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Abstract

It is our intention to provide via fractional calculus a generalization of
the pure and compound Poisson processes, which are known to play a
fundamental role in renewal theory, without and with reward, respectively.
We first recall the basic renewal theory including its fundamental concepts
like waiting time between events, the survival probability, the counting
function. If the waiting time is exponentially distributed we have a Poisson
process, which is Markovian. However, other waiting time distributions are
also relevant in applications, in particular such ones with a fat tail caused by
a power law decay of its density. In this context we analyze a non-Markovian
renewal process with a waiting time distribution described by the Mittag-
Leffler function. This distribution, containing the exponential as particular
case, is shown to play a fundamental role in the infinite thinning procedure
of a generic renewal process governed by a power-asymptotic waiting time.
We then consider the renewal theory with reward that implies a random
walk subordinated to a renewal process.
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1 Essentials of renewal theory

The concept of renewal process has been developed as a stochastic model
for describing the class of counting processes for which the times between
successive events are independent identically distributed (iid) non-negative
random variables, obeying a given probability law. These times are referred
to as waiting times or inter-arrival times. For more details see e.g. the
classical treatises by Khintchine [12], Cox [2], Gnedenko & Kovalenko [6],
Feller [5], and the recent book by Ross [19].

For a renewal process having waiting times T1, T2, . . ., let

t0 = 0 , tk =
k∑

j=1

Tj , k ≥ 1 . (1.1)

That is t1 = T1 is the time of the first renewal, t2 = T1 + T2 is the time of
the second renewal and so on. In general tk denotes the kth renewal.

The process is specified if we know the probability law for the waiting
times. In this respect we introduce the probability density function (pdf)
φ(t) and the (cumulative) distribution function Φ(t) so defined:

φ(t) :=
d

dt
Φ(t) , Φ(t) := P (T ≤ t) =

∫ t

0
φ(t′) dt′ . (1.2)

When the nonnegative random variable represents the lifetime of technical
systems, it is common to refer to Φ(t) as to the failure probability and to

Ψ(t) := P (T > t) =

∫
∞

t
φ(t′) dt′ = 1 − Φ(t) , (1.3)

as to the survival probability, because Φ(t) and Ψ(t) are the respective
probabilities that the system does or does not fail in (0, T ]. A relevant
quantity is the counting function N(t) defined as

N(t) := max {k|tk ≤ t, k = 0, 1, 2, . . .} , (1.4)

that represents the effective number of events before or at instant t. In
particular we have Ψ(t) = P (N(t) = 0) . Continuing in the general theory
we set F1(t) = Φ(t), f1(t) = φ(t), and in general

Fk(t) := P (tk = T1 + . . . + Tk ≤ t) , fk(t) =
d

dt
Fk(t) , k ≥ 1 , (1.5)
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thus Fk(t) represents the probability that the sum of the first k waiting
times is less or equal t and fk(t) its density. Then, for any fixed k ≥ 1 the
normalization condition for Fk(t) is fulfilled because

lim
t→∞

Fk(t) = P (tk = T1 + . . . + Tk < ∞) = 1 . (1.6)

In fact, the sum of k random variables each of which is finite with probability
1 is finite with probability 1 itself. By setting for consistency F0(t) ≡ 1 and
f0(t) = δ(t), the Dirac delta function1, we also note that for k ≥ 0 we have

P (N(t) = k) := P (tk ≤ t , tk+1 > t) =

∫ t

0
fk(t

′)Ψ(t − t′) dt′ . (1.7)

We now find it convenient to introduce the simplified ∗ notation for the
Laplace convolution between two causal well-behaved (generalized) functions
f(t) and g(t)

∫ t

0
f(t′) g(t − t′) dt′ = (f ∗ g) (t) = (g ∗ f) (t) =

∫ t

0
f(t − t′) g(t′) dt′ .

Being fk(t) the pdf of the sum of the k iid random variables T1, . . . , Tk with
pdf φ(t) , we easily recognize that fk(t) turns out to be the k-fold convolution
of φ(t) with itself,

fk(t) =
(
φ∗k

)
(t) , (1.8)

so Eq. (1.7) simply reads:

P (N(t) = k) =
(
φ∗k ∗ Ψ

)
(t) . (1.9)

Because of the presence of Laplace convolutions a renewal process is suited
for the Laplace transform method. Throughout this paper we will denote
by f̃(s) the Laplace transform of a sufficiently well-behaved (generalized)
function f(t) according to

L{f(t); s} = f̃(s) =

∫ +∞

0
e−st f(t) dt , s > s0 ,

1We find it convenient to recall the formal representation of this generalized function
in R

+ ,

δ(t) :=
t−1

Γ(0)
, t ≥ 0 .
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and for δ(t) consistently we will have δ̃(s) ≡ 1 . Note that for our purposes
we agree to take s real. We recognize that (1.9) reads in the Laplace domain

L{P (N(t) = k) ; s} =
[
φ̃(s)

]k
Ψ̃(s) , (1.10)

where, using (1.3),

Ψ̃(s) =
1 − φ̃(s)

s
. (1.11)

2 The Poisson process as a renewal process

The most celebrated renewal process is the Poisson process characterized by
a waiting time pdf of exponential type,

φ(t) = λ e−λt , λ > 0 , t ≥ 0 . (2.1)

The process has no memory. Its moments turn out to be

〈T 〉 =
1

λ
, 〈T 2〉 =

1

λ2
, . . . , 〈T n〉 =

1

λn
, . . . , (2.2)

and the survival probability is

Ψ(t) := P (T > t) = e−λt , t ≥ 0 . (2.3)

We know that the probability that k events occur in the interval of length t
is

P (N(t) = k) =
(λt)k

k!
e−λt , t ≥ 0 , k = 0, 1, 2, . . . . (2.4)

The probability distribution related to the sum of k iid exponential random
variables is known to be the so-called Erlang distribution (of order k). The
corresponding density (the Erlang pdf) is thus

fk(t) = λ
(λt)k−1

(k − 1)!
e−λt , t ≥ 0 , k = 1, 2, . . . , (2.5)

so that the Erlang distribution function of order k turns out to be

Fk(t) =

∫ t

0
fk(t

′) dt′ = 1 −
k−1∑

n=0

(λt)n

n!
e−λt =

∞∑

n=k

(λt)n

n!
e−λt , t ≥ 0 . (2.6)

In the limiting case k = 0 we recover f0(t) = δ(t), F0(t) ≡ 1, t ≥ 0.
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The results (2.4)-(2.6) can easily obtained by using the technique of
the Laplace transform sketched in the previous section noting that for the
Poisson process we have:

φ̃(s) =
λ

λ + s
, Ψ̃(s) =

1

λ + s
, (2.7)

and for the Erlang distribution:

f̃k(s) = [φ̃(s)]k =
λk

(λ + s)k
, F̃k(s) =

[φ̃(s)]k

s
=

λk

s(λ + s)k
. (2.8)

We also recall that the survival probability for the Poisson renewal
process obeys the ordinary differential equation (of relaxation type)

d

dt
Ψ(t) = −λΨ(t) , t ≥ 0 ; Ψ(0+) = 1 . (2.9)

3 The renewal process of Mittag-Leffler type

A ”fractional” generalization of the Poisson renewal process is simply
obtained by generalizing the differential equation (2.9) replacing there the

first derivative with the integro-differential operator tD
β
∗ that is interpreted

as the fractional derivative of order β in Caputo’s sense, see Appendix. We
write, taking for simplicity λ = 1,

tD
β
∗

Ψ(t) = −Ψ(t) , t > 0 , 0 < β ≤ 1 ; Ψ(0+) = 1 . (3.1)

We also allow the limiting case β = 1 where all the results of the previous
section (with λ = 1) are expected to be recovered.

For our purpose we need to recall the Mittag-Leffler function as
the natural ”fractional” generalization of the exponential function, that
characterizes the Poisson process. The Mittag-Leffler function of parameter
β is defined in the complex plane by the power series

Eβ(z) :=
∞∑

n=0

zn

Γ(β n + 1)
, β > 0 , z ∈ C . (3.2)

It turns out to be an entire function of order β which reduces for β = 1 to
exp(z) . For detailed information on the Mittag-Leffler-type functions and
their Laplace transforms the reader may consult e.g. [4, 8, 17].

The solution of Eq. (3.1) is known to be, see e.g. [1, 8, 13],

Ψ(t) = Eβ(−tβ) , t ≥ 0 , 0 < β ≤ 1 , (3.3)
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so

φ(t) := −
d

dt
Ψ(t) = −

d

dt
Eβ(−tβ) , t ≥ 0 , 0 < β ≤ 1 . (3.4)

Then, the corresponding Laplace transforms read

Ψ̃(s) =
sβ−1

1 + sβ
, φ̃(s) =

1

1 + sβ
, 0 < β ≤ 1 . (3.5)

Hereafter, we find it convenient to summarize the most relevant features of
the functions Ψ(t) and φ(t) when 0 < β < 1 . We begin to quote their series
expansions for t → 0+ and asymptotics for t → ∞,

Ψ(t) =
∞∑

n=0

(−1)n
tβn

Γ(β n + 1)
∼

sin (βπ)

π

Γ(β)

tβ
, (3.6)

and

φ(t) =
1

t1−β

∞∑

n=0

(−1)n
tβn

Γ(β n + β)
∼

sin (βπ)

π

Γ(β + 1)

tβ+1
. (3.7)

In contrast to the Poissonian case β = 1, in the case 0 < β < 1 for large t
the functions Ψ(t) and φ(t) no longer decay exponentially but algebraically.
As a consequence of the power-law asymptotics the process turns be no
longer Markovian but of long-memory type. However, we recognize that
for 0 < β < 1 both functions Ψ(t), φ(t) keep the ”completely monotonic”
character of the Poissonian case. Complete monotonicity of the functions
Ψ(t) and φ(t) means

(−1)n
dn

dtn
Ψ(t) ≥ 0 , (−1)n

dn

dtn
φ(t) ≥ 0 , n = 0, 1, 2, . . . , t ≥ 0 , (3.8)

or equivalently, their representability as real Laplace transforms of non-
negative generalized functions (or measures), see e.g. [8].

For the generalizations of Eqs (2.4) and (2.5)-(2.6), characteristic of the
Poisson and Erlang distributions respectively, we must point out the Laplace
transform pair

L{tβ k E
(k)
β (−tβ); s} =

k! sβ−1

(1 + sβ)k+1
, β > 0 , k = 0, 1, 2, . . . , (3.9)

with E
(k)
β (z) :=

dk

dzk
Eβ(z) , that can be deduced from the book by Podlubny,

see (1.80) in [17]. Then, by using the Laplace transform pairs (3.5) and Eqs
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(3.3), (3.4), (3.9) in Eqs (1.8) and (1.9), we have the generalized Poisson

distribution,

P (N(t) = k) =
tk β

k!
E

(k)
β (−tβ) , k = 0, 1, 2, . . . (3.10)

and the generalized Erlang pdf (of order k ≥ 1),

fk(t) = β
tkβ−1

(k − 1)!
E

(k)
β (−tβ) . (3.11)

The generalized Erlang distribution function turns out to be

Fk(t) =

∫ t

0
fk(t

′) dt′ = 1 −
k−1∑

n=0

tnβ

n!
E

(n)
β (−tβ) =

∞∑

n=k

tnβ

n!
E

(n)
β (−tβ) . (3.12)

4 The Mittag-Leffler distribution as limit for

thinned renewal processes

The procedure of thinning (or rarefaction) for a generic renewal process
(characterized by a generic random sequence of waiting times {Tk}) has
been considered and investigated by Gnedenko and Kovalenko [6]. It means
that for each positive index k a decision is made: the event is deleted with
probability p or it is maintained with probability q = 1− p, with 0 < q < 1.
For this thinned or rarefied renewal process we shall hereafter revisit and
complement the results available in [6]. We begin to rescale the time variable
t replacing it by t/r, with a parameter r on which we will dispose later.
Denoting, like in (1.5), by Fk(t) the probability distribution function of the
sum of k waiting times and by fk(t) its density, we have recursively, in view
of (1.8),

f1(t) = φ(t) , fk(t) =

∫ t

0
fk−1(t − t′)φ(t′) dt′ =

(
φ∗k

)
(t) , k ≥ 2 . (4.1)

Let us denote by (Tq,rf)(t) the waiting time density in the thinned and
rescaled process from one event to the next. Observing that after a
maintained event the next one of the original process is kept with probability
q but dropped in favour of the second next with probability p q and,
generally, n−1 events are dropped in favour of the n-th next with probability
pn−1 q , we arrive at the formula

(Tq,rf)(t) =
∞∑

n=1

q pn−1 fn(t/r)/r . (4.2)
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Let f̃n(s) =
∫
∞

0 e−st fn(t) dt be the Laplace transform of fn(t). Recalling

f1(t) = φ(t) we set f̃1(s) = φ̃(s). Then fn(t/r)/r has the transform f̃n(rs) =(
φ̃(rs)

)n
, and we obtain (in view of p = 1 − q) the formula

(Tq,rφ̃)(s) =
∞∑

n=1

q pn−1
(
φ̃(rs)

)n
=

q φ̃(rs)

1 − (1 − q) φ̃(rs)
, (4.3)

from which by Laplace inversion we can, in principle, construct the
transformed process.

We now imagine stronger and stronger rarefaction (infinite thinning) by
considering a scale of processes with the parameters r = δ and q = ǫ tending
to zero under a scaling relation ǫ = ǫ(δ) yet to be specified. Gnedenko and
Kovalenko have, among other things, shown that if the condition

φ̃(s) = 1 − a(s) sβ + o
(
a(s) sβ

)
, for s → 0+ , (4.4)

where a(s) is a slowly varying function for s → 02, is satisfied, then we have
with ǫ = ǫ(δ) = a(δ) δβ for every fixed s > 0 the limit relation

φ̃0(s) := lim
δ→0

ǫ(δ) φ̃(δs)

1 − (1 − ǫ) φ̃(δs)
=

1

1 + sβ
, 0 < β ≤ 1 . (4.5)

This condition is met with a(s) = λM(1/s) if the waiting time T obeys a
power law with index β, in the sense of Master Lemma 2 by Gorenflo and
Abdel-Rehim [7]. The function M(y) is the same as in Master Lemma 2,
so it varies slowly at infinity, whence M(1/s) varies slowly at zero. The
proof of (4.5) is by straightforward calculation. Observe the slow variation
property of a(s) and note that terms small of higher order become negligible
in the limit. By the continuity theorem for Laplace transforms, see Feller
[5], we now recognize φ0(t) as the limiting density, which we identify, in view
of (3.2)-(3.5),

φ0(t) = −
d

dt
Eβ(−tβ) . (4.6)

So the limiting waiting time density is the so-called Mittag-Leffler density,
that in the special case β = 1 reduces to the well-known exponential density.

2
Definition: We call a (measurable) positive function a(y), defined in a right

neighbourhood of zero, slowly varying at zero if a(cy)/a(y) → 1 with y → 0 for every c > 0.
We call a (measurable) positive function b(y), defined in a neighbourhood of infinity, slowly

varying at infinity if b(cy)/a(y) → 1 with y → ∞ for every c > 0. Examples: (log y)γ with
γ ∈ R and exp (log y/log log y).
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It should be noted that Gnedenko and Kovalenko in the sixties failed to
recognize φ̃0(s) as Laplace transform of a Mittag-Leffler type function3.

5 Renewal processes with reward: the fractional

master equation and its solution

The renewal process can be accompanied by reward that means that at
every renewal instant a space-like variable makes a random jump from its
previous position to a new point in ”space”. ”Space” is here meant in a very
general sense. In the insurance business, e.g., the renewal points are instants
where the company receives a payment or must give away money to some
claim of a customer, so space is money. In such process occurring in time
and in space, also referred to as compound renewal process, the probability
distribution of jump widths is as relevant as that of waiting times.

Let us denote by Xn the jumps occurring at instants tn , n = 1, 2, 3, . . . .
Let us assume that Xn are iid (real, not necessarily positive) random
variables with probability density w(x), independent of the waiting time

density φ(t). In a physical context the Xns represent the jumps of a diffusing
particle (the walker), and the resulting random walk model is known as
continuous time random walk (abbreviated as CTRW) in that the waiting
time is assumed to be a continuous random variable4.

3Although the Mittag-Leffler function was introduced by the Swedish mathematician
G. Mittag-Leffler in the first years of the twentieth century, it lived for long time in
isolation as Cinderella. The term Cinderella function was used in the fifties by the Italian
mathematician F.G. Tricomi for the incomplete gamma function. In recent years the
Mittag-Leffler function is gaining more and more popularity in view of the increasing
applications of the fractional calculus and is classified as 33E12 in the Mathematics Subject
Classification 2000.

4The name CTRW became popular in physics after that in the 1960s Montroll, Weiss
and Scher (just to cite the pioneers) published a celebrated series of papers on random
walks to model diffusion processes on lattices, see e.g. [22] and references therein. CTRWs
are rather good and general phenomenological models for diffusion, including anomalous
diffusion, provided that the resting time of the walker is much greater than the time it
takes to make a jump. In fact, in the formalism, jumps are instantaneous. In more recent
times, CTRWs were applied back to economics and finance by Hilfer [10], by the authors
of the present paper with M. Raberto [20, 14, 9, 18], and, later, by Weiss and co-workers
[15].However, it should be noted that the idea of combining a stochastic process for waiting
times between two consecutive events and another stochastic process which associates a
reward or a claim to each event dates back at least to the first half of the twentieth century
with the so-called Cramér–Lundberg model for insurance risk, see for a review [3]. In a
probabilistic framework, we now find it more appropriate to refer to all these processes as
to compound renewal processes.
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The position x of the walker at time t is

x(t) = x(0) +

N(t)∑

k=1

Xk . (5.1)

Let us now denote by p(x, t) the probability density of finding the random
walker at the position x at time instant t . We assume the initial condition
p(x, 0) = δ(x) , meaning that the walker is initially at the origin, x(0) = 0 .
We look for the evolution equation for p(x, t) of the compound renewal
process. Based upon the previous probabilistic arguments we arrive at

p(x, t) = δ(x)Ψ(t) +

∫ t

0
φ(t − t′)

[∫ +∞

−∞

w(x − x′) p(x′, t′) dx′

]
dt′ , (5.2)

called the integral equation of the CTRW. In fact, from Eq. (5.2) we
recognize the role of the survival probability Ψ(t) and of the densities
φ(t) , w(x) . The first term in the RHS of (5.2) expresses the persistence
(whose strength decreases with increasing time) of the initial position x = 0.
The second term (a space-time convolution) gives the contribution to p(x, t)
from the walker sitting in point x′ ∈ R at instant t′ < t jumping to point x
just at instant t , after stopping (or waiting) time t − t′ .

The integral equation (5.2) can be solved by using the machinery of the
transforms of Laplace and Fourier. Having introduced the notation for the
Laplace transform in sec. 1, we now quote our notation for the Fourier
transform, F{f(x);κ} = f̂(κ) =

∫ +∞

−∞
eiκx f(x) dx (κ ∈ R), and for the

corresponding Fourier convolution between (generalized) functions

(f1 ∗ f2) (x) =

∫ +∞

−∞

f1(x
′) f2(x − x′) dx′ .

Then, applying the transforms of Fourier and Laplace in succession to
(5.2) and using the well-known operational rules, we arrive at the famous
Montroll-Weiss equation, see [16],

̂̃p(κ, s) =
Ψ̃(s)

1 − φ̃(s) ŵ(κ)
. (5.3)

As pointed out in [7], this equation can alternatively be derived from
the Cox formula, see [2] chapter 8 formula (4), describing the process as
subordination of a random walk to a renewal process.
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By inverting the transforms one can, in principle, find the evolution
p(x, t) of the sojourn density for time t running from zero to infinity. In
fact, recalling that |ŵ(κ)| < 1 and |φ̃(s)| < 1, if κ 6= 0 and s 6= 0, Eq. (5.3)
becomes

˜̂p(κ, s) = Ψ̃(s)
∞∑

k=0

[φ̃(s) ŵ(κ)]k ; (5.4)

this gives, inverting the Fourier and the Laplace transforms and taking into
account Eqs. (1.9)-(1.10),

p(x, t) =
∞∑

k=0

P (N(t) = k)wk(x) , (5.5)

where wk(x) =
(
w∗k

)
(x), in particular w0(x) = δ(x), w1(x) = w(x).

A special case of the integral equation (5.2) is obtained for the compound

Poisson process where φ(t) = e−t (as in (2.1) with λ = 1 for simplicity).
Then, the corresponding equation reduces after some manipulations, that
best are carried out in the Laplace-Fourier domain, to the Kolmogorov-Feller

equation:

∂

∂t
p(x, t) = −p(x, t) +

∫ +∞

−∞

w(x − x′) p(x′, t) dx′ , (5.6)

which is the master equation of the compound Poisson process. In this case,
in view of Eqs (2.4) and (5.5) the solution reads

p(x, t) =
∞∑

k=0

tk

k!
e−t wk(x) . (5.7)

When the survival probability is the Mittag-Leffler function introduced in
(3.3), the master equation for the corresponding fractional version of the
compound process can be shown to be

tD
β
∗

p(x, t) = −p(x, t) +

∫ +∞

−∞

w(x − x′) p(x′, t) dx′ , 0 < β < 1 , (5.8)

where tD
β
∗ denotes the time fractional derivative of order β in the Caputo

sense. For a (detailed) derivation of Eq (5.8 ) we refer to the paper by
Mainardi et al. [14], in which the results have been obtained by an approach
independent from that adopted in a previous paper by Hilfer and Anton [11].
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In this case, in view of Eqs (3.10) and (5.5), the solution of the fractional

master equation (5.8) reads:

p(x, t) =
∞∑

k=0

tβk

k!
E

(k)
β (−tβ)wk(x) . (5.9)

In [9] we have, under a power law regime for the jumps, investigated for
Eq. (5.8) the so-called diffusive or hydrodynamic limit, obtained by making
smaller all jumps by a positive factor h and accelerating the process by
a large factor properly related to h, then letting h tend to zero. In this
limit the master equation (5.8) reduces to a space-time fractional diffusion

equation. This is also the topic of the recent paper by Scalas et al. [21] and,
in a more general framework, of the paper by Gorenflo and Abdel-Rehim
[7].

Conclusions

We have provided a fractional generalization of the Poisson renewal processes
by replacing the first time derivative in the relaxation equation of the
survival probability by a fractional derivative of order β (0 < β ≤ 1).
Consequently, we have obtained for 0 < β < 1 non-Markovian renewal
processes where, essentially, the exponential probability densities, typical
for the Poisson processes, are replaced by functions of Mittag-Leffler type,
that decay in a power law manner with an exponent related to β.

The distributions obtained by considering the sum of k iid random vari-
ables distributed according to the Mittag-Leffler law provide the fractional
generalization of the corresponding Erlang distributions. Furthermore,
the Mittag-Leffler probability distribution is shown to be the limiting
distribution for the thinning procedure of a generic renewal process with
waiting time density of power law character.

Then, our theory has been applied to renewal processes with reward, so
can be considered as the fractional generalization of the compound Poisson
processes. In such processes, occurring in time and in space, also the
probability distribution of the jump widths is relevant. The stochastic
evolution of the space variable in time is modelled by an integro-differential
equation (the master equation) which, by containing a time fractional
derivative, can be considered as the fractional generalization of the classical
Kolmogorov-Feller equation of the compound Poisson process. For this
master equation we have provided the analytical solution in terms of iterated
derivatives of a Mittag-Leffler function.
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Appendix: The Caputo fractional derivative

The Caputo fractional derivative provides a fractional generalization of the
first derivative through the following rule in the Laplace transform domain,

L
{

tD
β
∗

f(t); s
}

= sβ f̃(s) − sβ−1 f(0+) , 0 < β ≤ 1 , s > 0 , (A.1)

hence turns out to be defined as, see e.g. [1, 8],

tD
β
∗

f(t) :=






1

Γ(1 − β)

∫ t

0

f (1)(τ)

(t − τ)β
dτ , 0 < β < 1 ,

d

dt
f(t) , β = 1 .

(A.2)

It can alternatively be written in the form

tD
β
∗

f(t) =
1

Γ(1 − β)

d

dt

∫ t

0

f(τ)

(t − τ)β
dτ −

t−β

Γ(1 − β)
f(0+)

(A.3)

=
1

Γ(1 − β)

d

dt

∫ t

0

f(τ) − f(0+)

(t − τ)β
dτ , 0 < β < 1 .

The Caputo derivative has been indexed with ∗ in order to distinguish it
from the classical Riemann-Liouville fractional derivative tD

β, the first term
at the R.H.S. of the first equality in (A.3). As it can be noted from the last
equality in (A.3), the Caputo derivative provides a sort of regularization at
t = 0 of the Riemann-Liouville derivative; for more details see [8].
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[3] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extreme

Events for Insurance and Finance, Springer Verlag, Berlin, 2001.
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