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ABSTRACT. Double Fibonacci sequences (,, 1) are introduced and they are related to operations
with Fibonacci modules. Generalizations and examples are also discussed.

1. Introduction

Let us fix a commutative ring R; R? will denote the rank 2 free R-module and also the product
ring R x R. The main object of study is the Fibonacci module of type (a,b) € R? associated to
the R-module M:

Definition 1.1. Fnm(a, b) is the set of sequences {(zn)n>0 : Tn € M, Tpio = aZpi1+bxy,Vn > 0}.
If M =R, we use the shorter notation F(a,b).

Remark 1.2. Using the R[T] structure of the R-module of all sequences in M: Sy = {(2n)n>0 :
xn, € M}, where the action T is given by the shift T(xo,z1,z2,...) = (x1,x2,23,...), one can
describe Fai(a, b) as the sub R[T]-module ker(T% —aT —b). We also consider Fpp(a,b) = {(2n)nez :
Tn € M, 240 = aZpi1 + by, Vn}.

It is well known (at least in the vector space case) that F(a,b) is a free R-module of rank 2;
more generally:

Proposition 1.3.
Fmla,b) =M e M = F(a,b) @ M.

An explicit basis can be found for Fni(a,b) (see, for example, [2] in which Lucas functions are
used):
Proposition 1.4. The sequences (Po[n] (a, b))n>0 and (Pl["] (a, b))n> o 1 F(a,b) defined by P(EO] (a,b) =
1, Pom (a,b) = 0, respectively by Pl[o] (a,b) =0, le (a,b) =1, and by Pi["+2] (a,b) = aPl-[nH] (a,b)+
bPi["] (a,b) (i =0,1) give a canonical basis of the R-module F(a,b).

Standard operations with modules give the following;:
Proposition 1.5. a) There is a natural R[T]-module isomorphism.:

Fmla,b) ® Fnl(a,b) =2 Fugn(a,bd) .
b) There is a natural R*-module isomorphism:
Fmla,b) ® Fnle,d) = ]—"M@N((a, c), (b, d)) )

This research is partially supported by Higher Education Commission, Pakistan.
1


http://arXiv.org/abs/0810.4028v1

2 A. R. NIZAMI
In order to describe multiplicative operations (tensor product, symmetric power, exterior power),
we introduce double Fibonacci sequences.

Definition 1.6. The double sequence (L k)n.k>0, Tnk € M is a double Fibonacci sequence of
type (a,b) ® (c,d) € R? ® R? if for any n,k > 0 we have:

Tnt2,k = QTpy1k + 0Tn K,

T k42 = CTp k+1 + ATk -

As an example, let us consider the element in .7-'%2] ((1, 1) ® (1, 3)) with o0 = 210 =211 =1
and zg1 = 0 (we locate the terms in the first quadrant):

7 10 17

3
3 4 7 11
01 1 2
11 2 3
The set of double Fibonacci sequences is denoted by JF; [2]( (a,b) ) and it is naturally

an R[H,V]-module (H, V are horizontal and vertical shifts: (xn k) ( n+1,k), respectively

V(@nk) = (Tnks1)). If (a,b) = (¢c,d) we use the simplified notation -7:1\/[ (a,b). In [3] double
sequences () given by a different recurrency are considered: x,, ; depends linearly on the terms
{zi ;}itj<n+k. In our definition, z, , depends on x,_1 and x,_2 and also depends on z,, k—1
and x, k2, using two different relations. Even the existence of a sequence with prescribed ini-
tial four terms z; ;, (i,;) € {0,1}?, is not an obvious fact. Now we present some properties and
operations with these sequences.

In Sectionl the proofs of the previous results are given. In Section[3 we generalize these results
in two directions: we consider higher order linear recurrency:

Tn+d = A1 Tp4+d—1 +-- 4+ AqTn,

and also we consider multiple sequences: (%, ns,....ng)ni>0 -
In the last section examples of double Fibonacci sequences are given and also an interesting
property of their diagonals is presented.

Proposition 1.7. There is a natural isomorphism of R[H, V]-modules:
Frala,b) ©r Frole,d) = Fian((a,) @ (¢, d)) .
Corollary 1.8. The module F?((a,b)®(c,d)) is a free R-module of rank 4. In general, ‘7:1[\3[]®N ((a,b)®
(¢c,d)) is isomorphic to (M @ N)*.
An explicit basis of 12 ((a,b)®(c, d)) is given by the four sequences (Pi[Z’k] (a,b)®(c,d))
(P (a,0) P (e, ), o0 where (i, 5) € {0,1}2.

The generating function of a double sequence (z, i )n,x > 0 is the formal series in R|[[t, s]] @ M =
M|[t, s]] :

nk>0

G(t,s) = o0 + T10t + 2015+ + xn)kt"sk 4

Proposition 1.9. A Fibonacci sequence () of type (a,b) @ (¢,d) has a rational generating
function given by

G(t,s) = q(t) tr(s)™? [:vo)o(l —at)(1—cs) + z1,0t(1 —cs) +xo1(1 — at)s + :vl,lts}
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where q(t) =1 —at — bt?, r(s) =1 — cs — ds>.

2. Proofs
We can write well-known results on Fibonacci sequences in the following form:
Lemma 2.1. There are polynomials P(E"],Pl[n] € R[T,U] such that for any (zp)n>0 € Fm(a,bd) :
2 = P"(a,b)zo + P (a,b)z; (2.1)
for every n > 0.

Proof. We define P(EO] =1, P(gl] =0and Pl[O] =0, le =1, and Pl-[n“] = aPl-[nH] +bPZ-["] (i=0,1).
These satisfy the equation (Z1]) by definition for n = 0,1 and by induction for n > 2. O

Remark 2.2. The LemmalZTl shows that the R-module F(a,b) is free of rank 2 with basis
(Po[n](a,b))nzo, (pl["](a,b))nzo.

Remark 2.3. If a = r{ + ro, b = —ryry then one can describe PO["] and Pl[n} in the classical way
as polynomials in r1, 79:

P(E”] (r1 4 ro,—rire) = R,[Jn] (ri,m) = —7{%17“2 — 7‘?727“% N — rlrgfl,

Pl[n] (r1+ 1o, —rira) = Rgn] (r1,7r2) = T?71 + r?fzr% ot T;Lil,
or as rational functions in rq, ro:

rirg —rmry Ty — 11

; R[ln](ﬁ,rz)z

[n]
RO (7‘1,7‘2) = .
T2 —T T2 —T1

(2.2)

Remark 2.4. The previous formulae are also correct in ]?M (a,b), i.e. for negative n, if we extend
the scalars to a suitable ring of fractions.

For an arbitrary sequence (zp)n>0 in Sm we define its generating function G(t) as a formal
series in R[[t]] @ M = M[[t]] :

G(t) :$0+$1t+$2t2—|—"' .
Another classical result is (see, for example, [1]):

Lemma 2.5. The generating function of the Fibonacci sequence (zy)n>0 € Fm(a,b) is the rational
function
(I —at)wg +toy 1

G(t) = a2 q(t) " zo + (x1 — amo)t]
where q(t) = 1 — at — bt?.
Proof. [Proposition[I.4] From Lemmal21] an arbitrary sequence (x,)n>0 € F(a,b) can be written
as (Tn)n>0 = (Po[n] (a, b))nZO zo + (pl[n] (a, b))nzo x . a
Proof. [Proposition[[.3] Define the morphisms

Faa(a,b) -5 M e M -5 F(a,b) @ M -5 Fa(a, b)
by
%((iﬁn)nzo) = (2o, x1),
b(wo, 21) = (P(En] (a, b))nZO ® xo + (Pl[n] (a, b))nzo Q 1,
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and

n((cn)nZO ® :E) = (Cnx)nZO-
It is easy to check that niv, pnyY and ¥en are identities, so ¢, ¥, n are R-module isomorphisms.
It is also obvious that n and g are R[T]-linear. O

Proof. [Proposition[[.5] There are canonical maps:

P . fM(a, b) D fN(a, b) — fM@N(a, b)

defined by
D ((#n)n>0, (Un)n>0) = (Tn,Yn)n>0
and
U : Fula,b) ® (e, d) — Fuen((a,c), (b,d))
defined by
U ((#n)n20, Yn)n>0) = (Tns Yn)n>0 -
Both are compatible with the shift. O

Proof. [Proposition[[.7] Define the morphism of R[H, V]-modules:

@ : Faa(a,b) @ Frole,d) — Fiaon ((a,0) @ (¢, d))
by
®((2n)n>0 ® (Yk)k>0) = (Tn ® Yr)n,k>0 -

The inverse morphism ¥ can be constructed using canonical bases PO["] (a,b), 1[n] (a,b) of Fn(a,b),

respectively P(Ek] (¢, d), Pl[k] (¢,d) of Fn(e,d) and the corresponding basis Pi["] (a,b) ® ij (c,d),

i,j € {0,1}* of Fm(a,b) ® Fn(c,d): if the first four terms are given by Zoo = > ,c; mi ® ng,
Z10 = E]EJ m;- ® n; v 200 = D hen m;; ® n;; s 210 = er m;” ® nzﬁ , then U is defined by:

\IJ((Zn,k)n,kZO) = Ziel (P(En] (CL, b)mi)nZO ® (P(Ek] (Ca d)ni)kzo
+2es (Pl[n] (a, b)mj)nzo ® (Po[k] (e, d)”j)kzo
+ hen (P(gn] (a, b)mh)nzo ® (Pl[k] (c, d)"h)kzo

"

+ Qe (Pl[n] (a,b)m, )nZO ® (Pl[k] (¢, d)”gﬁ)kzo :

Proof. [Corollary[L.§] The proof is clear as F?((a,b) ® (c,d)) = F(a,b) ® F(c,d) = (R & R)
(R®R) =R In general, Fypon ((a,0) @ (¢, d)) = Fa(a,b) @ Frle,d) = (M@ M) @ (NG N)
(M ® N)*

OmrR® 0O

Corollary 2.6. Using a =1y +ra, b= —riry, the general term x, 1 of a sequence in ]-'1[5[}®N(a, b)
is given by
Tpgp = A72 [(7’?7"2 — ) (r¥re — rirB)zo o + (1% — ) (r¥ra — rirE)z1 0

+ (rfre = r1rg) (r5 = rf)ao + (15 — 1) (5 — r§)a1a],
where A = ro — 1. This formula is correct for arbitrary integers n, k (as an equality in the ring
R(r1,72) of rational functions).
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Proof. [Proposition[[.9] Apply two times Lemma[2.5t

G(t,s) = Enzo (Zkzo xnyksk)tn

>onso [1(8) ran (1 — cs) +7(s) Lay, 1 s]t"
)1 [(1 —cs) ano Tnot™ + s ano xmlt"}

q(t)_lr(s)_l{(l —cs)[zo,0(1 — at) + 1,0t

+S[$071(1 — CLt) + xlylt]} .

I
<
—~
»

O

We consider also other operations with Fibonacci modules, for example symmetric powers and
exterior products (we suppose that 2 is a unit in R):

Proposition 2.7. There are natural isomorphisms:

Symm(2) Fmla,b) = {(xnk) € .7:1[3[]®N(a, b): Tpp=xpn ¥Vkn> O},

A2 Fmla,b) = {(a:nk) € .7:1[5[]®N(a,b) D Tk = —Tpn YV k> O}.

3. Generalizations
First we introduce recurrency of order d:

Definition 3.1. Let a = (ay,...,aq) be an element in R%. The Fibonacci module of type a
associated to the module M is the R[T]-module:

fM(a) = {(In)nzo ESM : Tptd = AU Tptd—1+ -+ aqTy, V0 > 0}.
Next we consider multiple Fibonacci sequences (xnl,,,,mp)mzo in M:

Definition 3.2. Let al) € R%,...,a®) € R%. The Fibonacci module of type (a), ... a®)
associated to the module M is the R[T7, ..., Tp]-module:

—7:1[\1/)[] (a(l)u e 7a(p)) = {(rgnl,...,ﬁp)n¢20 . xnl,...,np S M7 xnl,...,ni-i-di,...,np -
Zj;l agl)xnh_”nﬁdﬁj ,,,,, n, fori=1,2,... ,p}.
Ifa® =...=a® =a = (a,...,aq), we denote simply fl[\’,}](a) = fl[\’,}](al, ce,ag) -

The previous results have obvious generalizations. For example:
Proposition 3.3.
Fmlar,...,aq) = M Flai,...,aq) @ M.

K3

F(a) defined by Pim (a) =6;5 (for j=0,...,d—1) give a canonical basis of F(a).

Proposition 3.4. Fiz a = (ay,...,aq) € R%. The sequences (P-[n] (a))n>0, 1=20,....,d—11n

Lemma 3.5. The generating function of (xn)n>0 in F(a) is

G(t) = q(t) " [Qo(t)zo + Q1(t)21 + -+ - + Qa—1(t)za],
where
Qi(t) =t'(1 —art — ast® — -+ —ag_i—1t*""1), i €{0,...,d — 1},
and q(t) = 1 — a1t — agt? — - — aqt?.
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Proposition 3.6.
Fat, (@) @ - @ Faa, (al?)) }-1[\17[]1®___®Mp(a(1)7 ,a®)y.
In particular, FPY(a® ... a®) is free of rank D = dyds - - “dp .

Proposition 3.7. A multiple Fibonacci sequence (xn,,...n,) of type (a(l), .. .,a(p)) has a rational
generating function:

Gty ... tp) = Q1(t1)_1""Jp(tp)_l[ Z Q;i)(fl)"'Qg)(fp)%,...,jp ;

0<j;<d;—1
where q;(t) =1 — agi)t — = al(i?tdi and Qgi), cee 1(1?—1 are like in Lemmal3. 3.

For further applications in knot theory, we will use the next specializations:

Theorem 3.8. Let (2y,,....n,)>0 be an element in .7:1[\1,)[] (r1 + 12, —r17m2).
a) The general term is given by

where A =rq — 11, S([)n] (ri,me) =1rire — rry, Sgn] (ri,me) =18 —ri;
b) the generating function of (Tn, .. n,) is given by

Gty tp) =a(t) " -alt,) ™ Y Qi) Qy(t)Ti, g,

0<j1,-.-,0p<1
where q(t) = (1 —r1t)(1 — rat), Qo(t) =1 — (11 +r2)t and Q+1(t) = t.
4. Examples

Example 4.1. Fibonacci module .7:%2](17 1): let us analyze sequences with the first four entries
(¢i,j)(i,j)efo,1y2 equal to 0 or 1. From the sixteen possible choices there are 5 primitive sequences:

[0 o0 [0 0 [T o [0 1 [T o
Bo=lg op Br=1 o] 2= 0 1] 270 o) BPrT 0
The others are shifts of these primitive sequences (see figure below):

0 0 0 0 1 0 1 0
HB) =g (| BB =], (|, VIB) =g o V'B) =], 4}
0 1 1 1 0 1 1 1
HV(B;) = 0 0 , H*V (By) = 0 0 , HV?(By) = 0 1 , H*V?(B,) = R
0 1 1 1 1 1
H(Bg) = 1 1] V(Bg) = 1 0 and H(Bg) = V(Bg) = 0 1

In fact, using the structure of Z[H, V]-module, .7-"%2](1, 1) is generated by Bj.

It is obvious that an element (z,)n,>0 € Fg(1,1) can be defined by any two terms {x,,z,}; in
the case of a double sequence (% k)n k>0 € fg](l, 1), not any four terms {zm, Zp.q, Tr.s, Tu,v}
can define the sequence.
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13 21

8 0 13 8

5 0 5 8 o5 13

3 0 3 3 5 3 8 11

2 0 2 2 4 3 2 5 7 12

1 011 2 3 2 1 3 4 7 11

1 011 2 3 5 11 2 3 5 8 13

0 0 000 O0 OO 1 0o 1 1 2 3 5 8

1 011 2 3 5 8 13 0o 1 1 2 3 5 8 13 21

A curious property of these sequences is the alternating monotonicity along the lines parallel to

the secondary diagonal:

Tn+2,k > Tn41,k+1 < T, k+2
or

T2,k < Tpgl k1l = Tnkt2 -
In general we do not have this strong alternating property (look at the sequence given by oo =
10 = 3,201 = 2,211 = 0: the 4th diagonal is (7,3,2,9) ). In general we have only a ”weak
alternating property”:

Tnt2,k+1 > Tnti k2 if and only if @135 < 2y k43

(see the next corollary).
The general statement explaining these two facts is given by:

Proposition 4.2. (diagonal property) If a®?d = bc?, any four diagonal consecutive terms of the
sequence (T k)n, k>0 € .7:1[3[] ((a,b) ® (c,d)) satisfy the relation:
abxy ki3 + (a® + b)CTnt1 kt2 = a(c® + d)Tpyop+1 + cdTnts k-

Proof. Express the terms as combinations of ,, k, Tn+1.k, Tn k41 and Tyi1 k41- ]

Corollary 4.3. Four diagonal consecutive terms in (Tp k)n k>0 € fg](l, 1) satisfy
Tn k13 — Tntdk = 2(Tnt2k+1 — Tnt1,k+2) -
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