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Abstract

We introduce a general non-Gaussian, self-similar, stochastic process called the fraetiynaldtion (fLm).
We formally expand the family of traditional fractal network traffic models, by including the fLm process. The
main findings are the probability density function of the fLm process, several scaling results related to a single-
server infinite buffer queue fed by fLm traffic, e.g., scaling of the queue length, and its distribution, scaling of the
gueuing delay when independent fLm streams are multiplexed, and an asymptotic lower bound for the probability
of overflow (decreases hyperbolically as function of the buffer size).
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. INTRODUCTION

It has been suggested that Internet traffic is far too complicated to be modeled using the
techniques developed for the telephone network or computer systems [26]. We argue that al-
though traffic theory currently plays a very minor role in the design of the Internet, it should
be increasingly used in the development, design and dimensioning of the future multiservice
Internet. Extensive traffic measurement studies from a wide range of data networks and ser-
vices/applications, have convincingly demonstrated the self-similarity or fractal nature of data
traffic [4], [12], [20]. As a consequence, a large number of traffic models have been proposed
in order to successfully characterize the real statistical behaviour of the traffic met in networks
today. The reason for that is that self-similarity has serious implications for the analysis, design,
and control of broadband networks. In contrast, traditional schemes, typically Markovian in
nature, which have been (and currently are) extensively used may lead to substantial unteresti-
mation of QoS metrics such as delay and blocking (see [19] for a comprehensive treatment of
the problem).

More specifically, measurements and statistical analysis of real traces reveal that traffic ex-
hibits irregularities Burstinesy both in terms of extreme variability of traffic intensities as well
as persistent autocorrelation. Such traffic looks extremely irregular (under appropriate aggrega-
tion) at different time scales [12] and such extreme behavior is not exhibited by the traditional
Poisson traffic which smoothes out when aggregated at coarser time scales. Itis said that Inter-

net traffic demonstrates the propertysedf-similarity According to Mandelbrot, an irregular,
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self-similar object is called asactal [14]. Fractal modeling has been used in a number of re-
search areas such as financial mathematics, telecommunications, and chaotic dynamics [1], [17].
Internet traffic and more generally broadband network traffic, is an area where fractal modeling
has become popular recently [26].

The first attempt to apply the fractal concept to traffic modeling was to use the of so-called
“fractional Gaussian noise” (fGn) instead of traditional Poisson-based models. Compared to
standard Gaussian noise, the fractional Gaussian noise model has one extra parameter, the Hurst
parameteid, which quantifies the strength of the fractal scaling. It is said usually, that the fGn
is self-similar, or fractal, with Hurst paramet&r.

In this paper we formally introduce, develop and elaborate a teletraffic model which takes into
account, in addition to the Hurst parametérc [1/2,1), the Lévy parametetr € (1,2]. Itis
so-calledfractional Lévy motion(fLm), mentioned by Mandelbrot in [15].

Two important subclasses oklky motion exist: (i) the well-known ordinarydvy motion
(oLm), ana-stable process (distributed in the sense of @l [13]) with independent incre-
ments, which is a generalization of the ordinary Brownian motion (the Wiener process), and (ii)
elaborated in this paper, the fractiona\Juy motion, a self-similar and stable distributed pro-
cess, which generalizes the fractional Brownian motion (fBm), has stationary increments and an
infinite “span of interdependence”.

The (fractional) levy random process plays an important role in traffic modeling and more
generally in the study of applied stochastic processes, for at least two reasons. The first is that
the (fractional) levy motion can be considered as a generalization of the (fractional) Brownian
motion. The mathematical foundation of the generalization, is obtained using basic properties
of stable probability laws. From the limit theorem point of view, stable distributions are gen-
eralizations of the widely used Gaussian distributions: Stable distributions are obtained at the
limit of (properly normalized) sums of independent identically distributed random variables. An
important distinction for thex-stable probability distribution is that the power-law (of the com-
plementary cumulative distribution function) decreasegréis <, wherea is the Lévy index
with 0 < o < 2. Hence, the moments of order> « diverge. In queuing analysis of telecom-
munication switches and routers, infinite moments in the input process can engender infinite

moments in the queuing process, corresponding to rather long waiting times.
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The second reason for the important role of the fractiomahlmotion is its property of scale
invariance or self-similarity. Furthermore, tirerementf the process are not only self-similar
but alsodependenbn each other, having at the same time distributions vy tails The
fractional Brownian motion is mathematically tractable, and easily applied to modeling of fractal
traffic. It is however, a Gaussian process and it has finite variance. The fLm is more general
and it may be well suited for modeling of traffic intensities or rates that have large spreadings
(in theory infinite variance). Moreover, synthetically generated traces of traffic profiles may be
important for stressing/testing actual computer systems/networks. Therefore, we believe that it
is important to understand and analyze the behavior of queues fed by fLm traffic streams.

So far, several self-similar stable motions have been proposed for traffic modeling. These
processes combine, in a natural way, both scaling behavior and extreme local irregularity. In [9]
the authors use the stationary sequence induced by the linear fractional stable motion (LFSM)
for heavy-traffic modeling of real Ethernet, VBR video, and WWW traffic. In [6], a compar-
ison study of the queuing performance of the f{Gn and the noise induced by the LFSM is pre-
sented, and in [7] admission control issues are addressed. Consequently, similar models based
on other self-similar-stable processes with stationary increments, e-gtable L&y motion,
log-fractional stable motion, have tried to address the problem of self-similarity and heavy-tails
at the same time [2], [5], [11]. For more information about these non-Gaussian processes see
[23].

The objective of our research in this paper is twofold: a) We provide a formal definition of the
fractional Lévy process, show some of its properties, and derive its probability density function
following a novel approach, and b) we provide queuing results related to the asymptotic behavior
of the tail of the queue-length distribution, the overflow probability, and the queuing delay.

The paper is organized as follows. In Section 2 we present the definition and properties of
the fractional lEvy motion (fLm). We start by introducing basic properties of the ordinaml"
process. Then we define the fLm in terms of a Riemann-Liouville fractional integral and we
show the self-similarity of the process and its increments. Further properties of fLm are derived
and we conclude with the computation of its probability distribution function and the fractional
moments of its increment.

In Section 3 we present a new traffic model based on fLm. Input traffic modeled as fLm, is

February 11, 2001 DRAFT



N. LASKIN ET AL.:FRACTIONAL L EVY MOTION AND... 5

fed to a single server queue with infinite buffer size. Scaling results for the queue size as well
as its distribution are then presented. In Section 4, we study the tail distribution of the overflow
probability and we calculate an approximate lower bound for it.

In Section 5, we study the scaling dependences of the queuing delay, as the number of multi-
plexed streams grow in proportion with the service rate of the queue.

Finally in Section 6 we present our conclusions and suggestions for further research.

Il. FRACTIONAL LEVY MOTION AND ITS PROPERTIES
A. Self-Similarity

There are a number of different definitions of self-similarity. The standard one states that
a continuous-time process = {Y(¢),t > 0} is self-similar, with self-similarity parameter
H > 0 (H-s9, if it satisfies the condition:

Y(t) L Y (et), V¢ >0, Ve > 0, (1)

where the equality is in the sense of finite-dimensional distributions. This means that, for any
d > 1 sequence of time points, . .. ,#;, and any positive constant ¢~ (Y, , Yat,, .- ., Yar,)
has the same distribution é%,,,Y,, ..., Y;,). TheHurst parameter is the scaling parameter
of self-similarity.

The are many different self-similar processes in the literature. We typically consider self-
similar processes with stationary increments, and call thesssiprocesses, since they are of
great interest in applications. For details on self-similar processes see [4] and [23]

For example, from the above definition, it is not difficult to check that the Wiener process or
(ordinary)Brownian motion(oBm) [4], is a self-similar process witH = 1/2 and since it has

stationary increments, it islg/2-sssi process.

B. Definition of the fractional &vy motion

The counterpart of the Brownian motion for< o < 2 is the symmetricy-stable vy
motion ((ordinary) Lévy Motion (oLm)) L, = {L.(t), t > 0}. oLm is a Markov stochastic
process that starts @thas stationary independent increments, arfd-sssi withH = 1/q«, i.e.,
La(ct) £ ct/*L,(t), t > 0. The probability density function of oLm is
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1 7.
palest) = o= [ dke™ exp{—olk|t}, 7

whereos > 0 is a scale parameter.
It is known for oLm, that an I/« law” can be stated for th&actional structure function
Su(1,0a) = E[L.(t + 7) — L.(t)]” as follows:

For0 < aa < 2

™V (v; a), v<a<?2
Su(T,0) = (3)

o0 V> o

whereV (v; «) is defined as

ovla F 7
Vivia)y= 7~ [ delel” [ deexpice — |s]"). (4)

Following Mandelbrot’s generalization of the ordinary Brownian motion to the fractional
Brownian motion (fBm) in [15], we define th&actional Lévy motion(fLm) process as the

following Riemann-Liouville fractional integral
1 t
L, tzi/dLar t— )12, 5
#0) = gy [ ) (5)

where L,(t) is the ordinary symmetrie-stable levy Motion (oLm), andl'(-) denotes the
gamma function.

Note, that fLm is the generalization of the well known fractional Brownian motion, which can
obtained from (5) forr = 2. So, the role that fLm plays among stable processes is similar to the
role that fBm plays among Gaussian processes.

We also define thincrements of the fLm processsA L, i (7) = {La,g(t+7)— Lo g (t), 7 >
0}, which is a continuous-time stationary process.

'Note, that thé/ (1; ) can be easily evaluated and as a result we have

via
Viv;a) = sin (7;—11) (1 +v)I(1 - Z), vr<a<?.
o

iy

where gamma functiol'(z) has a familiar integral representatidniz) = fdttz—le—t, Rez > 0. The expression for

0
V(v; @) was obtained at first by West and Seshadri (see Eq.(3.6) in Ref. [25]).
ZFor the definition of the fractional integral see, for exam#g,[R2].
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Let us discuss some important properties of the fLm process and its increments.

Theorem 1: The fLm is &-sssi process with Hurst paramefér— £ + L.
Proof: The proofis based on the self-similarity property of oLm.
Fort > 0 andc > 0,

LQ7H(ct) = ﬁo/dLa(T)(ct_T)H—l/Z

Let 7 = ¢s and use the fact thalll, (cs) = ¢*/*dL,(s). Then,

Lo (ct) £
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So, according to defition (1), fLmisa(H — % + %)-sssi process. ]

Corollary 1: The{L. r(t2) — Lo,z (t1)} increment process is self-similar with Hurst param-
eterH — 1 + 1.
Proof: The proof is based on the self-similarity property of the fLm and the stationarity of its increments. It
is easy to show that far > ¢; ande > 0

d 1,1
Lo (cty) = Lo (cty) = ™34 (Lo, g (ts) — Lo, (t1)),

i.e., the increment process is self-similar with the same Hurst paraiietet + L. u

C. The probability distribution function of the fLm

In this we derive the probability distribution function (pdf) z (x,¢) of the fLm using the
pdf of oLm and some results from functional calculus (theory of generalized functions and
functionals).

Let us first define the characteristic functiép, ,, (%, t) of the fLm as

: —i|k|%j‘dLa(7-)(t_T)H—1/2
QLQ,H(k7t) = E[6_2|k|L0‘7H(t)] — e T( 5 )

] (6)

By taking the inverse Fourier transform of the characteristic function, we can fipd the:, ¢).
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We now turn our attention to the following lemma, referring to the oLm process.

Lemma 1:For a well behaved functioyi(¢) the following holds

—ik [ dLa(7) f(r) —alk|* [(f(r))*dr
Ele o 0

Proof: The proof can be obtained from results from functional calculus and by using the characteristic

=€

function of the oLm process, i.e5[e~#La(t)] = eIkt [ |
We now derivep, x(z, t) in the following theorem:
Theorem 2: The probability distribution function (pgf) (=, ¢) of the fLm process is given

by

17
Pai(x,t) = oy / dket*® exp{—5|k|0‘t°‘(H_%)+1}. (7)
T
. . t—r)H-3%
Proof: Following the above lemma fof(7) = % we get
B fien b
q)La,H(kvt):e ( +2)D 9
or
@LQ,H(kat) = e_Elklata(H_%)-‘—l?
where
g
—_ ) 8
T D@ -+ ©
Hence, the. #(z,1) is given by equation (7).
]
By using the Taylor series expansion of the second exponential in (7), we can get
1 7 & (=)
Pan(,t) = 6(2) + oy / dke™ 3" ¥|k|0‘”t°‘”m_%)+”, a < 2. 9)
T =

The integral oveF: can be evaluated as follows
17 .
i / dkezkx|k|om —
27‘[‘_00
m(an +1) 1 Tan

I'(an+1)-Re exp(z#) = sin( 5 JT(an +1).

7.[-|x|om—|—1 _7T|$|Om+1

So, the probability density function is equivalent to
February 11, 2001 DRAFT
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_)n tozn(H—%)-I—n To

nz::l (_nU! P sin( Qn)F(om +1). (10)

q |

Pau(x,t) =d(x) —

The above series (10) is convenient for the study of the asymptotic behayioy,¢f, ¢), as

The pdf of the fBm is obtained from (7), as a special caserfer 2:

1 r ik — 1 ;1;2
poai(w,) = o= / dke™* exp{—ahpt*"} = pre— R e g4

wherea g is given by (8) fora = 2, i.e,o5 = ¢/2HI?*(H +1/2).
Corollary 2: A “7H-3+= |law” for the fractional structure function of the fLm can be stated

as follows:
S (r.0) = ElLop(t 4 ) — Lon(t)] = T H=34 DV (v; ), v<a<?2 1)
o0 V> o
where . .
Vitvio) = 2 [ atel [ deesp e — <. (12)
Proof: The proof is be obtained using tﬁzopdf of th_eO?Lm process. ]

Proposition 1:If L, g(t) is H-sssi with a continuous fractional structure function of oneer
1 <v < a,then
1

1 3

<g<>_ L (13)

2« «
Proof: The left part of the inequality can be proved, requiringrder moment continuity of ., & (t) [24].
The right part follows using the# =2+ law” and the Minkovski inequality applied o (v;a) . ]

[1l. QUEUING ANALYSIS WITH FLM INPUT

In this Section we use the apply the fLm process to define a 4-parameter “fractenal L~
traffic” model, and study the queuing process arising when this traffic is fed to FCFS queue with

unlimited buffer space and constant service (leak) rate.
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A. The fractional levy traffic model

The “Fractional levy traffic” model we consider, is a generalization of the “Fractional Brow-
nian traffic’ model that was first introduced by Norros [18]. So, in continuous time, the cumu-
lative traffic (or arrival) process(t), that is the amount of total load (in bits, say) produced by

a source in the time intervél, t], ¢t > 0, can be modeled by
A(t) = mt + (Gm)Y* Lo g (t), (14)

wherem > 0 is the mean input rate is the scale factor, andl, ;(¢) is the fLm process
defined by (5).
The model has four parameters «,c and H with the following interpretations:

« m > 0 is the mean constant input rate

a € (1,2] measures the “thickness” of the tails of the stable distribution

« @ > 0 is the scaling parameter that can be seen as the dispersion around the mean of the traffic

B. Scaling of the queue length and its distribution

An important issue is the impact of fractality on queuing. Several network engineering prob-
lems, such as buffer dimensioning and traffic control, are related to this question which makes it
extremely important.

The first result on queuing analysis of self-similar traffic seems to appear in Norros [18] in
which the popular Weibull (lower) bound of tleerflow probabilityhas been established using
the fBm input process. In this paper, we elaborate this analysis for the more general case, where
the workload is self-similar and stable instead of Gaussian.

Consider a single server queue with constant servicerrate0 and infinite buffer space,
where the input is a stable self-similar process following (b4} (m/r is the queue utilization,
andr > m for stability). The buffer occupana@(¢; r) at timet (queue size or queue length),

can be written as

Q(t;7) = sup (A(t) — A(s) = r(t = s)), (15)

0<s<t
similarly to the well-known Reich’s formula for the virtual waiting time in a queuing system
[21], (see also, [3]).
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Hence,(A(t) — A(s)) is the amount of work arrived to be processed during the time interval
[s,t] andr(t — s) is the amount of work that has been processed in the same time interval.

It is immediately seen tha&p(¢; ) is indeed a stationary, fractional stable process. This fol-
lows as a consequence of the stationarity, self-similarity and stability of the increments of the
fLm process. Scaling dependencesiift; ») can be deduced directly from the properties of
fLm. Let us first study the behavior 6J(¢; r) at different time scales.

Theorem 3: The stochastic procé&sg; ) has the following scaling

Q(etyr) £ MTH Qe 5 + (1 — 5T )m) (16)
foranyc > 0.
Proof: Let

Qct;r) = Os<1§[<)t(A(ct) — A(es) — r(ct — ¢s)).

Using the fact that the increments of the fLm are self-similar with Hurst paramieter; + L, we obtain

Q=

Qetir) £ sup () (Lo (1) = Loa(s) +e~ " m = n) (1 = ) =

0<s

il

S5

+§Q(t;c_H+%_ér—|— (1— c_H+%_§)m).

u
In other words, the proces ct; r) is equal in distribution with the’ —z+4 times the original
workload proces§)(t; ) with a renormalized service rate— ¢~ +:~ar 4 (1 — ¢ H+5-a)m.
This theorem is ther-generalization of the Theorem 3.1 of [18] and includes it in the special
case wherex = 2.
Scaling laws with particular significance can be obtained by considering the set of system

parameters satisfying the storage threshold exceedance criterion

e=P(Q(0;r) >b) = P(ili}g(A(T) —r7) >b) a7

Equation (17) can be interpreted aguality of servic QoS) requirement, defining a storage
requiremend > 0, related to thg@robability of overflow

Consider the function

q(b,s) = P(sup(La,u(7) —<7) > b). (18)

>0
So, forb =1, q(1,<) = P(sup,5¢(La,u(7) —¢7) > 1) (strictly decreasing for > 0).

Theorem 4: The functioq(b, <) possess the scaling
February 11, 2001 DRAFT
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i_L_H
q(b,<) = q(1, bH‘L”?c) (19)

Proof: We use only the self-similarity property of the fLm to show this scaling

1 1
q(cb,s) =P <sup(—La7H(7') - —sT) > b> =
>0 € c

Forb = 1 we prove the scaling relation.
Taking into account the above scaling result, equation (17) can be rewritten as

b r—m b 121—;+% r—m
= . 7 —— ). 20
WG Gy ~ 4 ((m)l/a) e .

Corollary 3: The QoS requirementin (17) is equivalent to the “bandwidth allocation formula”
(=34 (21)

r=met g (1 Ty G

and to the “buffer dlmensmnlng formula”
H

1
1—p 2 L emgeh
1/oz(H—§+;)bH FrartTity =0 ¢ (1e), (22)
Proof: Taking the inverse function af(1, <) in (20), the following equation holds

1fa(H—L1l41 a(H-L141
Q—H—é)/(H—%+§)m 1/a(H=-5+21) :El/ (H 2+a)q_1(1’€)’

or

o(H- 343 a(H-1
r=m+q (1,67 )1/ « 2+")b (3-H-2)/(H-3+2),, V/eE-2+D

Substitutinge = m/r to (21), we obtain the “buffer dimensioning formula
|

Let us now apply the above formulae to different type of input traffic
DRAFT
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(i) The input is modeled as ordinary Brownian motion, iE.= ; ande = 2. In this case
(22) reduces to

b="5b(p)=const-p-(1—p)7". (23)

(i) The input is modeled as ordinanely motion, i.e.,H = 1 and0 < o < 2. In this case
we have

1 1

b=>b(p) =const-pa-T1-(1—p) aT. (24)
As for ordinary Brownian motion, the service rat@as disappeared from (24).
(iii) In the fBm casea = 2 andH > 1, the situation is different. ¢From the “buffer dimen-
sioning formula” (22), fixing the service rateand solving for the buffer requiremebtas a

function of p, we obtain

b=0b(p) = const - pl/ (=) (1-— p)_H/(l_H) (25)

which is the (3.6) result presented in [18].
From the “bandwidth allocation formula” (21), fixifigand solving for-, we obtain

r=r(p) = const - pt/GH-1) (1-— p)_H/(H_%) (26)

Y

i.e., (3.7) of [18].

(iv) The fractional l€vy input, is the more general case. Again, from (22), we express the
buffer requirement as a function of utilizationp

by
hoj—

+

o)

b=0b(p) = const - peG=5-H). (1—p) 2= (27)
This isa-generalization of the result (3.6) in [18].
In order to have have the-generalization of the result (3.7) in [18], from (21)
_H-3+ )
r=r(p) = const - pl/o‘(H_%) (1—p) WD (28)

In the following section we calculate an asymptotic lower bound for the QoS requirement

IV. ASYMPTOTIC LOWER BOUND FOR THEPROBABILITY OF BUFFER OVERFLOW

In this section we present a technique which leads to the calculation of an asymptotic lower
bound of the QoS requirement (17). Our approach is different of the ones used in the literature,

i.e., [2], [5], [8], [11], since we use the power series expansion of the probability distribution
function of the fLm.
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The following theorem provides a lower bound of the complementary distribution function of

the queue length:

Theorem 5: An asymptotic lower bound for the overflow probability is given by

e = P(Q(0;r) > D)>A b *GH-3) h 5 o0 (29)

where

3 a 1 a(H-3)+1
Aa:Ma(am)((f_H)o‘_l) ([@ o —5) 1 ) , (30

a —H)a—l}(r—m)
and
M, = ZT(a+1)sin (31)
% 2
Proof:

Starting from (17) we have

e=P(Q(0;7) >b) ZIPZ&%(P <LQ7H(T)— (r_?/ll7'> b > .

Fm) G

Using the probability distribution function of the fLm, & (x, t), one can express the probabil®Ry L. (1) > B)
as

oQ

P(Lau(t)>B)= /dxpa7H(x,t).

In order to calculate the above probabilitylas— oo, we use only the first term of the series (10), i.e.,

7_oc(H—%)+1
P(La,u(t) > B)~M, Be , B — oo,
wherelM, is given by (31).
Hence, forb = (=T we get
. 7_oc(H—%)+1

By differentiating the expression in the right side of the above equation, we find that the maximum is obtained

for - = 19, where

olH-4H+1
N [(%—H)a—l] (r—m)
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By substitutingr, to find the maximum, we obtain the asymptotic given by (29), and the proof is complete.
u
In order to find the required capacityto satisfy the QoS criterion approximately, we simply
solve (29) forr, i.e.,
r =t (M, o)D) (@b A1), 1 (a(H- b ) L

rol=hofes
Q==

(32)

Comparing the above approximate requirement with the exact one given by the “bandwidth
allocation formula” (21), we see that they differ only by the fadtbf;, /e)"/ (7 =2)+1.

The rate of decay in (29) is at most an algebraic function of the buffer size, and is in accor-
dance of the results reported in [5], and [8].

The above result encompasses previous results in the literature, related to traditional traffic
models. More specifically,
« For the Brownian case, i.eH = 1/2 anda = 2, the expression (29) reduces to the well-
known asymptotic provided by the exponential distribution.
« [11] analyzes a queue with oLm input.

« [18] provides an asymptotic bound for the fBm case.

V. SCALINGS FOR QUEUING DELAY IN THE LM CASE

In this section we explore the queuing delay in a queue fed by fLm traffic, under various scal-
ing regimes. This study was motivated by the consequences of rapidly growing communications
capacity for the evolution of the Internet. For example, Kelly [10] argues that queuing delays be-
come small in comparison with propagation delays, giving new insights towards a self-managed
Internet.

We assume that traffic and capacity grow proportional in a queuing system, and we follow the
same notion as [10], to show the reader the generalized delay results for the fLm case.

Let « be the thevolumescaling parameteb, and ¢ the speedand multiplexingparameters:
the original workload at the interv@d, ], i.e., A(t) — A(s), has been increased in volume &y
speeded up by, andc i.i.d. fLm streams4,;(¢),: = 1,2,-- -, ¢ have been multiplexed. There-

fore, the workload obtained after the scaling in the three regimes is

C

S a(Ai(bt) — Ai(bs)).

=1

The buffer occupancy at tinteof the new system becomes
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Q(tabyeir) = sup (3 a(@m)'/*(LL)y(bt) = Lly(bs)) — abe(r —m)(t = 5)),  (33)
when the new workload is applied to (15).
SinceQ(t; a, b, ¢; ) describes the buffer occupancy, the queuing delay under the FIFO disci-
pline is (on average)
A(a,b,c) = Q(a,b,c)/aber (34)

As Kelly [10] points out, the impact of the parameterandb parameters are straight-forward:

Ala,b,c) £ A(1,b,c), Ala,b,c) £ Aa, 1, ¢). (35)

In the following theorem we show how the multiplexing parameter impacts the queuing delay
(obviously,A(a,b,¢) < A(a,b,1)).
Theorem 6: The queuing delay of the multiplexed fLm streams obeys the following scaling

3

Ala,b,¢) £ @D/ G=H-DA(q, b, 1), (36)
Proof: By multiplying A(a, b, 1) by ¢~ («=1)/«(5=H)~1 and using the definitions (33) and (34) we get

c—(a—l)/a(%—H)—lA(a’ b,1) 4

sup

0<s<t br r

. am)Y (L, g (bt) — L (b . _
(c—(oc—l)/oc(g—H)—l(o-m) (Lo, (0t) = L 5(b5)) _c—(a—1)/a(5—H)—1(7° m) (t 5)) ‘

Further, changing the time variableands as
c—(oc—l)/oc(%—H)—l . (t, 8) - t/, s
yields

e/ eG=M)=1A(q b, 1) 4

br r

sup

(c—(o«—l)/a(am)l/“(La,H(bt’) “Lag(s) r=m) s'))

where the self-similar property of fLm was taken into account.
From the additive property of the stable processes, e.g., [23], we have that the superposifiom streams
with the same scale parameteteads to renormalization of the scale by faatbi®, i.e.,7 — ¢/*7. Hence, we

obtain
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c—(a—l)/a(%—H)—lA(a’ b, 1) 4

S a@m) e (L0 (bt) — LU (bs)) )
sup =1 _ T m (t—s)

0<s<t abe r

It is easy to see that the right side of the last equation eqd@ls:, b, ¢; ) /abe, i.e., A(a, b, c).

VI. CONCLUSIONS

In this paper, we extend Mandelbrot’s work [15], dropping the assumption of finite variance
and falling into the stablé{-sssi processes as the next larger class. We introduce fractional
Levy motion (fLm), which attains integral representation similar to fractional Brownian motion
(fBm) [15], keeping the same exponettfs- 1 for the integration kernel, and using the ordinary
symmetric L&y motion as an integrating process rather than ordinary Brownian motion. While
there are several other fractional stable motions in the literature [23], this is the first time that
fLm and its probability density function (or characteristic function) are introduced.

Based on fLm, we develop a parsimonious traffic model, suitable for traffic modeling in mod-
ern broadband networks. Since empirical data collected for a variety of communication networks
and applications exhibit self-similarity and heavy-tailed dependences, it is reasonable to apply
the “Fractional Ley traffic” model which captures these characteristics. Statistical analysis of
TCP traces and preliminary results justify our argument, and fLm seems to be quite promising
in describing the observed properties and behavior of today’s teletraffic.

We further elaborate all the well-known fractal queuing results obtained for Gaussian pro-
cesses. Boththe scaling expressions and the lower asymptotic bound for the overflow probability

that are presented here encompass all results in the literature related to fBm and oLm.
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