioned at the end of Sec. 2, a necessary condition for this to be the case is that the 
two integrations yield time-independent results. In order that E be time-independent 

(but nonzero), the magnetic flux (14) – thus the magnetic field itself – must increase 
linearly with time. On the other hand, the integration (15) for w will be time-
independent if so is the electric field. By (12), then, the magnetic field must be line-
arly dependent on time, which brings us back to the previous condition.  
      As an example, assume that the magnetic field is of the form  
 

0 0ˆ ( .)zB B t u B const= − =
�

 
 
A possible solution of (12) for E

�
 is, in cylindrical coordinates,  

 

0 ˆ
2

B
E uϕ

ρ
=
�

 

 
We assume that these solutions are valid in a limited region of space (e.g., in the inte-
rior of a solenoid whose axis coincides with the z-axis) so that ρ is finite in the region 
of interest. Now, consider a circular wire C of radius R, centered at the origin of the 

xy-plane. Then, given that ˆ( )dl dl uϕ=−
���

 ,  

 

E 20
02C C

B R
E dl dl B Rπ= ⋅ = − = −∫ ∫
����

� �  

 

Alternatively, 2
0m S

Bda B R tπΦ = =∫ ,  so that  E 2
0/md dt B Rπ= − Φ = − . We ex-

pect that, due to the time constancy of the electric field, the same result will be found 
for the work w by using (15).  
 
 
7.  Concluding remarks  
 
No single, universally accepted definition of the emf seems to exist in the literature of 
Electromagnetism. The definition given in this article (as well as in [1]) comes close 
to those of [2] and [3]. In particular, by using an example similar to that of Sec. 5 in 
this paper, Griffiths [2] makes a clear distinction between the concepts of emf and 
work per unit charge. In [4] (as well as in numerous other textbooks) the emf is identi-
fied with work per unit charge, in general, while in [5] and [6] it is defined as a closed 
line integral of the non-conservative part of the electric field, accompanying a time-
varying magnetic flux.  
      The balance of forces and the origin of work in a conducting circuit moving 
through a magnetic field are nicely discussed in [2, 7, 8].  
      Of course, the list of references cited above is by no means exhaustive. It only 
serves to illustrate the diversity of ideas concerning the concept of the emf. The sub-
tleties inherent in this concept make it an interesting subject for continuing research, 
for the advanced student of classical Electrodynamics!  
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