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THE FRACTIONAL POISSON PROCESS AND THE INVERSE

STABLE SUBORDINATOR

MARK M. MEERSCHAERT, ERKAN NANE, AND P. VELLAISAMY

Abstract. The fractional Poisson process is a renewal process with Mittag-Leffler
waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov
forward equation for a Poisson process. This paper shows that a traditional Poisson
process, with the time variable replaced by an independent inverse stable subordina-
tor, is also a fractional Poisson process. This result unifies the two main approaches
in the stochastic theory of time-fractional diffusion equations. The equivalence
extends to a broad class of renewal processes that include models for tempered
fractional diffusion, and distributed-order (e.g., ultraslow) fractional diffusion.

1. Introduction

The fractional Poisson process (FPP) is a natural generalization of the usual Pois-
son process, with an interesting connection to fractional calculus. Mainardi et al. [24]
define the FPP as a renewal process whose IID waiting times Jn satisfy

(1.1) P(Jn > t) = Eβ(−λtβ)
for 0 < β ≤ 1, where

(1.2) Eβ(z) =
∞
∑

k=0

zk

Γ(1 + βk)
.

denotes the Mittag-Leffler function. When β = 1, the waiting times are exponential
with rate λ, since ez = E1(z). Let Tn = J1 + · · ·+ Jn be the time of the nth jump.
The FPP

(1.3) Nβ(t) = max{n ≥ 0 : Tn ≤ t}
is a renewal process with Mittag-Leffler waiting times. A compound FPP is obtained
by subordinating a random walk to the FPP. The resulting process is non-Markovian
(unless β = 1) and the distribution of that process solves a “master equation” analo-
gous to the Kolmogorov equation for Markov processes, with the usual integer order
time derivative replaced by a fractional derivative.
The continuous time random walk (CTRW) is another useful model in fractional

calculus. Consider a CTRW whose IID particle jumps Yn have PDF w(x), and whose
IID waiting times (Jn) are Mittag-Leffler variables independent of (Yn). The particle
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location after n jumps is S(n) = Y1 + · · · + Yn, and the CTRW S(Nβ(t)) gives the
particle location at time t ≥ 0. Hilfer and Anton [16] show that the PDF p(x, t) of
the CTRW S(Nβ(t)) solves the fractional master equation

(1.4) ∂βt p(x, t) = −λp(x, t) + λ

∫ ∞

−∞

p(x− y, t)w(y) dy

where ∂βt denotes the Caputo fractional derivative. The Caputo fractional derivative,
defined for 0 ≤ n− 1 < β < n by

(1.5) ∂βt g(t) =
1

Γ(n− β)

∫ t

0

(t− r)n−1−βg(n)(r)dr,

where g(k) denotes the k-th derivative of g, was invented to properly handle initial
values [8].

If β = 1, then ∂βt is the usual first derivative. The corresponding CTRW S(N1(t))
is a compound Poisson process, and (1.4) reduces to

(1.6) ∂tp(x, t) = −λp(x, t) + λ

∫ ∞

−∞

p(x− y, t)w(y) dy,

the Cauchy problem associated with this infinitely divisible Lévy process. Then a
general result on Cauchy problems [2, Theorem 3.1] implies that the PDF of the
time-changed process S(N1(E(t))) solves the fractional Cauchy problem (1.4), where

(1.7) E(t) = inf{r > 0 : D(r) > t}
is the right-continuous inverse (hitting time, first passage time) of D(t), a standard

β-stable subordinator with E[e−sD(t)] = e−ts
β

for some 0 < β < 1.
Since the PDF of both S(Nβ(t)) and S(N1(E(t))) solve the same governing equa-

tion (1.4), with the same point-source initial condition (i.e., both processes start at
the origin), these two processes have the same one dimensional distributions. Heuris-
tically, the degenerate case Yn ≡ 1 gives S(n) = n, which strongly suggest that the
FPP Nβ(t) and the process N1(E(t)) have the same one dimensional distributions.
We will call N1(E(t)) the fractal time Poisson process (FTPP), since it comes from a
self-similar time change (see, e.g., [26, Proposition 3.1]). In this paper, we will prove
that the FPP and the FTPP are in fact the same process, by showing that the wait-
ing times between jumps in the FTPP are IID Mittag-Leffler. This strong connection
between the FPP and the FTPP unifies the two main approaches in the stochastic
theory of fractional diffusion. For example, the FPP approach was used recently in
the work of Behgin and Orsingher [5], while the inverse stable subordinator is a key
ingredient in [30].

2. Two equivalent formulations

Recall that the fractional Poisson process (FPP) Nβ(t) is a renewal process with
Mittag-Leffler waiting times (1.1), and the fractal time Poisson process (FTPP)
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N1(E(t)) is Poisson process, with rate λ > 0, time-changed via the inverse stable
subordinator (1.7). The proof that the FPP and the FTPP are the same process
requires the following simple lemma.

Lemma 2.1. Let D(t) be a strictly increasing right-continuous process with left-hand

limits, and let E(t) be its right-continuous inverse defined by (1.7). Then

(2.1) D(r−) = sup{t > 0 : E(t) < r}
for any r > 0.

Proof. Let t0 = sup{t > 0 : E(t) < r}. Then there exists a sequence of points tn ↑ t0
such that E(tn) < r for all n. Let εn = r − E(tn) > 0. If r > E(t) then, since
D(t) is strictly increasing, D(r) > t. Since D(r) is right-continuous, it follows that
D(E(t)) ≥ t for all t > 0. Then we have tn ≤ D(E(tn)) = D(r − εn) < D(r−).
Letting n→ ∞ shows that D(r−) ≥ t0.
Since D has left-hand limits, for any rn ↑ r we have D(rn) → D(r−) as n→ ∞. If

D(r−) > t0, then for some rn < r we have D(rn) > t0. Since E(t) is nondecreasing
and continuous, this implies that E(D(rn)) ≥ r, by definition of t0. But, E(D(r)) = r
for all r > 0 implying that rn ≥ r, which is a contradiction. Thus, (2.1) follows. �

Theorem 2.2. For any 0 < β < 1, the FTPP N1(E(t)) is also a FPP. That is, the

waiting times between jumps of the FTPP are IID Mittag-Leffler.

Proof. Let Wn be an IID sequence with P(Wn > t) = e−λt and Vn = W1 + · · ·+Wn

so that the Poisson process N1(t) = max{n ≥ 0 : Vn ≤ t}. Let
(2.2) τn = sup{t > 0 : N1(E(t)) < n}
denote the jump times of the FTPP. This definition of the jump times takes into
account the fact that E(t) has constant intervals corresponding to the jumps of the
process D(t). Using the fact that {N1(t) < n} = {Vn > t} for the Poisson process,
along with (2.2), we have

τn = sup{t > 0 : E(t) < Vn}.
Then Lemma 2.1 implies that τn = D(Vn−). Define X1 = τ1 and Xn = τn − τn−1

for n ≥ 2, the waiting times between jumps of the FTPP. In order to show that the
FTPP is an FPP, it suffices to show that Xn are IID Mittag-Leffler, i.e., they are IID
with Jn.
Recall that the Laplace transform of the exponential distribution E(e−sWn) =

λ/(λ + s). Also recall that E(e−sD(t)) = e−ts
β

. Since D(t) is a Lévy process, it
has no fixed points of discontinuity and hence D(t−), D(t) are identically distributed
for all t ≥ 0. (Indeed, D(t) = D(t−) a.s. [1, Lemma 2.3.2]).
Then a conditioning argument yields

E(e−sτ1) = E(e−sD(W1−)) = E
[

E
(

e−sD(W1−)
∣

∣W1

)]

= E
[

E
(

e−sD(W1)
∣

∣W1

)]

= E

[

e−W1sβ
]

=
λ

λ + sβ
.

(2.3)
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Let fβ(x) = ∂x[1−Eβ(−λxβ)] be the Mittag-Leffler PDF of Jn. It is well known that
∫ ∞

0

e−sxEβ(−λxβ) dx =
sβ−1

λ+ sβ
,

see for example [30, Eq. (3.4)]. Now integrate by parts to see that

E(e−sT1) =

∫ ∞

0

e−sxfβ(x) dx

=

∫ ∞

0

se−sx
(

1− Eβ(−λxβ)
)

dx

= s

[

1

s
− sβ−1

λ+ sβ

]

=
λ

λ+ sβ
= E(e−sτ1)

(2.4)

and then the uniqueness theorem for LT implies that T1, τ1 are identically distributed.
In particular, X1 has the same Mittag-Leffler distribution as J1.
A straightforward extension of this argument shows that (T1, . . . , Tn) is identically

distributed with (τ1, . . . , τn) for any positive integer n. To ease notation, we only
write the case n = 2. First observe that

E(e−s1T1e−s2T2) = E(e−s1J1e−s2(J1+J2)) =
λ

λ+ (s1 + s2)β
· λ

λ+ sβ2
,

using the independence of J1 and J2. Next write

E(e−s1D(t1)e−s2D(t1+t2)) = E(e−s1D(t1)e−s2[D(t1)+D(t1+t2)−D(t1)])

= E(e−(s1+s2)D(t1)e−s2[D(t1+t2)−D(t1)])

= e−t1(s1+s2)
β

e−t2s
β
2 ,

using the fact that D(t) has independent increments. Then

E(e−s1τ1−s2τ2) = E(e−s1D(W1−)−s2D([W1+W2]−))

= E
[

E
(

e−s1D(W1)−s2D(W1+W2)
∣

∣W1,W2

)]

= E

[

e−W1(s1+s2)βe−W2s
β
2

]

=
λ

λ+ (s1 + s2)β
· λ

λ + sβ2
= E(e−s1T1e−s2T2).

Now an application of the continuous mapping theorem shows that (J1, . . . , Jn) is
identically distributed with (X1, . . . , Xn) for any positive integer n. Then (Xn) is an
IID sequence, so N1(E(t)) is a renewal process. �

Next we want to show that the FTPP N1(E(t)), and hence also the FPP Nβ(t),
occurs naturally as a CTRW scaling limit. Suppose now that P(Jn > t) = t−βL(t),
where 0 < β < 1 and L is slowly varying. For example, this is true of the Mittag-
Leffler waiting times. Then J1 belongs to the strict domain of attraction of some
stable law D with index 0 < β < 1, i.e., there exist bn > 0 such that

(2.5) bn(J1 + · · ·+ Jn) ⇒ D,
4



where D(1) = D > 0 almost surely, and ⇒ denotes convergence in distribution. Let
b(t) = b[t]. Then b(t) = t−1/βL0(t) for some slowly varying function L0(t) (e.g., see
[14, XVII.5]). Since b varies regularly with index −1/β, b−1 is regularly varying with
index 1/β > 0 and so by [36, Property 1.5.5] there exists a regularly varying function

b̃ with index β such that 1/b(b̃(c)) ∼ c, as c→ ∞. Here we use the notation f ∼ g for
positive functions f, g if and only if f(c)/g(c) → 1 as c→ ∞. Let Tn = J1 + · · ·+ Jn
and define a renewal process

(2.6) R(t) = max{n ≥ 0 : Tn ≤ t}
with these waiting times. Next, construct a CTRW with iid Bernoulli jumps Y

(p)
n

with P(Y
(p)
n = 1) = p and P(Y

(p)
n = 0) = 1 − p, independent of (Jn). Let S(p)(n) =

Y
(p)
1 + · · ·+Y (p)

n , a binomial random variable. Then S(p)(R(t)) is a CTRW with heavy
tailed waiting times and Bernoulli jumps.

Theorem 2.3. The FTPP is the process limit of a CTRW sequence:

(2.7)
{

S(1/b̃(c))([λR(ct)])
}

t≥0
⇒

{

N1(E(t))
}

t≥0

as c→ ∞ in the M1 topology on D([0,∞),R).

Proof. Since the sequence (Jn) is in the strict domain of attraction of a β-stable
random variable D, [26, Corollary 3.4] shows that

{

b̃(c)−1R(ct)
}

t≥0
⇒

{

E(t)
}

t≥0
as c→ ∞.

in the Skorokhod J1 topology, where D(t) is the stable subordinator with D(1) = D,
and E(t) is given by (1.7).

Since the binomial random variable S(p)(n) has LT E(e−sS
(p)(n)) = (1+(e−s−1)p)n

for any n ≥ 0, it follows that

E(e−sS
(p)([λt/p])) = (1 + (e−s − 1)p)[λt/p] → exp(−λt(1− e−s)),

as p→ 0, using the fact that (1 + ap)1/p → ea as p→ 0. It follows by the continuity
theorem for LT that S(p)([λt/p]) ⇒ N1(t) for any t > 0, since exp(−λt(1 − e−s)) is
the LT of the Poisson random variable N1(t). Then a standard argument (e.g., see
[25, Example 11.2.18] shows that we also get

{

S(p)([λt/p])
}

t≥0

f.d.
=⇒

{

N1(t)
}

t≥0
,

as p→ 0, where
f.d.
=⇒ denotes convergence of all finite dimensional distributions. Since

the sample paths of S(p)([λt/p]) are increasing and N1(t) is continuous in probability,
being a Lévy process, J1 convergence follows using [7, Theorem 3].

Since the CTRW waiting times (Jn) are independent of the jumps (Y
(p)
n ), and since

1/b̃(c) → 0 as c→ ∞, it follows that

(S(1/b̃(c))([λtb̃(c)]), b̃(c)−1R(ct)) ⇒ (N1(t), E(t))
5



in the J1 topology of the product space D([0,∞),R×R), by [6, Theorem 3.2]. Since
the process E(t) is nondecreasing and continuous, [37, Theorem 13.2.4] along with
the continuous mapping theorem yields

S(1/b̃(c))([λR(ct)]) = S(1/b̃(c))([λ · b̃(c)−1R(ct) · b̃(c)]) ⇒ N1(E(t))

in the M1 topology on D([0,∞),R). �

Remark 2.4. For the specific case of Mittag-Leffler waiting times, where P(Jn > t) =
Eβ(−tβ), we can take bn = n−1/β in (2.5). To check this, note that

E(e−sbnTn) =

(

1

1 + (sbn)β

)n

=

(

1− sβ

n+ sβ

)n

→ e−s
β

= E(e−sD(1))

as n → ∞, using the fact that (1 − an/n)
n → e−a when an → a. Then b̃(c) = cβ

and the CTRW convergence (2.7) reduces to S(c−β)([λR(ct)]) ⇒ N1(E(t)) as c→ ∞.
Substitute p = c−β to get

(2.8) S(p)([λR(p−1/βt)]) ⇒ N1(E(t)), as p→ 0.

Remark 2.5. The proof of Theorem 2.2 uses the fact that, ifD(t) is a β-stable subordi-
nator and W1 is exponential, then D(W1) has a Mittag-Leffler distribution. This fact

was first noticed by Pillai [32], who showed that W
1/β
1 D(1) is Mittag-Leffler. These

are equivalent because D(t) is identically distributed with t1/βD(1). This Mittag-
Leffler distribution is also known as the positive Linnik law, e.g., see Huillet [18]. It
has the property of geometric stability: A geometric random sum of Mittag-Leffler
variables is again Mittag-Leffler, e.g., see Kozubowski [20].

3. Fractional calculus

This section develops some interesting connections between the fractional Poisson
process and fractional calculus. In the process, some apparent inconsistencies in the
existing literature will be explained. Behgin and Orsingher [5, Eq. (2.17)] show that
the FPP of order 0 < β < 1 has distribution

(3.1) P(Nβ(t) = k) =

∫ ∞

0

e−λx
(λx)k

k!
V (x, t) dx,

where V (x, t) is a “folded PDF” defined on x > 0, for each t > 0, by V (x, t) = 2v(x, t),
and v(x, t) is another PDF with x ∈ R for each t > 0 that solves

∂2βt v(x, t) = ∂2xv(x, t);

v(x, 0) = δ(x);

∂tv(x, 0) ≡ 0, if 1/2 < β < 1.

(3.2)

It is also stated in [5, Eq. (1.9)] that the FPP Nβ(t) = N1(Tt), where Tt is a random
process with PDF V (x, t) for t > 0. However, that process is identified only in terms
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of its one dimensional distributions (PDF). Theorem 2.2 shows that the inverse stable
subordinator E(t) is one such process.
On the other hand, a simple conditioning argument shows that the equivalent

FTPP process has distribution

(3.3) P(N1(E(t)) = k) =

∫ ∞

0

P (N1(x) = k)h(x, t) dx =

∫ ∞

0

e−λx
(λx)k

k!
h(x, t) dx

where h(x, t) is the density of E(t), a PDF on x > 0 for each t > 0. It follows from
[28, Theorem 4.1] that this PDF solves

(3.4) ∂βt h(x, t) = −∂xh(x, t); h(x, 0) = δ(x).

In view of Theorem 2.2, the two distributions (3.1) and (3.3) must be equal. Thus,
the main purpose of this section is to reconcile the two fractional differential equations
(3.2) and (3.4).

Theorem 3.1. Let Nβ(t) be a fractional Poisson process (1.3) with 0 < β < 1, so
that (3.1) holds. Let N1(E(t)) be the equivalent fractal time Poisson process, where

E(t) is the standard inverse β-stable subordinator with probability density function

h(x, t), so that (3.3) holds. Then

(3.5) h(x, t) = 2v(x, t) for all x > 0 and t > 0.

In particular, the two fractional partial differential equations (3.2) and (3.4) are con-

sistent, in the sense that the folded solution V (x, t) = 2v(x, t) to (3.2) coincides with
the solution h(x, t) to (3.4).

Proof. Mainardi [23, Eq. (3.2)] shows that the solution to the fractional diffusion-wave
equation (3.2) has LT

(3.6) ṽ(x, s) =

∫ ∞

0

e−stv(x, t)dt =
1

2
sβ−1e−|x|sβ

while [28, Eq. (3.13)] shows that

(3.7) h̃(x, s) = sβ−1e−xs
β

.

Since both are differentiable in t, they are also continuous, so LT uniqueness for
continuous functions implies (3.5).
Take Fourier transforms in (3.6) to see that the solution to (3.2) has Fourier-Laplace

transform (FLT)

(3.8) v̄(k, s) =

∫ ∞

0

e−st
∫ ∞

−∞

e−ikxv(x, t)dxdt =
s2β−1

s2β + k2
,

where we have used the fact that e−a|x| has FT 2a/(a2 + k2). Rearrange to get

s2β v̄(k, s)− s2β−1 = −k2v̄(k, s)
7



and invert the FT to get

s2β ṽ(x, s)− s2β−1v(x, 0) = ∂2xṽ(x, s),

using the fact that ∂xf(x) has FT (ik)f̂(k) and v(x, 0) = δ(x) has FT v̂(k, 0) ≡ 1.

To invert the LT, note that the Caputo fractional derivative ∂βt f(t) has LT sβ f̃(s)−
sβ−1f(0) if 0 < β ≤ 1, and LT sβ f̃(s) − sβ−1f(0) − sβ−2f ′(0) if 1 < β ≤ 2. This
is easy to verify from the definition (1.5), using the corresponding formula for the
integer derivative, along with the fact that sβ−1 is the LT of t−β/Γ(1− β). Now use
the remaining initial condition ∂tv(x, 0) ≡ 0 for 1/2 < β < 1 to invert the LT, and
arrive at (3.2).
Likewise, the solution to (3.4) has FLT

(3.9) h̄(k, s) =

∫ ∞

0

e−ikxsβ−1e−xs
β

dx =
sβ−1

sβ + ik
,

using the fact that eaxI(x ≥ 0) has FT 1/(a + ik). To see that these are consistent,
compute the FLT of h(|x|, t):
∫ ∞

0

e−st
∫ ∞

−∞

e−ikxh(|x|, t)dxdt =
∫ ∞

0

e−st
(
∫ ∞

0

e−ikxh(x, t)dx+

∫ ∞

0

eikxh(x, t)dx

)

dt

=
sβ−1

sβ + ik
+

sβ−1

sβ − ik
= 2

(

s2β−1

s2β + k2

)

= 2v̄(k, s).

Invert the FLT to see that h(|x|, t) = 2v(x, t) for all x ∈ R and t > 0. To verify the
LFT solution, take FT in (3.4) to get

∂βt ĥ(k, t) = −ik ĥ(x, t)
and apply the LT to get sβh̄(k, s)− sβ−1 = −ik h̄(k, s), using the point source initial

condition ĥ(k, 0) ≡ 1. �

Remark 3.2. Behgin and Orsingher [5, Eq. (2.21)] show that

v(x, t) =
1

2Γ(1− β)

∫ t

0

(t− w)−βp(|x|, t)dx

where p(x, t) is the density of the stable subordinator D(t), while [28, Theorem 3.1]
implies that

h(x, t) =
1

Γ(1− β)

∫ t

0

(t− w)−βp(x, t)dx.

This gives another proof that h(|x|, t) = 2v(x, t).

The equivalence in Theorem 3.1 results from folding the solution to the fractional
diffusion-wave equation (3.2). Another fractional partial differential equation for the
density h(x, t) of the standard inverse β-stable subordinator E(t), which is closer to
the form (3.2), can be obtained by arguments similar to those used in [3] to connect
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the inverse stable subordinator to iterated Brownian motion. In that theory, it is
customary to avoid distributions by imposing a functional initial condition.

Theorem 3.3. Let E(t) be the standard inverse β-stable subordinator with density

h(x, t). Then for any f ∈ L2(R) ∩ C1(R), the function

(3.10) u(x, t) = Ex[f(E(t))] =

∫ ∞

0

f(x+ y)h(y, t)dy

solves the fractional differential equation

(3.11) ∂2βt u(x, t) = −∂xf(x)
tβ−1

Γ(1− β)
+ ∂2xu(x, t); u(x, 0) = f(x).

In particular, when β = 1/2, (3.10) solves

(3.12) ∂tu(x, t) =
−∂xf(x)√

πt
+ ∂2xu(x, t); u(0, x) = f(x),

and in this case we also have u(x, t) = Ex[f(|B(t)|)], where B(t) is a Brownian motion

with variance 2t.

Proof. From (3.9), we have

ū(k, s) =
sβ−1f̂(k)

sβ + ik
=
sβ−1f̂(k)

sβ + ik
· s

β − ik

sβ − ik
=
s2β−1 − iksβ−1

s2β + k2
f̂(k)

so that s2β ū(k, s)−s2β−1f̂(k) = −ikf̂ (k)sβ−1−k2ū(k, s), which inverts to (3.11). It is
well known that the Brownian motion first passage time D(y) = inf{t > 0 : B(t) > y}
is a stable subordinator with index β = 1/2 [1, Example 1.3.19]. Then it is easy to
see that

E(t) = inf{y > 0 : D(y) > t} = sup{B(r) : 0 ≤ r ≤ t}
and this recovers the fact, typically proven using the reflection principle, that

P (E(t) > y) = 2P (B(t) > y).

Then E(t) and |B(t)| have the same one dimensional distributions, so we also have
u(x, t) = Ex[f(|B(t)|)]. Note that X(t) = X(0)− t is a fortiori a continuous Markov
process associated with the shift semigroup T (t)f(x) = Ex[f(X(t))] = f(x− t) with
generator

Lxf(x) = lim
t→0+

T (t)f(x)− f(x)

t
= −∂xf(x).

Then [3, Corollary 3.4] implies that u(x, t) solves the equation

∂tu(x, t) =
Lxf(x)√

πt
+ Lx

2u(x, t); u(0, x) = f(x).

When Lx = −∂x, this reduces to (3.12), a special case of (3.11) with Γ(1/2) =
√
π. �
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Remark 3.4. In the case f(x) = δ(x), Theorem 3.3 gives an alternative governing
equation for h(x, t). Note that (3.11) is very similar to the governing equation (3.2)
for the unfolded PDF.

Remark 3.5. The process |B(t)| in Theorem 3.3 is not the same process as the in-
verse 1/2-stable subordinator E(t) in Theorem 2.2, although they have the same one
dimensional distributions. Hence, the FTPP is not the same as the Brownian time
Poisson process N1(|B(t)|). However, we do have E(t) = sup{B(r) : 0 ≤ r ≤ t}, so
that a Poisson process subordinated to the supremum of a Brownian motion is an
FPP with β = 1/2.

Remark 3.6. Let E(t) be the standard inverse stable subordinator of index β = 1/m
for integer m > 1. Then [3, Remark 3.11], [31, Theorem 1.1] and Keyantuo and
Lizama [19, Theorem 3.3] imply that u(x, t) = Ex[f(E(t))] solves

∂tu(x, t) =

m−1
∑

j=1

tj/m−1

Γ(j/m)
(−∂x)jf(x) + (−∂x)mu(x, t); u(0, x) = f(x),

for t > 0 and x ∈ R, which is then equivalent to (3.4). The proof is similar to
Theorem 3.3. For example, when β = 1/3 use

ū(s, k) =
s−2/3f̂(k)

s1/3 + ik
· s

2/3 − s1/3ik + k2

s2/3 − s1/3ik + k2
=

1− s−1/3ik + s−2/3k2

s+ ik3
f̂(k).

4. Renewal processes and inverse subordinators

Theorem 2.2 shows that a Poisson process, time-changed by an inverse stable sub-
ordinator, yields a renewal process with Mittag-Leffler waiting times. This section
extends that result to arbitrary subordinators that are strictly increasing. Let D(t)
be a strictly increasing Lévy process (subordinator) with E[e−sD(t)] = e−tψD(s), where
the Laplace exponent

(4.1) ψD(s) = bs +

∫ ∞

0

(e−sx − 1)φD(dx),

b ≥ 0, and φD is the Lévy measure of D. Then we must have either

(4.2) φD(0,∞) = ∞,

or b > 0, or both. Let E(t) be the inverse subordinator (1.7), and recall that N1(t) is
a Poisson process with rate λ.

Theorem 4.1. The time-changed Poisson process N1(E(t)) is a renewal process

whose IID waiting times (Jn) satisfy

(4.3) P(Jn > t) = E[e−λE(t)].
10



Proof. The proof is similar to Theorem 2.2. Take N1(t) = max{n ≥ 0 : Vn ≤ t},
where Vn =W1 + · · ·+Wn, with Wn IID as P(Wn > t) = e−λt. Let

τn = sup{t > 0 : N1(E(t)) < n} = sup{t > 0 : E(t) < Vn}
and apply Lemma 2.1 to get τn = D(Vn−). Then, as in the proof of Theorem 2.2, we
have

E(e−sτ1) = E(e−sD(W1−))

= E
[

E
(

e−sD(W1)
∣

∣W1

)]

= E
[

e−W1ψD(s)
]

=
λ

λ+ ψD(s)
.

(4.4)

By [28, Corollary 3.5], the IID random variables Jn in (4.3) satisfy

(4.5)

∫ ∞

0

e−st P(Jn > t) dt =

∫ ∞

0

e−st E[e−λE(t)] dt =
ψD(s)

s(λ+ ψD(s))
.

Integrate by parts to get
(4.6)

∫ ∞

0

e−st PJn(dt) =

∫ ∞

0

se−st [1− P(Jn > t)] dt = 1− ψD(s)

λ+ ψD(s)
=

λ

λ+ ψD(s)
,

which shows that T1 = J1 is identically distributed with τ1. Extend this argument, as
in the proof of Theorem 2.2, to show that (T1, . . . , Tn) is identically distributed with
(τ1, . . . , τn) for any positive integer n. For example, when n = 2, write

E(e−s1D(t1)e−s2D(t1+t2)) = E(e−(s1+s2)D(t1)e−s2[D(t1+t2)−D(t1)]) = e−t1ψD(s1+s2)e−t2ψD(s2)

and condition to get

E(e−s1τ1−s2τ2) = E(e−s1D(W1−)−s2D([W1+W2]−))

= E
[

E
(

e−s1D(W1)−s2D(W1+W2)
∣

∣W1,W2

)]

= E
[

e−W1ψD(s1+s2)e−W2ψD(s2)
]

=
λ

λ+ ψD(s1 + s2)
· λ

λ+ ψD(s2)
.

On the other hand,

E(e−s1T1e−s2T2) = E(e−s1J1e−s2(J1+J2)) =
λ

λ+ ψD(s1 + s2)
· λ

λ+ ψD(s2)

using the fact that (Jn) are IID. To finish the proof, use continuous mapping to show
that (J1, . . . , Jn) is identically distributed with (X1, . . . , Xn), where Xn = τn − τn−1

are the waiting times between jumps for the process N1(E(t)). �

Remark 4.2. (i) Let ND(t) denote the renewal process from Theorem 4.1, so that

(4.7) ND(t) = max{n ≥ 0 : Tn ≤ t},
where Tn =

∑n
i=1 Ji and (Jn) are IID according to (4.3). Theorem 4.1 shows that

ND(t) = N1(E(t)). This extends the relation Nβ(t) = N1(E(t)) from Theorem 2.2,
11



the special case of an inverse stable subordinator E(t) and Mittag-Leffler waiting
times Jn, to a general inverse subordinator.
(ii) Let M(t) = E(ND(t)) denote the renewal function of the renewal process ND(t).
Then using Lageras [21, Equation 4], it follows that the LT of M(t) is λ/ψD(s).

5. CTRW scaling limits and governing equations

In this section, we extend the fractional calculus results of Section 3 to the inverse
subordinators of Section 4. A general theory of CTRW scaling limits and governing
equations is developed in [28]. Consider a sequence of CTRW indexed by a scale
parameter c > 0. Take Jcn nonnegative IID random variables representing the waiting
times between particle jumps and T c(n) =

∑n
i=1 J

c
i , the time of the nth jump. Let

Y c
i be IID random vectors on R

d representing the particle jumps, independent of the
waiting times, and set Sc(n) =

∑n
i=1 Y

c
i , the location of the particle after n jumps.

Define N c
t = max{n ≥ 0 : T c(n) ≤ t}, the number of jumps by time t ≥ 0 and

(5.1) Xc(t) = Sc(N c
t ) =

Nc
t

∑

i=1

Y c
i

the position of the particle at time t ≥ 0 and scale c > 0. Assume a triangular array
limit

(5.2) {(Sc(ct), T c(ct))}t≥0 ⇒ {(A(t), D(t)}t≥0, as c→ ∞,

in the J1 topology on D([0,∞),Rd × R+), so that A(t) and D(t) are independent
Lévy processes on R

d and R, respectively. Since the waiting times are nonnegative,
D(t) is a subordinator. In this section, we assume the drift b = 0 in (4.1), as well as
condition (4.2) and

(5.3)

∫ 1

0

y| ln y| φD(dy) <∞.

Assumption (4.2) implies that the process {D(t)} is strictly increasing, i.e., D(t) is
not compound Poisson. Then [28, Theorem 3.1] shows that the inverse subordinator
E(t) in (1.7) has a Lebesgue density

(5.4) h(x, t) =

∫ t

0

φD(t− y,∞)PD(x)(dy).

Write E[e−sD(t)] = e−tψD(s), as before. Let P (x, t) = P(A(t) ≤ x) be the distribution
function of A(t), and write

P̂ (k, t) =

∫

e−ik·xP (dx, t) = e−tψA(k),

where ψA(k) is the Fourier symbol of A. The symbols define pseudo-differential

operators: ψD(∂t)f(t) has LT ψD(s)f̃(s), and ψA(−iDx)f(x) has FT ψA(k)f̂(k), for
12



suitable functions f . Then [28, Theorem 2.1] establishes the CTRW scaling limit

(5.5) {Xc(t)}t≥0 ⇒ {A(E(t))}t≥0, as c→ ∞,

in the M1-topology on D([0,∞),Rd). Recall that a function Q is a mild solution to
a space-time pseudo-differential equation if its (Fourier-Laplace or Laplace-Laplace)
transform solves the equivalent algebraic equation in transform space. The next result
is a small extension of [28, Theorem 4.1].

Theorem 5.1. Assume (5.2) holds, where D(t) is a subordinator without drift such

that conditions (4.2) and (5.3) hold. The distribution function of the CTRW limit

process A(E(t)) in (5.5) is given by

(5.6) Q(x, t) =

∫ ∞

0

P (x, u)h(u, t) du

where h(u, t) is the density (5.4) of the inverse subordinator E(t). The distribution

function Q(x, t) solves the generalized Cauchy problem

(5.7) ψD(∂t)Q(x, t) = −ψA(−iDx)Q(x, t) +H(x)φD(t,∞)

in the mild sense, where H(x) = I(x ≥ 0) is the Heaviside function. Furthermore,

P (x, u) solves the Cauchy problem

(5.8) ∂tP (x, t) = −ψA(−iDx)P (x, t); P (x, 0) = H(x),

and h(x, t) solves the inhomogeneous Cauchy problem

(5.9) ∂xh(x, t) = −ψD(∂t)h(x, t) + δ(x)φD(t,∞).

Proof. The proof is similar to [28, Theorem 4.1]. Equation (5.6) follows from a simple
conditioning argument. Apply [28, Theorem 3.6] to see that Q(x, t) has FLT

(5.10) Q̄(k, s) =

∫ ∞

0

e−st
∫

Rd

e−ik·xQ(dx, t) dt =
1

s

ψD(s)

ψA(k) + ψD(s)

and rearrange to get

(5.11) ψD(s) Q̄(k, s) = −ψA(k) Q̄(k, s) + s−1ψD(s).

From [28, Eq. (3.12)] we get

(5.12)

∫ ∞

0

e−suφD(u,∞) du = s−1ψD(s).

Now invert the FLT (5.11), using (5.12) and
∫

e−ik·xH(dx) ≡ 1, to arrive at (5.7).
It is well known that P (x, t) solves the Cauchy problem (5.8), see for example [17].
Equation (4.5) shows that the bivariate Laplace transform (LLT)

h̃(λ, s) =

∫ ∞

0

∫ ∞

0

e−λz−sth(z, t) dt dz =
1

s

ψD(s)

λ+ ψD(s)
.

This rearranges to
λh̃(ξ, s) = −ψD(s)h̃(λ, s) + s−1ψD(s).

13



Inverting the LLT using (5.12) to see that h(x, t) solves (5.9). �

For any random walk S(n) =
∑n

i=1 Yi, the compound Poisson process A(t) =
S(N1(t)) is a Lévy process. Introduce IID waiting times (4.3) between these random
walk jumps to get a CTRW. In this case, the CTRW is exactly of the form A(E(t)),
without passing to the limit. Then the governing equations in Theorem 5.1 pertain
to the CTRW itself.

Theorem 5.2. Assume D(t) is a subordinator without drift such that conditions

(4.2) and (5.3) hold, and let E(t) be the inverse subordinator (1.7). Take Jn IID

waiting times according to (4.3), and let ND(t) denote the renewal process (4.7).
Take Yn IID jumps on R

d, independent from (Jn), with common distribution µ, and
let S(n) =

∑n
i=1 Yi. Then the distribution function P (x, t) = P(X(t) ≤ x) of the

CTRW X(t) = S(ND(t)) solves the generalized Cauchy problem

(5.13) ψD(∂t)P (x, t) = −λP (x, t) + λ

∫

P (x− y, t)µ(dy) +H(x)φD(t,∞)

in the mild sense. Furthermore, X(t) = A(E(t)), where A(t) = S(N1(t)) is a com-

pound Poisson process.

Proof. Theorem 4.1 yields ND(t) = N1(E(t)), and then the CTRW is

X(t) = S(ND(t)) = S(N1(E(t))) = A(E(t)).

A standard conditioning argument shows that the compound Poisson FT P̂ (k, t) =

e−tψA(k), where the Fourier symbol ψA(k) = λ(1−µ̂(k)). The inverse FT of ψA(k)f̂(k)
is

(5.14) ψA(−iDx)f(x) = −λf(x) + λ

∫

f(x− y)µ(dy)

using the FT convolution property. Now Theorem 5.1 implies that (5.13) holds. �

Remark 5.3. In the situation of Theorem 5.2, where A(t) is compound Poisson, the
distribution function P (x, t) = P(A(t) ≤ x) solves the Cauchy problem (5.8), which
can be written in this case as

(5.15) ∂tP (x, t) = −λP (x, t) + λ

∫ ∞

−∞

P (x− y, t)µ(dy); P (x, 0) = H(x).

This is the Kolmogorov forward equation for the Markov process A(t). If µ has density
w(x), apply ∂x on both sides of (5.15) to see that the probability density p(x, t) =
∂xP (x, t) of A(t) solves (1.6). If D is the stable subordinator with Laplace symbol

ψD(s) = sβ, then (5.13) holds with φD(t,∞) = t−β/Γ(1 − β) and ψD(∂t) = D
β
t , the

Riemann-Liouville fractional derivative. The Riemann-Liouville fractional derivative
is defined for 0 ≤ n− 1 < β < n by

(5.16) D
β
t g(t) =

1

Γ(n− β)

dn

dtn

∫ t

0

(t− r)n−1−βg(n)(r) dr,
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which differs from the Caputo derivative (1.5) in that the derivative is applied after

the integration. The LT of Dβ
t g(t) is s

β g̃(s). Apply ∂x to both sides of (5.13) in this
case to get

D
β
t p(x, t) = −λp(x, t) + λ

∫

p(x− y, t)µ(dy) + δ(x)
t−β

Γ(1− β)
,

the fractional kinetic equation of Zaslavsky [38]. To recover (1.4), use ∂βt g(t) =

D
β
t g(t)− g(0)t−β/Γ(1− β) and p(x, 0) = δ(x).

Remark 5.4. In the special case where µ = ε1 is a point mass, so that Yn = 1 almost
surely, A(t) = N1(t) is a Poisson process with rate λ > 0. Then the distribution
function P (x, t) of the renewal process ND(t) = A(E(t)) solves

(5.17) ψD(∂t)P (x, t) = −λ[P (x, t)− P (x− 1, t)] +H(x)φD(t,∞).

If D is the stable subordinator with Laplace symbol ψD(s) = sβ, this reduces to

∂βt P (x, t) = −λ[P (x, t)− P (x− 1, t)]

as in Remark 5.3. The probability mass function p(n, t) = P (n, 1) − P (n − 1, t) =
∆P (n, t) for n > 0. Apply the difference operator ∆ on both sides to obtain

∂βt p(n, t) = −λ[p(n, t)− p(n− 1, t)]

which is Eq. (1.1) in Behgin and Orsingher [5].

Remark 5.5. Scher and Lax [35] showed that a CTRW with waiting time distribution
ω and jump distribution ν has FLT

Q̄(k, s) =
1

s

1− ω̃(s)

1− ω̃(s)ν̂(k)

, where ν̂(k) =
∫

e−ik·xν(dx). To reconcile with Theorem 5.2, recall from (4.6) that
the waiting times (4.3) in Theorem 5.2 have LT

ω̃(s) =

∫

e−stω(dt) =
λ

λ+ ψD(s)

and then it follows that ψD(s) = λ(1− ω̃(s))/ω̃(s). The jumps Yn in Theorem 5.2
have Fourier symbol ψA(k) = λ(1− µ̂(k)) and then (5.10) implies

Q̄(k, s) =
1

s

ψD(s)

ψA(k) + ψD(s)
=

1

s

1−ω̃(s)
ω̃(s)

1−ω̃(s)
ω̃(s)

+ (1− µ̂(k))
=

1

s

1− ω̃(s)

1− ω̃(s)µ̂(k)

which provides a different proof that the CTRW equals A(E(t)) in this case. To
simulate the sample paths of the non-Markovian process A(E(t)), it is sufficient to
simulate the CTRW. In particular, the renewal process ND(t) gives the exact jump
times of the inverse subordinator E(t).
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Remark 5.6. In the general case, where A(t) is not compound Poisson, Theorem 5.2
provides a useful approximation. Given a Lévy process A(t), take Yn = A(n) −
A(n − 1), so that S(n) = A(n). Take N(t) a Poisson process with rate 1, so that
S(λ−1N(λt)) is compound Poisson with Fourier symbol

λ(1− e−λ
−1ψA(k)) → ψA(k), as λ→ ∞.

Then S(λ−1N(λt)) ⇒ A(t) as λ → ∞, and the CTRW with IID waiting times (4.3)
and these compound Poisson jumps converges to A(E(t)) as λ → ∞. As in Remark
5.5, this fact can be used to simulate sample paths of the process A(E(t)). This fact
has been exploited by Fulger, Scalas and Germano [15] to develop fast simulation
methods for space-time fractional diffusion equations.

Example 5.7. Tempered stable subordinators are theoretically interesting [4, 33] and
practically useful [13, 29]. Take D(t) tempered stable with Laplace symbol ψD(s) =
(s+ a)β − aβ for a > 0 and 0 < β < 1, and let E(t) be its inverse (1.7). Theorem 4.1
shows that N1(E(t)) is a renewal process. Let (τn) denote the arrival times of this
renewal process, and use (4.4) to get

E(e−sτ1) =
λ

λ+ (s + a)β − aβ
.

This tempered fractional Poisson process N1(E(t)) has tempered Mittag-Leffler wait-
ing times, but with a different rate parameter: Use (2.4) to see that the Mittag-Leffler
PDF f(t) = ∂t[1−Eβ(−ηtβ)] has Laplace transform η/(η + sβ), and so

∫ ∞

0

e−stf(t)e−atdt =
η

η + (s+ a)β
.

Of course f(t)e−at is not a PDF, and in fact we have (set s = 0 above)
∫ ∞

0

f(t)e−atdt =
η

η + aβ
.

Then the tempered Mittag-Leffler PDF fa(t) = f(t)e−at(η + aβ)/η has LT
∫ ∞

0

e−stfa(t)dt =
η + aβ

η + (s+ a)β
=

λ

λ+ (s+ a)β − aβ
= E(e−sτ1)

when η + aβ = λ. Cartea and del Castillo-Negrete [9] show that the tempered frac-

tional derivative ψD(∂t)g(t) = e−at ∂βt [e
at g(t)]− aβg(t). It is also known (e.g., see [4])

that the corresponding Lévy measure is exponentially tempered: ψD(dt) = e−atψ(dt),
where ψ(t,∞) = t−β/Γ(1−β) is the Lévy measure of the standard β-stable subordina-
tor. Then Theorem 5.2 shows that the CTRW with tempered Mittag-Leffler waiting
times and compound Poisson jumps solves a tempered fractional Cauchy problem

e−at ∂βt [e
at P (x, t)]− aβP (x, t) = ψA(−iDx)P (x, t) +H(x)φD(t,∞)
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with ψA(−iDx) given by (5.14) and φD(t,∞) = β
∫∞

t
e−att−β−1dt/Γ(1− β). More

generally, Theorem 5.1 shows that the distribution function of the CTRW scaling limit
A(E(t)) is governed by this equation, with the corresponding operator ψA(−iDx).
Apply ∂x on both sides of (5.17) to see that the PDF of the renewal process with
tempered Mittag-Leffler waiting times solves

e−at ∂βt [e
at p(x, t)]− aβp(x, t) = −λ[p(x, t)− p(x− 1, t)] + δ(x)φD(t,∞).

A wide variety of tempered stable models in R
d are discussed in Rosiński [33]. Random

walks in R
d with tempered stable scaling limit are developed in [10]. For exponentially

tempered stable waiting times in R
1, a renewal process with tempered Mittag-Leffler

waiting times gives the same process exactly, without taking limits. This can be
useful for simulating sample paths.

Example 5.8. Chechkin et al. [12, 11] used distributed order fractional derivatives
to model multi-scale anomalous subdiffusion, where a different power law pertains at
short and long time scales, and ultraslow diffusion, for a plume of particles spreading
at a logarithmic rate. Given a finite Borel measure ν on (0, 1), the distributed order
fractional derivative is defined by

(5.18) D
ν
t g(t) =

∫ 1

0

∂βt g(t)ν(dβ),

where ∂βt is the Caputo fractional derivative (1.5). If ν is discrete, this is a lin-
ear combination of fractional derivatives. Let D(t) be the distributed order stable
subordinator with Laplace symbol ψD(s) =

∫

sβν(dβ) and E(t) its inverse (1.7). If
ν(dβ) = p(β)dβ, where p(β) is regularly varying at β = 0 with index α− 1 for some
α > 0, then ψD(s) = R(log s) and R is regularly varying at infinity with index −α,
see [27, Lemma 3.1]. Then E(t) is “ultraslow” in that E(E(t)γ) = S(log t), where
S varies regularly with index γα at infinity, by [27, Theorem 3.9]. Take an IID se-
quence of mixing variables (Bi) with distribution µ concentrated on (0, 1), and assume
P(Jci > u|Bi = β) = c−1u−β for u ≥ c−1/β , so that the waiting times are conditionally
Pareto. Then [27, Theorem 3.4] implies that the distributed order stable subordina-

tor is a random walk limit
∑[ct]

i=1 J
c
i ⇒ D(t). This requires

∫

(1 − β)−1µ(dβ) < ∞ so
that ν(dβ) = Γ(1 − β)µ(dβ) is a finite measure. An easy computation shows that

the Lévy measure φD(t,∞) =
∫ 1

0
t−βν(dβ)/Γ(1− β). Then Theorem 5.1 implies that

a CTRW with these conditionally Pareto waiting times has a scaling limit A(E(t))
whose distribution Q(x, t) solves the distributed-order fractional diffusion equation

D
ν
tQ(x, t) = −ψA(−iDx)Q(x, t).

If A(t) is compound Poisson, Theorem 5.2 shows that the distribution function P (x, t)
of a CTRW with waiting times (4.3) solves

D
ν
tP (x, t) = −λP (x, t) + λ

∫

P (x− y, t)µ(dy),
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without passing to the limit. Then the PDF p(x, t) of the renewal process with waiting
times (4.3) solves

D
ν
t p(x, t) = −λ[p(x, t)− p(x− 1, t)].
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