arXiv:0907.4557v1 [math.PR] 27 Jul 2009

Recurrence and transience of branching random walks are

dynamically stable

Sebastian Miiller
Mathematics Department
The Weizmann Institute of Science
Rehovot 76100, Israel.
dr.sebastian.mueller@gmail.com

July 27, 2009

Abstract

Consider a sequence of i.i.d. random variables X, where each random variable is refreshed indepen-
dently according to a Poisson clock. At any fixed time ¢ the law of the sequence is the same as for
the sequence at time 0 but at random times almost sure properties of the sequence may be violated. If
there are such exceptional times we say that the property is dynamically sensitive, otherwise we call it
dynamically stable. In this note we consider branching random walks on Cayley graphs and prove that
recurrence and transience are dynamically stable. Our proof combines techniques from the theory of
branching random walks with those of dynamical percolation.
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1 Introduction

In Benjamini et al. [I] several properties of i.i.d. sequences are studied in the dynamical point
of view. In particular, it is proven that transience of the simple random walk on the lattice
7% is dynamically stable for d > 5, and dynamically sensitive for d = 3,4. While recurrence is
dynamically stable for d = 1, see [1], it is dynamically sensitive in dimension d = 2, compare
with Hoffman [7]. Khoshnevisan studied in [9] and [10] other properties of dynamical random
walks. We also refer to a recent survey [12] on dynamical percolation. In this note we define
dynamical branching random walks on Cayley graphs and prove that recurrence and transience
are dynamically stable, compare with Theorem 2.1l This result carries over to branching random
walks on infinite connected graphs, compare with Remark 221


http://arxiv.org/abs/0907.4557v1

1.1 Random Walks

Let us first collect the necessary notations for random walks on groups; for more details we
refer to [I4]. Let G be a finitely generated group with group identity e, the group operations
are written multiplicatively (unless G is abelian). Let ¢ be a probability measure on a finite
generating set of G. The random walk on G with law ¢ is the Markov chain with state space
G and transition probabilities p(x,y) = q(z~'y) for 2,y € G. Equivalently, the process can
be described on the product space (G, q)Y: the nth projections X, of GN onto G constitute
a sequence of independent G-valued random variables with common distribution ¢. Hence the
random walk starting in « € G can be described as

Sp=xX1--X,, n>0.

If not mentioned otherwise the random walk starts in the group identity e. Let P denote the
transition kernel of the random walk and p™ (z,y) = P(S, = y|So = «) be the probability to go
from x to y in n steps. We will assume the random walk to be irreducible, i.e., for all x,y there
exists some k such that p(*)(z,y) > 0. Denote G(z,y|z) = 320 p™(z,y)2" the corresponding
generating functions. The inverse of the convergence radius of G(x,y|z) is denoted by p(P).
There are two well known properties of p(P):

o(P) = timsup (5 z.9)) " = sup p(Pr). 1)

n—00 |F|<oo
where p(Pr) is the largest eigenvalue of the matrix (Pr(x,y))syer defined by Pp(z,y) = P(x,y)
for xz,y € F.

1.2 Branching Random Walks

We use the interpretation of tree-indexed random walks, compare with [2], to define the branching
random walk (BRW). Let 7 be tree with root r. For a vertex v of 7 let |v| be the (graph) distance
from v to the root r. We label the edges of 7 with i.i.d. random variables with distribution q.
The random variable X, is the label of the edge (v~,v) where v~ is the unique predecessor of
v, L.e., |[v7| = |v]| = 1. Define S, = e - H‘ZU:‘1 Xy, where (vg = r,v1,...,v), = v) is the unique
geodesic from r to v. Note that the process is described on the product space (G, q)T.

A tree-indexed random walk becomes a BRW if the underlying tree is a realization of a
Galton-Watson process with offspring distribution p = (uo, g1, . ..) and mean m =y, kuy. For
ease of presentation we will assume that the Galton-Watson process survives almost sure, i.e.,
po = 0, and that m > 1 in order to exclude the trivial case u; = 1. We say the BRW is recurrent
if P(S, = 0 for infinitley many v) = 1 and transient if P(S, = 0 for infinitley many v) = 0. Here
P does correspond to the product measure of the Galton—-Watson process and the tree-indexed
random walk: we pick a realization 7 (w) of the Galton-Watson process according to p and
define the BRW as the tree-indexed random walk on 7 (w). Alternatively we could say that the
BRW is recurrent if for a.a. realization 7 (w) the tree-indexed random walk is recurrent, i.e.,

P (22021 D jojen H{Sy =€} = oo) = 1, where P corresponds to (G, q)7«).
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We have the following classification due to [4]:
Theorem 1.1. The BRW is transient if and only if m < 1/p(P).

Remark 1.1. There is the following equivalent description of BRW. At time 0 we start the process
with one particle in e. At time 1 this particle splits up according to some offspring distribution
. Then these offspring particles move (still at time 1) independently according to P. The
BRW is now defined inductively: at each time each particle splits up independently of the others
according to p and the new particles move then independently according to P.

2 Dynamical BRW

Let us introduce the dynamical process. Fix a tree 7. For each v € 7T, let {X,(¢)}>0 be an
independent process that updates its value by an independent sample of ¢ with rate 1. Formally,

).

consider i.i.d. random variables {Xf,ﬂ : v €T, je N} with law ¢, and an independent Poisson

process {ng)}jzo of rate 1 for each v € 7. Define
X, (t) = X for pi =Y <t < 9, (2)

where %(,0) = 0 for every n. The distribution of (X, (t))eer is ¢7 for every t > 0. Denote P the
probability measure on the underlying probability space on which the dynamical BRW process
is defined. In the following P, E will always correspond to the dynamical version while P, E
describe the non-dynamical process.

Due to Theorem [Tl we have with Fubini’s Theorem

P Z Z 1{S,(t) = e} = oo for Lebesgue-a.e. t | =0 (3)

n=1 |1)|:n

if m < 1/p and equals 1 if m > 1/p(P). The result of this note is that there are no exceptional
times for transience and recurrence of BRW:

Theorem 2.1. We consider a BRW on a Cayley graph G with law q and offspring distribution
w (whose support excludes 0) and mean m > 1. Then we have:

e ifm <1/p(P) then

P iz 1{S,(t) =e} =00 forallt | =0

n:l |v|:n

e if m>1/p(P) then

P iz 1{S,(t) =e} =00 forallt | =1

n:l |v|:n



Remark 2.1. The statement of Theorem [2.1] holds true if we use a dynamical Galton—Watson
process to define the dynamical BRW. Observe hereby that supercriticality of a Galton-Watson
process is dynamically stable and that Equation () can be adapted without changing the fact
that > P(Z,, > 0) < cc.

Remark 2.2. Theorem 2.1 can be generalized to branching random walks on graphs and even
Galton—Watson processes with an infinite number of types. Observe hereby that if the Galton-
Watson process has an infinite number of types we can speak of local and global survival. Local
survival means that every type survives with positive probability and global survival that the
process on its own survives with positive probability, compare with [5]. Theorem 2] generalizes
to: there are no exceptional times for local survival for Galton—Watson processes with an infinite
number of types. The treatment of global survival is in general more difficult and even more
subtle since critical processes may survive or die out. Therefore the study of exceptional times
for global survival/extinction is one of the next steps to go.

Remark 2.3. Let us consider a transient random walk S,, = > | X; on Z (or R) with E[X;] > 0.
We assume that there exists a rate function I(-) satisfying

1
—I(a) = lim —logP(S, < an) for a <E[X,].

n—oo n

Denote by m,, the minimal position of a particle at time n; m, = minj—, S,. There is the
classical result that lim,, .o ™= = inf{s: I(s) < logm}. Combining the proof of Theorem 18.3
in [LI] with the ideas of the proof of Theorem 2.1l one can see that there are no exceptional times
for the (linear) speed, i.e., lim,_ m"T(t) = inf{s: I(s) <logm} for all t. Furthermore, in the
critical case m = 1/p(P) we have that m,/n — 0 but m,, — oo as n — oo. The second order
behaviour is more subtle: while for a wide range of BRW m,,/logn converges in probability
it does in general not converge almost sure. We refer to [§] for more details and references on
recent results. In this respect the study of exceptional times for the second order behaviour is of
interest.

3 Proof of Theorem 2.1

The proof relies on the fact that recurrence of BRW is equivalent to the existence of (recurrent)
seeds that were introduced in [3]. A seed is a finite subgraph such that the BRW restricted to
this subgraph may explode (or survive) with positive probability. The particles leaving the seed
then eventually fill the whole graph. To make this more precise let us introduce the following
notations.

We denote By = {z € G : d(e,z) < N} the ball of radius N around e in standard word
metric d(-,-). Let us consider a truncated version S2 of the random walk S,, where we kill the
random walk and bury it in 1 if it leaves the ball By. More formally, let SY = S, if S; € By
for all i« < n and T otherwise. This random walk induces a branching random walk on By U {{}
in the following way: Sfjv = S, if Sy, € By for all vertices w on the geodesic from r to v and
SN =t otherwise.



Lemma 3.1. If BRW on G is recurrent then a.s. there exists a (random) K such that

ZZI{sze}zoo

n |v|l=n

Proof. We make use of the particle interpretation of the BRW, compare with Remark [T}, and
consider a sequence of embedded branching processes. As in [5] we construct an embedded
Galton—Watson process counting the number of particles in the origin. The first generation of
this process is formed by those particles that are the first in their ancestry line (of the BRW)
to return to e. The process is defined inductively: the i-th generation consists of those particles
that are the i-th particle in their ancestry line to return to e. Denote by 1/)2(1) the size of the
i-th generation. Observe that 1/11-(1) € NU{oo} is a Galton—Watson process with mean Ewgl) > 1
since the BRW is recurrent. We define a truncated version of the latter process by counting
only those particles whose ancestors were all in the ball of radius N around e. Let ¢Z-(N’1) be the
size of the truncated i-th generation and let us choose N such that Eng’l) > 1. Hence 1/12-(N71)
is a supercritical Galton—-Watson process that survives with positive probability ¢. If this first

)

process dies out, we define a second process z/Ji(N’z analogously to the first one but where e is
replaced by some position that is occupied by some particles in By11 at the time when the first
process dies out, i.e., the time when eventually all particles have left By. Again, the process
¢Z-(N’2) survives with positive probability ¢. Inductively we obtain a sequence of independent
supercritical Galton—-Watson processes with ex‘Ei)nction probabilities 1 — ¢ < 1. Hence, there

exists a.s. some j* such that the process T/)Z(N’] survives. Letting K = N + j* we have that
> jol=n 1{SK = ¢} > 0 for infinitely many n. O

Proof of Theorem [2.1]

Transtence is dynamically stable: It is convenient to define an auxiliary random variable 7,
which is exponentially distributed with mean 1 and independent of (X,(t))ye7 >0, compare
with Section 3 in [I]. Let N € N and define

ZN = / S 18 () = e}t
0

|v|=n

For ease of presentation we omit the superscript N and just write Z,, for Z2.

By Fubini’s Theorem we have E[Z,] = m”p%)(e, e). Observe, that for every finite set F' we
have that p(P) > p(Pf), compare with Chapter 2 in [13]. Hence E[Z,] < ¢}, for some gy < 1.
We follow the line of proof of Lemma 5.6 in [I]. In what follows we only consider those n € N

such that P(S,, = e) > 0. We have for n > 1

E[Z,]
PZ,>0) = =———"=.
(20> 0) = g712, 50
Let o := inf{t > 0 : S,(t) = e for some v € T,,}. Conditioned on the event {Z, > 0} we have
o € [0,7). Let |v| = n be such that S,(c) = e and (r,v1,v9,...,v, = v) the geodesic from r to



v. By the strong Markov property and the memoryless property of 7, we have
Pt > 0+ 1/n,X,, does not change its value during ¢ € [0,0 +1/n]|Z, > 0] = (—) - (4)
e

If the above event occurs, then Z, > 1/n. Hence

1
P[Z, > 1/n|Zy, > 0] > 1/€®, and E[Z,|Z, > 0] > —.
ne

Eventually,
P(Z, > 0) < engly Vn

and hence ) P(Z, > 0) < co. By the lemma of Borel-Cantelli for all N there are no times ¢
such that >, _, 1{SN(t) = e} > 0 for infinitely many n and therefore

PAN3t: > > 1{SN(t) =e} =o0) =0.

n ‘U‘:n

Dynamical stability of transience now follows with Lemma Bl

Recurrence is dynamically stable: Let us first consider the non-dynamical BRW. Since m <
1/p(P) we have with equation (I)) that there exists some k& € N such that p*)(e,e) > m~*.
It’s rather standard, e.g. compare with proof of Theorem 18.3 in [II]], to define the following
embedded process (§,)n>1 where we observe the process only at times ik and kill all particles
that are not in e at these times. Then &, describes the number of particles at e at time nk. Since
E[&] = p(k)(e, e)mk > 1 the process &, is a supercritical Galton—Watson process. Hence, it can be
written as &, = Zf;l Y, i, where Y,, ; are i.i.d. random variables with E[Y}, ;] = p(k)(e, e)ym? > 1.
Now, let M be such that E[min{M,Y,,;}] > 1 and let X,,; = min{M,Y,;}. The dynamical
version of the branching random walk induces a dynamical process defined as

Zn—1(t

)
Zn(t)= > Xnilt),
i=1

where X, ;(t) is the dynamical version of X, ;. As before P denotes the probability measure for
the non-dynamical process while P describes the dynamical version. Analogously to the study
of the noncritical cases in [6] let for all indices i,n

inf X,,; = inf X, ;(t),

[a,b] tela,b]
and inductively
inf[a’b] Zn71
inf 7, = inf X,,;.
bl ; b

Observe



1 (b—a)MkJrl
P(inf X = k) > P(Xos = k) (g)

and hence for some € > 0

£
E[inf X, ;] > m <1> > 1.
[0,e] e

Therefore, the Galton-Watson process defined by Xm’ = inf[g ;) Xp,; is supercritical and hence

there are no exceptional times in the interval [0,e]. Repeating the arguments for the intervals

[ke, (k + 1)e] and using countable additivity concludes the proof for m > 1.

Acknowledgment: Thanks to Itai Benjamini for suggesting this problem and introducing me

to the concept of dynamical sensitivity.
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