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Re
urren
e and transien
e of bran
hing random walks aredynami
ally stableSebastian MüllerMathemati
s DepartmentThe Weizmann Institute of S
ien
eRehovot 76100, Israel.dr.sebastian.mueller�gmail.
omJuly 27, 2009Abstra
tConsider a sequen
e of i.i.d. random variables Xn where ea
h random variable is refreshed indepen-dently a

ording to a Poisson 
lo
k. At any �xed time t the law of the sequen
e is the same as forthe sequen
e at time 0 but at random times almost sure properties of the sequen
e may be violated. Ifthere are su
h ex
eptional times we say that the property is dynami
ally sensitive, otherwise we 
all itdynami
ally stable. In this note we 
onsider bran
hing random walks on Cayley graphs and prove thatre
urren
e and transien
e are dynami
ally stable. Our proof 
ombines te
hniques from the theory ofbran
hing random walks with those of dynami
al per
olation.Keywords: bran
hing random walk, re
urren
e and transien
e, dynami
al sen-sitivityAMS 2000 Mathemati
s Subje
t Classifi
ation: 60J25, 60J801 Introdu
tionIn Benjamini et al. [1℄ several properties of i.i.d. sequen
es are studied in the dynami
al pointof view. In parti
ular, it is proven that transien
e of the simple random walk on the latti
e
Z

d is dynami
ally stable for d ≥ 5, and dynami
ally sensitive for d = 3, 4. While re
urren
e isdynami
ally stable for d = 1, see [1℄, it is dynami
ally sensitive in dimension d = 2, 
omparewith Ho�man [7℄. Khoshnevisan studied in [9℄ and [10℄ other properties of dynami
al randomwalks. We also refer to a re
ent survey [12℄ on dynami
al per
olation. In this note we de�nedynami
al bran
hing random walks on Cayley graphs and prove that re
urren
e and transien
eare dynami
ally stable, 
ompare with Theorem 2.1. This result 
arries over to bran
hing randomwalks on in�nite 
onne
ted graphs, 
ompare with Remark 2.2.1
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1.1 Random WalksLet us �rst 
olle
t the ne
essary notations for random walks on groups; for more details werefer to [14℄. Let G be a �nitely generated group with group identity e, the group operationsare written multipli
atively (unless G is abelian). Let q be a probability measure on a �nitegenerating set of G. The random walk on G with law q is the Markov 
hain with state spa
e
G and transition probabilities p(x, y) = q(x−1y) for x, y ∈ G. Equivalently, the pro
ess 
anbe des
ribed on the produ
t spa
e (G, q)N: the nth proje
tions Xn of GN onto G 
onstitutea sequen
e of independent G-valued random variables with 
ommon distribution q. Hen
e therandom walk starting in x ∈ G 
an be des
ribed as

Sn = xX1 · · ·Xn, n ≥ 0.If not mentioned otherwise the random walk starts in the group identity e. Let P denote thetransition kernel of the random walk and p(n)(x, y) = P(Sn = y|S0 = x) be the probability to gofrom x to y in n steps. We will assume the random walk to be irredu
ible, i.e., for all x, y thereexists some k su
h that p(k)(x, y) > 0. Denote G(x, y|z) =
∑∞

n=0 p
(n)(x, y)zn the 
orrespondinggenerating fun
tions. The inverse of the 
onvergen
e radius of G(x, y|z) is denoted by ρ(P ).There are two well known properties of ρ(P ):

ρ(P ) = lim sup
n→∞

(

p(n)(x, y)
)1/n

= sup
|F |<∞

ρ(PF ), (1)where ρ(PF ) is the largest eigenvalue of the matrix (PF (x, y))x,y∈F de�ned by PF (x, y) = P (x, y)for x, y ∈ F .1.2 Bran
hing Random WalksWe use the interpretation of tree-indexed random walks, 
ompare with [2℄, to de�ne the bran
hingrandom walk (BRW). Let T be tree with root r. For a vertex v of T let |v| be the (graph) distan
efrom v to the root r. We label the edges of T with i.i.d. random variables with distribution q.The random variable Xv is the label of the edge (v−, v) where v− is the unique prede
essor of
v, i.e., |v−| = |v| − 1. De�ne Sv = e ·

∏|v|
i=1Xvi

where 〈v0 = r, v1, . . . , v|v| = v〉 is the uniquegeodesi
 from r to v. Note that the pro
ess is des
ribed on the produ
t spa
e (G, q)T .A tree-indexed random walk be
omes a BRW if the underlying tree is a realization of aGalton�Watson pro
ess with o�spring distribution µ = (µ0, µ1, . . .) and mean m =
∑

k kµk. Forease of presentation we will assume that the Galton�Watson pro
ess survives almost sure, i.e.,
µ0 = 0, and that m > 1 in order to ex
lude the trivial 
ase µ1 = 1. We say the BRW is re
urrentif P(Sv = 0 for in�nitley many v) = 1 and transient if P(Sv = 0 for in�nitley many v) = 0. Here
P does 
orrespond to the produ
t measure of the Galton�Watson pro
ess and the tree-indexedrandom walk: we pi
k a realization T (ω) of the Galton�Watson pro
ess a

ording to µ andde�ne the BRW as the tree-indexed random walk on T (ω). Alternatively we 
ould say that theBRW is re
urrent if for a.a. realization T (ω) the tree-indexed random walk is re
urrent, i.e.,
P

(

∑∞
n=1

∑

|v|=n 1{Sv = e} = ∞
)

= 1, where P 
orresponds to (G, q)T (ω).2



We have the following 
lassi�
ation due to [4℄:Theorem 1.1. The BRW is transient if and only if m ≤ 1/ρ(P ).Remark 1.1. There is the following equivalent des
ription of BRW. At time 0 we start the pro
esswith one parti
le in e. At time 1 this parti
le splits up a

ording to some o�spring distribution
µ. Then these o�spring parti
les move (still at time 1) independently a

ording to P . TheBRW is now de�ned indu
tively: at ea
h time ea
h parti
le splits up independently of the othersa

ording to µ and the new parti
les move then independently a

ording to P .2 Dynami
al BRWLet us introdu
e the dynami
al pro
ess. Fix a tree T . For ea
h v ∈ T , let {Xv(t)}t≥0 be anindependent pro
ess that updates its value by an independent sample of q with rate 1. Formally,
onsider i.i.d. random variables {X(j)

v : v ∈ T , j ∈ N} with law q, and an independent Poissonpro
ess {ψ(j)
v }j≥0 of rate 1 for ea
h v ∈ T . De�ne

Xv(t) := X(j)
v for ψ(j−1)

v ≤ t < ψ(j)
v , (2)where ψ(0)

v = 0 for every n. The distribution of (Xv(t))v∈T is qT for every t ≥ 0. Denote P theprobability measure on the underlying probability spa
e on whi
h the dynami
al BRW pro
essis de�ned. In the following P, E will always 
orrespond to the dynami
al version while P, Edes
ribe the non-dynami
al pro
ess.Due to Theorem 1.1 we have with Fubini's TheoremP



∞
∑

n=1

∑

|v|=n

1{Sv(t) = e} = ∞ for Lebesgue-a.e. t = 0 (3)if m ≤ 1/ρ and equals 1 if m > 1/ρ(P ). The result of this note is that there are no ex
eptionaltimes for transien
e and re
urren
e of BRW:Theorem 2.1. We 
onsider a BRW on a Cayley graph G with law q and o�spring distribution
µ (whose support ex
ludes 0) and mean m > 1. Then we have:

• if m ≤ 1/ρ(P ) then P



∞
∑

n=1

∑

|v|=n

1{Sv(t) = e} = ∞ for all t = 0

• if m > 1/ρ(P ) then P



∞
∑

n=1

∑

|v|=n

1{Sv(t) = e} = ∞ for all t = 13



Remark 2.1. The statement of Theorem 2.1 holds true if we use a dynami
al Galton�Watsonpro
ess to de�ne the dynami
al BRW. Observe hereby that super
riti
ality of a Galton�Watsonpro
ess is dynami
ally stable and that Equation (4) 
an be adapted without 
hanging the fa
tthat ∑P(Zn > 0) <∞.Remark 2.2. Theorem 2.1 
an be generalized to bran
hing random walks on graphs and evenGalton�Watson pro
esses with an in�nite number of types. Observe hereby that if the Galton�Watson pro
ess has an in�nite number of types we 
an speak of lo
al and global survival. Lo
alsurvival means that every type survives with positive probability and global survival that thepro
ess on its own survives with positive probability, 
ompare with [5℄. Theorem 2.1 generalizesto: there are no ex
eptional times for lo
al survival for Galton�Watson pro
esses with an in�nitenumber of types. The treatment of global survival is in general more di�
ult and even moresubtle sin
e 
riti
al pro
esses may survive or die out. Therefore the study of ex
eptional timesfor global survival/extin
tion is one of the next steps to go.Remark 2.3. Let us 
onsider a transient random walk Sn =
∑n

i=1Xi on Z (or R) with E[Xi] > 0.We assume that there exists a rate fun
tion I(·) satisfying
−I(a) = lim

n→∞

1

n
log P(Sn ≤ an) for a ≤ E[Xi].Denote by mn the minimal position of a parti
le at time n; mn = min|v|=n Sv. There is the
lassi
al result that limn→∞

mn

n = inf{s : I(s) ≤ logm}. Combining the proof of Theorem 18.3in [11℄ with the ideas of the proof of Theorem 2.1 one 
an see that there are no ex
eptional timesfor the (linear) speed, i.e., limn→∞
mn(t)

n = inf{s : I(s) ≤ logm} for all t. Furthermore, in the
riti
al 
ase m = 1/ρ(P ) we have that mn/n → 0 but mn → ∞ as n → ∞. The se
ond orderbehaviour is more subtle: while for a wide range of BRW mn/ log n 
onverges in probabilityit does in general not 
onverge almost sure. We refer to [8℄ for more details and referen
es onre
ent results. In this respe
t the study of ex
eptional times for the se
ond order behaviour is ofinterest.3 Proof of Theorem 2.1The proof relies on the fa
t that re
urren
e of BRW is equivalent to the existen
e of (re
urrent)seeds that were introdu
ed in [3℄. A seed is a �nite subgraph su
h that the BRW restri
ted tothis subgraph may explode (or survive) with positive probability. The parti
les leaving the seedthen eventually �ll the whole graph. To make this more pre
ise let us introdu
e the followingnotations.We denote BN = {x ∈ G : d(e, x) ≤ N} the ball of radius N around e in standard wordmetri
 d(·, ·). Let us 
onsider a trun
ated version SN
n of the random walk Sn where we kill therandom walk and bury it in † if it leaves the ball BN . More formally, let SN

n = Sn if Si ∈ BNfor all i ≤ n and † otherwise. This random walk indu
es a bran
hing random walk on BN ∪ {†}in the following way: SN
v = Sv if Sw ∈ BN for all verti
es w on the geodesi
 from r to v and

SN
v = † otherwise. 4



Lemma 3.1. If BRW on G is re
urrent then a.s. there exists a (random) K su
h that
∑

n

∑

|v|=n

1{SK
v = e} = ∞Proof. We make use of the parti
le interpretation of the BRW, 
ompare with Remark 1.1, and
onsider a sequen
e of embedded bran
hing pro
esses. As in [5℄ we 
onstru
t an embeddedGalton�Watson pro
ess 
ounting the number of parti
les in the origin. The �rst generation ofthis pro
ess is formed by those parti
les that are the �rst in their an
estry line (of the BRW)to return to e. The pro
ess is de�ned indu
tively: the i-th generation 
onsists of those parti
lesthat are the i-th parti
le in their an
estry line to return to e. Denote by ψ(1)

i the size of the
i-th generation. Observe that ψ(1)

i ∈ N∪ {∞} is a Galton�Watson pro
ess with mean Eψ
(1)
1 > 1sin
e the BRW is re
urrent. We de�ne a trun
ated version of the latter pro
ess by 
ountingonly those parti
les whose an
estors were all in the ball of radius N around e. Let ψ(N,1)

i be thesize of the trun
ated i-th generation and let us 
hoose N su
h that Eψ
(N,1)
1 > 1. Hen
e ψ(N,1)

iis a super
riti
al Galton�Watson pro
ess that survives with positive probability q. If this �rstpro
ess dies out, we de�ne a se
ond pro
ess ψ(N,2)
i analogously to the �rst one but where e isrepla
ed by some position that is o

upied by some parti
les in BN+1 at the time when the �rstpro
ess dies out, i.e., the time when eventually all parti
les have left BN . Again, the pro
ess

ψ
(N,2)
i survives with positive probability q. Indu
tively we obtain a sequen
e of independentsuper
riti
al Galton�Watson pro
esses with extin
tion probabilities 1 − q < 1. Hen
e, thereexists a.s. some j∗ su
h that the pro
ess ψ(N,j∗)

i survives. Letting K = N + j∗ we have that
∑

|v|=n 1{SK
v = e} > 0 for in�nitely many n.Proof of Theorem 2.1Transien
e is dynami
ally stable: It is 
onvenient to de�ne an auxiliary random variable τ ,whi
h is exponentially distributed with mean 1 and independent of (Xv(t))v∈T ,t≥0, 
omparewith Se
tion 3 in [1℄. Let N ∈ N and de�ne

ZN
n :=

∫ τ

0

∑

|v|=n

1{SN
v (t) = e}dt.For ease of presentation we omit the supers
ript N and just write Zn for ZN

n .By Fubini's Theorem we have E[Zn] = mnp
(n)
N (e, e). Observe, that for every �nite set F wehave that ρ(P ) > ρ(PF ), 
ompare with Chapter 2 in [13℄. Hen
e E[Zn] ≤ qn

N for some qN < 1.We follow the line of proof of Lemma 5.6 in [1℄. In what follows we only 
onsider those n ∈ Nsu
h that P(Sn = e) > 0. We have for n ≥ 1P(Zn > 0) =
E[Zn]E[Zn|Zn > 0]

.Let σ := inf{t ≥ 0 : Sv(t) = e for some v ∈ Tn}. Conditioned on the event {Zn > 0} we have
σ ∈ [0, τ). Let |v| = n be su
h that Sv(σ) = e and 〈r, v1, v2, . . . , vn = v〉 the geodesi
 from r to5



v. By the strong Markov property and the memoryless property of τ , we haveP[τ > σ + 1/n,Xvk
does not 
hange its value during t ∈ [σ, σ + 1/n]|Zn > 0] =

(

1

e

)1/n 1

e
. (4)If the above event o

urs, then Zn ≥ 1/n. Hen
eP[Zn ≥ 1/n|Zn > 0] ≥ 1/e2, and E[Zn|Zn > 0] ≥

1

ne2
.Eventually, P(Zn > 0) ≤ e2nqn

N ∀nand hen
e ∑

nP(Zn > 0) < ∞. By the lemma of Borel�Cantelli for all N there are no times tsu
h that ∑

|v|=n 1{SN
v (t) = e} > 0 for in�nitely many n and thereforeP(

∃N ∃t :
∑

n

∑

|v|=n

1{SN
v (t) = e} = ∞

)

= 0.Dynami
al stability of transien
e now follows with Lemma 3.1.Re
urren
e is dynami
ally stable: Let us �rst 
onsider the non-dynami
al BRW. Sin
e m <

1/ρ(P ) we have with equation (1) that there exists some k ∈ N su
h that p(k)(e, e) > m−k.It's rather standard, e.g. 
ompare with proof of Theorem 18.3 in [11℄, to de�ne the followingembedded pro
ess (ξn)n≥1 where we observe the pro
ess only at times ik and kill all parti
lesthat are not in e at these times. Then ξn des
ribes the number of parti
les at e at time nk. Sin
e
E[ξ1] = p(k)(e, e)mk > 1 the pro
ess ξn is a super
riti
al Galton�Watson pro
ess. Hen
e, it 
an bewritten as ξn =

∑ξn−1

i=1 Yn,i, where Yn,i are i.i.d. random variables with E[Yn,i] = p(k)(e, e)mk > 1.Now, let M be su
h that E[min{M,Yn,i}] > 1 and let Xn,i = min{M,Yn,i}. The dynami
alversion of the bran
hing random walk indu
es a dynami
al pro
ess de�ned as
Zn(t) =

Zn−1(t)
∑

i=1

Xn,i(t),where Xn,i(t) is the dynami
al version of Xn,i. As before P denotes the probability measure forthe non-dynami
al pro
ess while P des
ribes the dynami
al version. Analogously to the studyof the non
riti
al 
ases in [6℄ let for all indi
es i, n
inf
[a,b]

Xn,i = inf
t∈[a,b]

Xn,i(t),and indu
tively
inf
[a,b]

Zn =

inf [a,b] Zn−1
∑

i=1

inf
[a,b]

Xn,i.Observe 6



P(inf
[a,b]

Xn,i = k) ≥ P(Xn,i = k)

(

1

e

)(b−a)Mk+1and hen
e for some ε > 0 E[ inf
[0,ε]

Xn,i] ≥ m

(

1

e

)ε

> 1.Therefore, the Galton�Watson pro
ess de�ned by X̃n,i = inf [0,ε]Xn,i is super
riti
al and hen
ethere are no ex
eptional times in the interval [0, ε]. Repeating the arguments for the intervals
[kε, (k + 1)ε] and using 
ountable additivity 
on
ludes the proof for m > 1.A
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