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Abstract

A new extension of a fractality concept in �nancial mathematics has been developed. We
have introduced a new fractional Langevin-type stochastic di�erential equation that di�ers from
the standard Langevin equation: (i) by replacing the �rst-order derivative with respect to time
by the fractional derivative of order �; and (ii) by replacing “white noise” Gaussian stochastic
force by the generalized “shot noise”, each pulse of which has a random amplitude with the
�-stable L�evy distribution. As an application of the developed fractional non-Gaussian dynamical
approach the expression for the probability distribution function (pdf) of the returns has been
established. It is shown that the obtained fractional pdf �ts well the central part and the tails
of the empirical distribution of S&P 500 returns. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Dynamics of �nancial assets demonstrate the stochastic behavior. The �rst theoretical
attempt to describe stochastic �nancial dynamics was made by Bachelier in 1900 [1].
He proposed the Brownian motion to model the stochastic process of the return G(t) ≡
G�t(t) over a time scale �t de�ned as the forward change in the logarithm of price
or market index S(t),

G�t(t) = ln S(t +�t)− ln S(t) :
Bachelier’s approach is natural if one considers the return over a time scale �t

to be the result of many independent “shocks”, which then lead by the central limit
theorem to a Gaussian distribution of returns [1]. The Gaussian assumption for the
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dynamics of a �nancial assets is widely used in mathematical �nance because of the
simpli�cations it provides in analytical calculation; indeed, it is the main assumption
used in the famous Black–Scholes option pricing formula [2].
However, empirical studies [3–5] showed that the probability distribution of returns

has pronounced tails in striking contrast to that of a Gaussian.
Mandelbrot, who introduced into scientists’ lexicon the new term “fractal”, observed

[3] that in addition to being non-Gaussian, the stochastic process of returns shows
another interesting property: self-similarity – that is, the statistical dependencies of
returns have similar form for various time increments �t, ranging from 1 d to 1 month.
As it is discussed in Ref. [6] “motivated by (i) the pronounced tails, and (ii) the stable
functional form for di�erent time scales, Mandelbrot [3] proposed that the distributions
of the returns is consistent with a L�evy stable distribution [7] – that is, the returns
can be modeled as a L�evy �-stable process”. Thus, from the point of view of the
fractal concept one may say that Bachelier’s and Mandelbrot’s approaches were the
�rst attempts applying the fractality concept to model the �nancial assets dynamics.
It is well known that the trajectories of the Brownian and L�evy stochastic processes
are fractals. It means that they are non-di�erentiable, self-similar curves whose fractal
dimensions are di�erent from their topological dimension [8].
Since the well-known papers [3,9] on L�evy distributions, there have been several

attempts to develop the fractional approach to the problem. Most of them deal with
cut-o� of the L�evy distributions (see, for example, Refs. [10,11]). The approaches
based on cut-o� procedures are approximations to the pdf trying to �t the empirical
data, but they are essentially non-dynamical and do not allow one to predict the future
behavior of a market.
We develop a new extension of a fractality concept in �nancial mathematics and

apply it to describe the stochastic dynamics of the stock and currency markets. We
propose a new fractional dynamical approach to model the evolution of the stochas-
tic �nancial assets. The main di�erence from the previous stochastic dynamical ap-
proaches to uctuating market phenomena is the following. We consider the fractional
Langevin-type stochastic di�erential equation that di�ers from the standard Langevin
equation:
(i) By replacing the �rst derivative with respect to time by the fractional derivative

of order �.
(ii) By replacing the “white noise” Gaussian stochastic force by the generalized “shot

noise”, each pulse of which has a random amplitude.
The proposed fractional dynamical stochastic approach allows to obtain the probabil-

ity distribution function (pdf) of the modeled �nancial asset. As an application of the
developed general approach, we derive the equation for the pdf of increments �x of a
�nancial market index as a function of the time delay �t, �x(�t) = x(t +�t)− x(t),
where the value of the index is denoted as x(t). Statistical properties of asset price
increments play an important role both for understanding of the markets dynamics and
for �nancial engineering applications, for instance, the pricing of derivative products
and risk evaluations. The theoretically predicted pdf of increments of market index �x
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as a function of the time delay �t has been compared with the well-known statisti-
cal dependencies of the Standard&Poor’s 500 index (S&P 500). It is shown that the
developed fractional pdf �ts well as the central part, as the tails of the distribution of
S&P 500.
The main goal of the �tting is to calibrate the numerical parameters of the proposed

fractional dynamical stochastic model for the considered market. After that, the cali-
brated dynamical model allows one to predict statistically the future dynamical behavior
of this market.
The paper is organized as follows.
In Section 2 we describe evolution of a �nancial asset by the fractional Langevin

equation with the generalized shot noise source. The pdf of the �nancial asset has been
expressed in terms of the Fourier integral.
The stochastic fractional dynamics of the variation of a �nancial market index (a

return) has been developed in Section 3. The pdf of returns �x as a function of the
time delay �t has been found and some limiting cases are studied.
The results of numerical simulations of the developed general equation for the pdf of

returns are presented in Section 4. These results are compared with the empirical data
of the S&P 500 index for the 6-year period from January 1984 to December 1989 [4].
The numerical analysis con�rms that the developed fractional pdf �ts well the central
part and the asymptotic tail’s behavior of the S&P 500 index distribution.
In the conclusion we discuss the fractional nature of the market dynamics.

2. Fractional stochastic dynamic model

We propose to describe the dynamics of a �nancial asset x(t) by the fractional
stochastic di�erential equation

d�x(t)
dt�

= �x(t) + F(t); 0¡�61 ; (1)

with initial condition

d�−1x(t)
dt�−1

∣∣∣∣
t=0
= x0 ; (2)

where � is the expected rate, F(t) is the random force and d�=dt� means the Riemann–
Liouville fractional derivative 1 of order �,

d�x(t)
dt�

=
1

�(1− �)
d
dt

∫ t

0
dt′

x(t′)
(t − t′)� :

Using the de�nition of the Riemann–Liouville fractional integral [12,13], d−�=dt−�

of the function x(t),

d−�x(t)
dt−�

≡ 0 I
�
t (x) =

1
�(�)

∫ t

0
dt′

x(t′)
(t − t′)1−� ; 0¡�61

1 The basic formulas on fractional calculus can be found in Refs. [12,13].
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yields

x(t; x0; F) = t�−1E�;�(�t�)x0 +
∫ t

0
d� F(�)(t − �)�−1E�;�(�(t − �)�) : (3)

Here the gamma function �(z) is de�ned as �(z) =
∫∞
0 dttz−1e−t , Re z¿ 0 and

E�;�(z) is the so-called generalized Mittag–Le�er function de�ned by the series (see,
for instance, Ref. [14])

E�;�(z) =
∞∑
k=0

zk

�(�k + �)
: (4)

The fractality index � is related to Mandelbrot’s [8,15] self-similarity parameter H
as

� = H + 1
2 :

The mathematical motivation for applying the fractional stochastic problem (1),
(2) is the following. It is easy to see when � = 1, Eq. (1) reduces to the standard
(non-fractional) Langevin equation with initial condition

x(t)|t=0 = x0 ;
and Eq. (3) gives the solution of this standard, the well-known stochastic problem

x(t; x0; F) = e�tx0 +
∫ t

0
d� F(�)e�(t−�)

because of

E1;1(z) = ez :

Thus, we see that the fractional stochastic initial problem (1), (2) seems as a frac-
tional generalization of the well-known Langevin approach to uctuating phenomena.
We de�ne the probability distribution function P�(x; t) of the fractional stochastic

variable x(t) in the following way:

P�(x; t) = 〈�(x − x(t; x0; F))〉
=
1
2�

∫ ∞

−∞
d� exp{i�(x − t�−1E�;�(�t�)x0)}

×
〈
exp

{
−i�

∫ t

0
d� F(�)(t − �)�−1E�;�(�(t − �)�)

〉
; (5)

where the brackets 〈· · ·〉 mean the averaging over the all possible realizations of the
random force F(t).
Let the stochastic force F(t) be a generalized shot noise

F(t) =
n∑
k=1

ak’(t − tk) : (6)

Here ak are the random amplitudes, ’(t) is the response (or memory) function, and
tk are the homogeneously distributed (on time interval [0; T ]) moments of time, the
number n of which obeys the Poisson law.
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We guess that, de�ned by Eq. (6), random force F(t) describes the inuence of the
di�erent uctuating factors on the market dynamics. A single-shot-noise pulse ak’(t−
tk) describes the inuence of a piece of information which has become available at
the random moment tk on the decision-making process at a later time t. The amplitude
ak responds to the magnitude of the pulse ’(t − tk); it will depend on the type of
information and will, therefore, be subjected to probability distribution. For simplicity,
we assume that each pulse has the same functional form or, in other words, one general
response function ’ can be used to describe the market.
Thus, the averaging procedure includes three statistically independent averaging

procedures:
1. Averaging over random amplitudes ak , 〈· · ·〉ak ,

〈· · ·〉ak =
∫
da1 · · · dan P(a1; : : : ; an) · · · ; (7)

where P(a1; : : : ; an) is the probability distribution of amplitudes ak .
2. Averaging over tk on time interval T ,

〈· · ·〉T = 1
T

∫ T

0
dt1 · · · 1T

∫ T

0
dtn · · · : (8)

3. Averaging over random numbers n of time moments tk ,

〈· · ·〉n =
∞∑
n=0

�nn

n!
e− �n · · · ; (9)

where �n= �T and � is the density of points tk on time interval T .
Taking into account the de�nition, Eq. (5), and performing the averaging in accor-

dance with Eqs. (7)–(9) yields

P�(x; t) =
1
2�

∫ ∞

−∞
d� exp{i�(x − t�−1E�;�(�t�)x0)}exp{−J�(�; t)} ; (10)

where we introduce the following notation:

J�(�; t) = �
∫ t

0
dt′

[
1−W

(
�
∫ t

0
d�’(�− t′)(t − �)�−1E�;�(�(t − �)�)

)]
:

(11)

Here the function W (&) is the characteristic function of the probability distribution
P1(a),

W (&) =
∫ ∞

−∞
da e−i&aP1(a)

and the pdf P1(a) is a “one-particle” distribution to be introduced into consideration
because of simplicity assumption

P(a1; : : : ; an) =
n∏
k=1

P1(ak) : (12)
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In other words, we consider a market dynamics when probability distribution
P(a1; : : : ; an) is factorized in accordance with Eq. (12) as the product of n equal
“one-particle” distributions P1(a).
To evaluate the integrals in Eqs. (10) and (11) we should specify the response

function ’(t) and the pdf P1(a). As a �rst step, let us choose an exponential response
function

’(t) =
{
exp{− t

�}; t¿0 ;
0; t ¡ 0 ;

(13)

which means that the impact has a characteristic memory time �, and evaluate the
integral over d� in Eq. (11),∫ t

0
d�’(�− t′)(t − �)�−1E�;�(�(t − �)�)

=
∫ t

t′
d� e−(�−t

′)=�(t − �)�−1
∞∑
k=0

�k(t − �)�k
�(�k + �)

: (14)

Expanding in series the e−(�−t
′)=� and using the formula∫ t

t′
d� (t − �)a−1(�− t′)b−1 = (t − t′)a+b−1�(a)�(b)

�(a+ b)
;

gives for the right-hand side of Eq. (14)∫ t

t′
d� e−(�−t

′)=�(t − �)�−1
∞∑
k=0

�k(t − �)�k
�(�k + �)

= (t − t′)�
∞∑
k=0

(
− t − t

′

�

)k
E�;�+k+1(�(t − t′)�) ;

where E�;�+k+1 is the generalized Mittag–Le�er function de�ned by Eq. (4). The
function J�(�; t) given by Eq. (11) then reads

J�(�; t) = �
∫ t

0
d� [1−W (�R�(�; �))] ; (15)

with

R�(�; �) = ��
∞∑
k=0

(
− �
�

)k
E�;�+k+1(���) : (16)

As a second step, let us choose the L�evy �-stable distribution P1(a) as a “one-particle”
probability distribution function

P1(a) =
1
2�

∫ ∞

−∞
d&ei&aW (&) ;

with the characteristic function W (&),

W (&) = exp{−b�|&|�}; 0¡�62 ; (17)

where b is the scale parameter of the L�evy �-stable distribution.
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Thus, in accordance with Eq. (10) the new general equation for the pdf of the
fractional stochastic process x(t) modelled by Eq. (1) can be rewritten as

P�(x; t) =
1
2�

∫ ∞

−∞
d� exp{i�(x − t�−1E�;�(�t�)x0)}

×exp
{
−�

∫ t

0
d� [1− exp{−b�|�R�(�; �)|�}]

}
; (18)

with R�(�) de�ned by Eq. (16). 2

In order to verify the adequacy of the developed fractional model, we should compare
the predicted theoretical result with the empirical �nancial data. In Section 3 we apply
the general equation (18) and study the well-known statistical dependencies of the
Standard&Poor’s 500 index (S&P 500).

3. Fractional returns dynamics

Let us apply the developed general approach to derive the analytical expression for
the pdf of increments �x of a �nancial market index as a function of the time delay
�t, �x = x(t + �t) − x(t), where the value of the market index is denoted as x(t).
The pdf of price increments uctuations plays an important role both in understanding
the market dynamics and in �nancial engineering applications.
As usual, we de�ne the pdf P�(�x; t;�t; �) of the increments �x(�t)= x(t+�t)−

x(t) of a �nancial market index x(t) (for example, a currency rate) as a function of
the time delay �t by the following equality:

P�;�(�x; t;�t) = 〈�(�x − {x(t +�t; x0; F)− x(t; x0; F)})〉 ; (19)

where 〈· · ·〉 means averaging over the all possible realizations of the random force F(t)
in accordance with Eqs. (7)–(9). Repeating the same steps used above for derivation
of Eq. (18), we �nd for the pdf P�;�(�x; t;�t)

P�;�(�x; t;�t)

=
1
�

∫ ∞

0
d� cos �{�x − ((t +�t)�−1E�;�(�(t +�t)�)

−t�−1E�;�(�t�))x0}exp{−L�;�(�; t;�t; �)} ; (20)

with

L�;�(�; t;�t; �) = �
∫ t

0
d� (1− exp{−b���|R�(�+�t; �)−R�(�; �)|�}) ;

where R�(�; �) is given by Eq. (16).

2 Note that if we put � = 1, then Eq. (16) yeilds

R1(�) = (�=�� + 1)(e�� − e−�=�) :
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Eq. (20) presents the new general expression for the fractional pdf of price incre-
ments �x = x(t + �t) − x(t) uctuations, when the price x(t) dynamics is described
by the fractional stochastic di�erential equation (1).
In order to escape unwieldy formulas and in view of the fact that our goal is only

to illustrate the developed fractional general approach, we restrict our consideration to
the case �= 0. In this case, Eq. (20) can be rewritten as

P�;�(�x; t;�t)

=
1
�

∫ ∞

0
d� cos �

{
�x − 1

�(�)
((t +�t)�−1 − t�−1)x0

}

×exp{−L�;�(�; t;�t)} ; (21)

where L�;�(�; t;�t) has a form

L�;�(�; t;�t) = �
∫ t

0
d� (1− exp{−b��� · |r�(�+�t)− r�(�)|�)

and r�(�) is obtained from R�(�; �) (see Eq. (16)) by passing to �= 0;

r�(�) ≡ R�(�; �= 0) = ��E1;1+�
(
− �
�

)
: (22)

Further, we will be interested in the limit case t → ∞, when we have

P�;�(�x;�t) = lim
t→∞P�;�(�x; t;�t) =

1
�

∫ ∞

0
d� cos(��x)× e−L�; �(�;�t) : (23)

Here L�;�(�;�t) is de�ned by

L�;�(�;�t) = lim
t→∞ L�;�(�; t;�t)

= �
∫ ∞

0
d� (1− exp{−b��� · |r�(�+�t)− r�(�)|�}) ;

0¡�61; 1¡�62 : (24)

The limiting pdf P�;�(�x;�t) is characterized by the fractality index � and the
L�evy index �. Thus, it is shown how the general fractional dynamic approach devel-
oped in Section 2 allows one to derive the expression (see Eqs. (23) and (24)) for
the pdf P�;�(�x;�t) of the returns. The new pdf P�;�(�x;�t) allows to study any
statistical and scaling dependences of the returns uctuating dynamics and develop
the new general fractional approach to risk evaluations and the pricing of derivative
products.
In the special (non-fractional) case when � = 1 the general Eq. (24) can be repre-

sented as

L�;1(�;�t) = �
∫ ∞

0
d� {1− exp[− b�|�|���|e−�=�(1− e−�t=�)|�]} ; (25)
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where we have kept in view that �(1) = 1 and

E1;2(z) =
ez − 1
z

:

Then Eq. (23) leads to

P�;1(�x;�t) =
1
�

∫ ∞

0
d� cos(��x)

×exp
{
−�

∫ ∞

0
d� {1− exp[− b�����(e−�=�(1− e−�t=�))�]} :

Introducing the new variable u instead of �

u= b��e−�=�(1− e−�t=�); du=−u
�
d� ;

we get the expression for P�;1(�x;�t),

P�;1(�x;�t) =
1
�

∫ ∞

0
d� cos(��x)exp

{
−��

∫ b�(1−e−�t=�)�

0

du
u
(1− e−u�)

}
:

(26)

The pdf P�;1(�x;�t) is the �-generalization of Eqs. (8) and (9) of Ref. [16]. In the
Gaussian case (�= 2) the pdf P2;1(�x;�t) was obtained in Ref. [16].

4. Comparison with empirical data

The comparison of the developed fractional pdf with the well-known empirical pdf
of the S&P 500 returns [4] is represented in Fig. 1. The circles represent the empirical
data obtained from the Chicago Mercantile Exchange during the period from January
1984 to December 1989. The variations of S&P 500 index are normalized to the value

Fig. 1. Comparison of the S&P 500 data, the L�evy distribution, and the fractional pdf P�;�(�x=�;��=0:5).
The circles show the empirical data. The scales are the same as in Ref. [4].
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� = 0:0508. The solid line represents the result of simple �tting of the empirical data
by the ordinary symmetrical L�evy �-stable distribution:

PLevy(�x=�) =
1
��

∫ ∞

0
dy cos(y�x=�)e−y

�′
(27)

of index �′=1:40 and the scale factor =0:00375 (see Fig. 2, Ref. [4]). Approximately,
exponential deviation from the symmetrical �-stable (� ≡ �′ = 1:40) L�evy distribution
is observed for |�x|=�¿6.
For numerical calculations we rewrite Eq. (24) as follows:

L�;�(�;��) = D
∫ ∞

0
dz (1− exp{−S����|s�(z +��)− s�(z)|�}) ; (28)

where ��=�t=� is the dimensionless time delay, the dimensionless parameters D and
S� are de�ned, respectively, as D = ��, S� = b��=�, and the function s�(z) is

s�(z) = z�E1;1+�(−z) : (29)

Fig. 1 is a plot of P�;�(�x=�;��) given by

P�;�(�x=�;��) =
1
��

∫ ∞

0
d� cos(� ·�x=�)× e−L�; �(�;��) ; (30)

with L�;�(�;��) de�ned by Eq. (28) for D= 1:4, S� = 0:12 and ��= 0:5. Decreasing
� (�¡ 2) and � (�¡ 1) results in narrowing of the central part of the pdf and raising
of the tails. By varying the fractality parameters � and � it is possible to �t the
empirically observed pdf.
It is easy to see that the new fractional pdf P1:85;0:6(�x=�;��= 0:5) when � = 1:85

and �= 0:6 �ts well the central part and the tails of the empirically observed for real
time delay 1 min probability distribution of the S&P 500 index returns.

5. Conclusions

The high-frequency data for �nancial markets have made it possible to investigate
market dynamics on timescales as short as 1 min, a value close to the minimum time
needed to perform transaction in the market. The empirical data display non-Gaussian
and non-L�evy long-tail distributions which cannot be explained in the framework of
the traditional Gaussian- or L�evy-based approaches.
We have elaborated a fractality concept in �nancial mathematics and engineering.

Our main assumption is that the uctuating market phenomena can be adequately de-
scribed by means of the fractional, non-Gaussian, long-range dependence stochastic
process. To describe the dynamics of the price, we have introduced the new fractional
stochastic di�erential equation, random force being the generalized “shot noise”, each
pulse of which has a random amplitude with the �-stable L�evy distribution. As a re-
sult we have the general expression for the fractional pdf of returns (see Eq. (20)).
Theoretical predictions have been compared with the empirical data of the S&P 500
index during the 6 year period from January 1984 to December 1989. The analysis
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con�rms that the central part and the asymptotic tails’ behavior of the S&P 500 index
distribution are well �tted by the developed fractional pdf.
The new fractional pdf has two fractality parameters � and �. The parameter �

describes the dynamical memory e�ects in the market stochastic evolution, while the
L�evy index � describes the long-range dependencies of external impacts on market
dynamics. By comparing the empirical and the theoretical distributions we can conclude
that uctuating market phenomena have fractional behavior.
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