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FIBONACCI MODULES AND MULTIPLE FIBONACCI SEQUENCES
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Abstract. Double Fibonacci sequences (xn,k) are introduced and they are related to operations

with Fibonacci modules. Generalizations and examples are also discussed.

1. Introduction

Let us fix a commutative ring R; R2 will denote the rank 2 free R-module and also the product
ring R×R. The main object of study is the Fibonacci module of type (a, b) ∈ R2 associated to
the R-module M:

Definition 1.1. FM(a, b) is the set of sequences {(xn)n≥0 : xn ∈ M, xn+2 = axn+1+bxn, ∀n ≥ 0}.
If M = R, we use the shorter notation F(a, b).

Remark 1.2. Using the R[T ] structure of the R-module of all sequences in M: SM = {(xn)n≥0 :
xn ∈ M}, where the action T is given by the shift T (x0, x1, x2, . . .) = (x1, x2, x3, . . .), one can

describe FM(a, b) as the sub R[T ]-module ker(T 2−aT−b). We also consider F̃M(a, b) = {(xn)n∈Z :
xn ∈ M, xn+2 = axn+1 + bxn, ∀n}.

It is well known (at least in the vector space case) that F(a, b) is a free R-module of rank 2;
more generally:

Proposition 1.3.

FM(a, b) ∼= M ⊕ M ∼= F(a, b) ⊗ M.

An explicit basis can be found for FM(a, b) (see, for example, [2] in which Lucas functions are
used):

Proposition 1.4. The sequences
(
P

[n]
0 (a, b)

)
n≥ 0

and
(
P

[n]
1 (a, b)

)
n≥ 0

in F(a, b) defined by P
[0]
0 (a, b) =

1, P
[1]
0 (a, b) = 0, respectively by P

[0]
1 (a, b) = 0, P

[1]
1 (a, b) = 1, and by P

[n+2]
i (a, b) = aP

[n+1]
i (a, b)+

bP
[n]
i (a, b) (i = 0, 1) give a canonical basis of the R-module F(a, b).

Standard operations with modules give the following:

Proposition 1.5. a) There is a natural R[T ]-module isomorphism:

FM(a, b) ⊕FN(a, b) ∼= FM⊕N(a, b) .

b) There is a natural R2-module isomorphism:

FM(a, b) ⊕FN(c, d) ∼= FM⊕N

(
(a, c), (b, d)

)
.
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2 A. R. NIZAMI

In order to describe multiplicative operations (tensor product, symmetric power, exterior power),
we introduce double Fibonacci sequences.

Definition 1.6. The double sequence (xn,k)n,k≥ 0, xn,k ∈ M is a double Fibonacci sequence of
type (a, b) ⊗ (c, d) ∈ R2 ⊗R2 if for any n, k ≥ 0 we have:

xn+2,k = axn+1,k + bxn,k ,

xn,k+2 = cxn,k+1 + dxn,k .

As an example, let us consider the element in F
[2]
Z

(
(1, 1) ⊗ (1, 3)

)
with x0,0 = x1,0 = x1,1 = 1

and x0,1 = 0 (we locate the terms in the first quadrant):

...
...

...
...

3 7 10 17 · · ·
3 4 7 11 · · ·
0 1 1 2 · · ·
1 1 2 3 · · ·

The set of double Fibonacci sequences is denoted by F
[2]
M

(
(a, b) ⊗ (c, d)

)
and it is naturally

an R[H,V ]-module
(
H , V are horizontal and vertical shifts: H(xn,k) = (xn+1,k), respectively

V (xn,k) = (xn,k+1)
)
. If (a, b) = (c, d) we use the simplified notation F

[2]
M

(a, b). In [3] double
sequences (xn,k) given by a different recurrency are considered: xn,k depends linearly on the terms
{xi,j}i+j<n+k. In our definition, xn,k depends on xn−1,k and xn−2,k and also depends on xn,k−1

and xn,k−2, using two different relations. Even the existence of a sequence with prescribed ini-
tial four terms xi,j , (i, j) ∈ {0, 1}2, is not an obvious fact. Now we present some properties and
operations with these sequences.

In Section 2 the proofs of the previous results are given. In Section 3 we generalize these results
in two directions: we consider higher order linear recurrency:

xn+d = a1xn+d−1 + · · · + adxn,

and also we consider multiple sequences: (xn1,n2,...,nd
)ni≥ 0 .

In the last section examples of double Fibonacci sequences are given and also an interesting
property of their diagonals is presented.

Proposition 1.7. There is a natural isomorphism of R[H,V ]-modules:

FM(a, b) ⊗R FN(c, d) ∼= F
[2]
M⊗N

(
(a, b) ⊗ (c, d)

)
.

Corollary 1.8. The module F [2]
(
(a, b)⊗(c, d)

)
is a free R-module of rank 4. In general, F

[2]
M⊗N

(
(a, b)⊗

(c, d)
)

is isomorphic to (M ⊗ N)4.

An explicit basis of F [2]
(
(a, b)⊗(c, d)

)
is given by the four sequences

(
P

[n,k]
i,j (a, b)⊗(c, d)

)
n,k≥0

=
(
P

[n]
i (a, b)P

[k]
j (c, d)

)
n,k≥0

, where (i, j) ∈ {0, 1}2.

The generating function of a double sequence (xn,k)n,k ≥ 0 is the formal series in R[[t, s]]⊗M ∼=
M[[t, s]] :

G(t, s) = x0,0 + x1,0t+ x0,1s+ · · · + xn,kt
nsk + · · · .

Proposition 1.9. A Fibonacci sequence (xn,k) of type (a, b) ⊗ (c, d) has a rational generating

function given by

G(t, s) = q(t)−1r(s)−1
[
x0,0(1 − at)(1 − cs) + x1,0t(1 − cs) + x0,1(1 − at)s+ x1,1ts

]
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where q(t) = 1 − at− bt2, r(s) = 1 − cs− ds2.

2. Proofs

We can write well-known results on Fibonacci sequences in the following form:

Lemma 2.1. There are polynomials P
[n]
0 , P

[n]
1 ∈ R[T, U ] such that for any (xn)n≥ 0 ∈ FM(a, b) :

xn = P
[n]
0 (a, b)x0 + P

[n]
1 (a, b)x1 (2.1)

for every n ≥ 0.

Proof. We define P
[0]
0 = 1, P

[1]
0 = 0 and P

[0]
1 = 0, P

[1]
1 = 1, and P

[n+2]
i = aP

[n+1]
i +bP

[n]
i (i = 0, 1).

These satisfy the equation (2.1) by definition for n = 0, 1 and by induction for n ≥ 2. �

Remark 2.2. The Lemma 2.1 shows that the R-module F(a, b) is free of rank 2 with basis(
P

[n]
0 (a, b)

)
n≥0

,
(
P

[n]
1 (a, b)

)
n≥0

.

Remark 2.3. If a = r1 + r2, b = −r1r2 then one can describe P
[n]
0 and P

[n]
1 in the classical way

as polynomials in r1, r2:

P
[n]
0 (r1 + r2,−r1r2) = R

[n]
0 (r1, r2) = −rn−1

1 r2 − rn−2
1 r22 − · · · − r1r

n−1
2 ,

P
[n]
1 (r1 + r2,−r1r2) = R

[n]
1 (r1, r2) = rn−1

1 + rn−2
1 r12 + · · · + rn−1

2 ,

or as rational functions in r1, r2:

R
[n]
0 (r1, r2) =

rn1 r2 − r1r
n
2

r2 − r1
, R

[n]
1 (r1, r2) =

rn2 − rn1
r2 − r1

. (2.2)

Remark 2.4. The previous formulae are also correct in F̃M(a, b), i.e. for negative n, if we extend
the scalars to a suitable ring of fractions.

For an arbitrary sequence (xn)n≥0 in SM we define its generating function G(t) as a formal
series in R[[t]] ⊗ M ∼= M[[t]] :

G(t) = x0 + x1t+ x2t
2 + · · · .

Another classical result is (see, for example, [1]):

Lemma 2.5. The generating function of the Fibonacci sequence (xn)n≥0 ∈ FM(a, b) is the rational

function

G(t) =
(1 − at)x0 + tx1

1 − at− bt2
= q(t)−1

[
x0 + (x1 − ax0)t

]
,

where q(t) = 1 − at− bt2 .

Proof. [Proposition1.4] From Lemma2.1, an arbitrary sequence (xn)n≥0 ∈ F(a, b) can be written

as (xn)n≥0 =
(
P

[n]
0 (a, b)

)
n≥0

x0 +
(
P

[n]
1 (a, b)

)
n≥0

x1 . �

Proof. [Proposition1.3] Define the morphisms

FM(a, b)
ϕ

−→M ⊕ M
ψ

−→F(a, b) ⊗ M
η

−→FM(a, b)

by

ϕ
(
(xn)n≥0

)
= (x0, x1),

ψ(x0, x1) =
(
P

[n]
0 (a, b)

)
n≥0

⊗ x0 +
(
P

[n]
1 (a, b)

)
n≥0

⊗ x1,
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and

η
(
(cn)n≥0 ⊗ x

)
= (cnx)n≥0.

It is easy to check that ηψϕ, ϕηψ and ψϕη are identities, so ϕ, ψ, η are R-module isomorphisms.
It is also obvious that η and ψϕ are R[T ]-linear. �

Proof. [Proposition1.5] There are canonical maps:

Φ : FM(a, b) ⊕FN(a, b) −→ FM⊕N(a, b)

defined by

Φ
(
(xn)n≥0, (yn)n≥0

)
= (xn, yn)n≥0

and

Ψ : FM(a, b) ⊕FN(c, d) −→ FM⊕N

(
(a, c), (b, d)

)

defined by

Ψ
(
(xn)n≥0, (yn)n≥0

)
= (xn, yn)n≥0 .

Both are compatible with the shift. �

Proof. [Proposition1.7] Define the morphism of R[H,V ]-modules:

Φ : FM(a, b) ⊗FN(c, d) −→ F
[2]
M⊗N

(
(a, b) ⊗ (c, d)

)

by

Φ
(
(xn)n≥0 ⊗ (yk)k≥0

)
= (xn ⊗ yk)n,k≥0 .

The inverse morphism Ψ can be constructed using canonical bases P
[n]
0 (a, b), P

[n]
1 (a, b) of FM(a, b),

respectively P
[k]
0 (c, d), P

[k]
1 (c, d) of FN(c, d) and the corresponding basis P

[n]
i (a, b) ⊗ P

[k]
j (c, d),

i, j ∈ {0, 1}2 of FM(a, b) ⊗ FN(c, d): if the first four terms are given by Z0,0 =
∑
i∈I mi ⊗ ni ,

Z1,0 =
∑

j∈J m
′

j ⊗ n
′

j , Z0,1 =
∑

h∈Hm
′′

h ⊗ n
′′

h , Z1,1 =
∑

l∈Lm
′′′

l ⊗ n
′′′

l , then Ψ is defined by:

Ψ
(
(Zn,k)n,k≥0

)
=

∑
i∈I

(
P

[n]
0 (a, b)mi

)
n≥0

⊗
(
P

[k]
0 (c, d)ni

)
k≥0

+
∑
j∈J

(
P

[n]
1 (a, b)m

′

j

)
n≥0

⊗
(
P

[k]
0 (c, d)n

′

j

)
k≥0

+
∑
h∈H

(
P

[n]
0 (a, b)m

′′

h

)
n≥0

⊗
(
P

[k]
1 (c, d)n

′′

h

)
k≥0

+
∑
l∈L

(
P

[n]
1 (a, b)m

′′′

l

)
n≥0

⊗
(
P

[k]
1 (c, d)n

′′′

l

)
k≥0

.

�

Proof. [Corollary 1.8] The proof is clear as F [2]
(
(a, b) ⊗ (c, d)

)
∼= F(a, b) ⊗ F(c, d) ∼= (R ⊕ R) ⊗

(R⊕R) ∼= R4. In general, F
[2]
M⊗N

(
(a, b)⊗ (c, d)

)
∼= FM(a, b)⊗FN(c, d) ∼= (M⊕M)⊗ (N⊕N) ∼=

(M ⊗ N)4. �

Corollary 2.6. Using a = r1 + r2, b = −r1r2, the general term xn,k of a sequence in F
[2]
M⊗N

(a, b)
is given by

xn,k = ∆−2
[
(rn1 r2 − r1r

n
2 )(rk1r2 − r1r

k
2 )x0,0 + (rn2 − rn1 )(rk1 r2 − r1r

k
2 )x1,0

+ (rn1 r2 − r1r
n
2 )(rk2 − rk1 )x0,1 + (rn2 − rn1 )(rk2 − rk1 )x1,1

]
,

where ∆ = r2 − r1. This formula is correct for arbitrary integers n, k
(
as an equality in the ring

R(r1, r2) of rational functions
)
.
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Proof. [Proposition1.9] Apply two times Lemma2.5:

G(t, s) =
∑
n≥0

(∑
k≥0 xn,ks

k
)
tn

=
∑
n≥0

[
r(s)−1xn,0(1 − cs) + r(s)−1xn,1s

]
tn

= r(s)−1
[
(1 − cs)

∑
n≥0 xn,0t

n + s
∑
n≥0 xn,1t

n
]

= q(t)−1r(s)−1
{
(1 − cs)[x0,0(1 − at) + x1,0t]

+s[x0,1(1 − at) + x1,1t]
}
.

�

We consider also other operations with Fibonacci modules, for example symmetric powers and
exterior products (we suppose that 2 is a unit in R):

Proposition 2.7. There are natural isomorphisms:

Symm(2) FM(a, b) ∼=
{
(xn,k) ∈ F

[2]
M⊗N

(a, b) : xn,k = xk,n ∀ k, n ≥ 0
}
,

∧(2) FM(a, b) ∼=
{
(xn,k) ∈ F

[2]
M⊗N

(a, b) : xn,k = −xk,n ∀ k, n ≥ 0
}
.

3. Generalizations

First we introduce recurrency of order d:

Definition 3.1. Let a = (a1, . . . , ad) be an element in Rd. The Fibonacci module of type a

associated to the module M is the R[T ]-module:

FM(a) =
{
(xn)n≥0 ∈ SM : xn+d = a1xn+d−1 + · · · + adxn, ∀ n ≥ 0

}
.

Next we consider multiple Fibonacci sequences (xn1,...,np
)ni≥0 in M:

Definition 3.2. Let a(1) ∈ Rd1 , . . . ,a(p) ∈ Rdp . The Fibonacci module of type (a(1), . . . ,a(p))
associated to the module M is the R[T1, . . . , Tp]-module:

F
[p]
M

(a(1), . . . ,a(p)) =
{
(xn1,...,np

)ni≥0 : xn1,...,np
∈ M, xn1,...,ni+di,...,np

=∑di

j=1 a
(i)
j xn1,...,ni+di−j,...,np

for i = 1, 2, . . . , p
}
.

If a(1) = · · · = a(p) = a = (a1, . . . , ad), we denote simply F
[p]
M

(a) = F
[p]
M

(a1, . . . , ad) .

The previous results have obvious generalizations. For example:

Proposition 3.3.

FM(a1, . . . , ad) ∼= Md ∼= F(a1, . . . , ad) ⊗ M.

Proposition 3.4. Fix a = (a1, . . . , ad) ∈ Rd. The sequences
(
P

[n]
i (a)

)
n≥0

, i = 0, . . . , d − 1 in

F(a) defined by P
[j]
i (a) = δij (for j = 0, . . . , d− 1) give a canonical basis of F(a).

Lemma 3.5. The generating function of (xn)n≥0 in F(a) is

G(t) = q(t)−1
[
Q0(t)x0 +Q1(t)x1 + · · · +Qd−1(t)xd

]
,

where

Qi(t) = ti
(
1 − a1t− a2t

2 − · · · − ad−i−1t
d−i−1

)
, i ∈ {0, . . . , d− 1},

and q(t) = 1 − a1t− a2t
2 − · · · − adt

d .
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Proposition 3.6.

FM1
(a(1)) ⊗ · · · ⊗ FMp

(a(p)) ∼= F
[p]
M1⊗···⊗Mp

(a(1), . . . ,a(p)) .

In particular, F [p](a(1), . . . ,a(p)) is free of rank D = d1d2 · · ·dp .

Proposition 3.7. A multiple Fibonacci sequence (xn1,...,np
) of type (a(1), . . . ,a(p)) has a rational

generating function:

G(t1, . . . , tp) = q1(t1)
−1 · · · qp(tp)

−1
[ ∑

0≤ji≤di−1

Q
(1)
j1

(t1) · · ·Q
(p)
jp

(tp)xj1,...,jp

]
,

where qi(t) = 1 − a
(i)
1 t− · · · − a

(i)
di
tdi and Q

(i)
0 , . . . , Q

(i)
di−1 are like in Lemma3.5.

For further applications in knot theory, we will use the next specializations:

Theorem 3.8. Let (xn1,...,np
)≥0 be an element in F

[p]
M

(r1 + r2,−r1r2).
a) The general term is given by

xn1,...,np
= ∆−p

∑

0≤j1,...,jp≤1

S
[n1]
j1

(r1, r2) · · ·S
[np]
jp

(r1, r2)xj1,...,jp ,

where ∆ = r2 − r1, S
[n]
0 (r1, r2) = rn1 r2 − r1r

n
2 , S

[n]
1 (r1, r2) = rn2 − rn1 ;

b) the generating function of (xn1,...,np
) is given by

G(t1, . . . , tp) = q(t1)
−1

· · · q(tp)
−1

∑

0≤j1,...,jp≤1

Qj1(t1) · · ·Qjp(tp)xj1,...,jp ,

where q(t) = (1 − r1t)(1 − r2t), Q0(t) = 1 − (r1 + r2)t and Q1(t) = t.

4. Examples

Example 4.1. Fibonacci module F
[2]
Z (1, 1): let us analyze sequences with the first four entries

(ci,j)(i,j)∈{0,1}2 equal to 0 or 1. From the sixteen possible choices there are 5 primitive sequences:

B0 =
0 0

0 0
, B1 =

0 0

1 0
, B2 =

1 0

0 1
, B3 =

0 1

1 0
, B4 =

1 0

1 1
.

The others are shifts of these primitive sequences (see figure below):

H(B1) =
0 0

0 1
, H2(B1) =

0 0

1 1
, V (B1) =

1 0

0 0
, V 2(B1) =

1 0

1 0
,

HV (B1) =
0 1

0 0
, H2V (B1) =

1 1

0 0
, HV 2(B1) =

0 1

0 1
, H2V 2(B1) =

1 1

1 1
.

H(B2) =
0 1

1 1
, V (B2) =

1 1

1 0
and H(B3) = V (B3) =

1 1

0 1
.

In fact, using the structure of Z[H,V ]-module, F
[2]
Z (1, 1) is generated by B1.

It is obvious that an element (xn)n≥0 ∈ FQ(1, 1) can be defined by any two terms {xp, xq}; in

the case of a double sequence (xn,k)n,k≥0 ∈ F
[2]
Q (1, 1), not any four terms {xl,m, xp,q, xr,s, xu,v}

can define the sequence.
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13 21
8 0 13 8
5 0 5 8 5 13
3 0 3 3 5 3 8 11
2 0 2 2 4 3 2 5 7 12
1 0 1 1 2 3 2 1 3 4 7 11
1 0 1 1 2 3 5 1 1 2 3 5 8 13
0 0 0 0 0 0 0 0 1 0 1 1 2 3 5 8
1 0 1 1 2 3 5 8 13 0 1 1 2 3 5 8 13 21

A curious property of these sequences is the alternating monotonicity along the lines parallel to
the secondary diagonal:

xn+2,k ≥ xn+1,k+1 ≤ xn,k+2

or
xn+2,k ≤ xn+1,k+1 ≥ xn,k+2 .

In general we do not have this strong alternating property (look at the sequence given by x0,0 =
x1,0 = 3, x0,1 = 2, x1,1 = 0: the 4th diagonal is (7, 3, 2, 9) ). In general we have only a ”weak
alternating property”:

xn+2,k+1 ≥ xn+1,k+2 if and only if xn+3,k ≤ xn,k+3

(see the next corollary).
The general statement explaining these two facts is given by:

Proposition 4.2. (diagonal property) If a2d = bc2, any four diagonal consecutive terms of the

sequence (xn,k)n,k≥0 ∈ F
[2]
M

(
(a, b) ⊗ (c, d)

)
satisfy the relation:

abxn,k+3 + (a2 + b)cxn+1,k+2 = a(c2 + d)xn+2,k+1 + cdxn+3,k .

Proof. Express the terms as combinations of xn,k, xn+1,k, xn,k+1 and xn+1,k+1. �

Corollary 4.3. Four diagonal consecutive terms in (xn,k)n,k≥0 ∈ F
[2]
Z (1, 1) satisfy

xn,k+3 − xn+3,k = 2(xn+2,k+1 − xn+1,k+2) .

Acknowledgment. I would like to thank the referee for many comments and improvements of
the first version of the paper.
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