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Abstract 
 

Real-time communication requires performance guarantee from the underlying network. In 
order to analyse the network performance, we must find the traffic characterization in every 
server of the network. Due to the strong experimental evidence that network traffic is 
self-similar in nature, it is important to study the problems to see whether the superposition of 
two self- similar processes retains the property of self-similarity and whether the service of a 
server changes the self-similarity property of the input traffic. In this paper, we first discusses 
some definitions and superposition properties of self-similar processes. Then we gives a 
model of a single server with infinite buffer and prove that when the queue length has finite 
second-order moment, the input process being strong asymptotically second-order 
self-similar(sas-s) is equivalent to the output process also bearing the sas-s property. Given 
the method for determinating the worst case cell delay for an ATM switch with self- similar 
input traffic, we can determine the end-to-end delay for such real-time communications in an 
ATM network by summing the cell delay experienced by each of the ATM switch along each 
connection. 
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1. Introduction

Real-time communication is a very important type of services for the integrated services networks. It requires performance

guarantee(such as delay bound and loss rate) from the network. Such guarantee is possible only if we can analyze the network

performance. To do this, we must model the traffic of the real-time communication in the networks.

Several empirical studies on the LAN, the VBR video traffic, the ISDN and other communication systems indicate that

these traffic are self-similar in nature. For instance, Leland et al. [7] have demonstrated the self-similar nature of Ethernet

traffic by a statistical analysis of the Ethernet traffic measurements at Bell-Core; Beran et al. [3] have demonstrated long-range

dependence in samples of variable bit rate video traffic generated by a number of different codecs; and Paxson and Floyd [11]

have concluded the presence of long-range dependence in TELNET and other wide area network traffic.

In the light of these strong experimental evidence it is important to examine in more details the possible implications that self-

similar traffic may have on the design and performance of network systems. For example, real-time communications require

the network to provide end-to-end delay guarantee. In order to analyze the delay of networks with self-similar traffic, we need

to know the property of queueing systems with self-similar input traffic. In particular, there are two important questions need

to study as shown in Figure 1: One is whether the superposition of self-similar processes retains the self-similarity properties;

the other is whether a server mechanism will change the self-similarity nature of the traffic.

In [12], B. Tsybakov and N. D. Georganas point out that the superposition of two uncorrelated self-similar processes retain

some asymptotically self-similarity property. S. Vamvakos and V. Anantharam [14] consider a special case of a leaky bucket

system with long-range dependent input traffic, and prove that the output (departure) process is also long-range dependent.

In this paper, we focus on the superposition of self-similar processes and the property of the output process from a server with

self-similar input. And the rest of the paper is organized as follows: Section 2 discusses the concepts of self-similar processes

and provides some new kinds of self-similar definitions and their relationships. In section 3, we give the superposition property

of two self-similar processes. We obtained the superposition of two uncorrelated stong asymptotically self-similar processes(or

long-range dependent processes) is stong asymptotically self-similar (or long-range dependent). Since traffic arrival to a switch

are multiplexed by many connections, this superposition property is very important for the analysis of queueing systems. We

also discuss the superposition of two correlated self-similar processes, and the superposition of a short-range dependent process

with a self-similar process.

Section 4 considers a model of a single server with infinite buffer, and prove that when the second-order moment of a queue

length process is finite, the strong asymptotically second-order self-similarity(sas-s) properties of the input process and that

of the output process are equivalent, which means that the self-similarity property will neither be removed nor added by any

server mechanism with finite second-order moment of queue length. Thus, given the method for determinating the worst case

cell delay for an ATM switch with self- similar input traffic, together with this proof, we can determine the end-to-end delay for

such real-time communications in an ATM network by summing the cell delay experienced by each of the ATM switch along

each connection.
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Figure 1. Self-similarity Properties.

2. Definitions of Self-similar

In this section, we first discusses some definitions of self-similar processes which are all defined based on a second-order-

stationary real-number stochastic process.

We begin with the introduction of
���������	�
���
���������

, a semi-infinite segment of a second-order-stationary real-number

stochastic process of discrete argument (time) ����� ��������
�����������! 
– the symbol

��
means the equality by definition. Denote the

mean and variance of
��"

respectively by

# �� $%� "'&)(
(1)

* � ��
var
� " �+$,��� ".- # � � &/(

(2)

Denote the correlation coefficient and autocovariance of process
�

by

0 �213� �� $,45�6��"�7.8 - # ������" - # �:9
* � (3)

; �213�<�� * � 0 �=1>� 1 �?�A@ ��B�DC3���
�����������  
(4)

Note that 0 �=CE�'�F�
� ; �6C��G� * � , 0 �213�'� 0 � - 13� , and
; �=13�H� ; � - 1>�

.

Definition 2.1 A process
�

is called exactly second-order self-similar (es-s)with Hurst parameter I �F� - ��JLKM�
�
(see [2]),

C & J & �
, if its correlation coefficient is

0 �=13�'�/NO�=13�P� 1 ��� � (5)

where
NO�=13� �� �� 4Q�=1SR)�D� ��T>U - �
1 ��T>U R)�21 - �	� ��T>U 92�G1 ��� �

The function
NO�=1>�

can be written as
NO�=13�H� �

�OV
� �=1 ��T>U �

(6)

where V is the central difference operator

V �=WL�6XY�Z�[�+WL�6X\R �
� � - WL�6X -

�
� � (7)

and V
�

is the central second difference operator.

For the presentation of the next definitions, we need to introduce the averaged (over blocks of length ] ) process of
�

.
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� �����" � �
]
��� � " T � ��� 7 � R)�����	R ��" � �A� ] � � �?� � (9)

its variance
� � ��

var
� �����" �

(10)

and its correlation coefficient and autocovariance:

0 � �213� � $,45�6� �����"�7.8 - # ����� �����" - # �:9
� �

�
(11)

; � �213� � � � 0 � �=1>� (12)

Note that
; �=13�	� ; � �=1>�A�
� � � ; � �=CE� .

The followings are the definitions of regular variation (Refer to the Appendix E of [13])

Definition 2.2 A measurable function
WL��XY��� C

satisfying

WL��
YXY� KMWL��X �	��
��E��X�� (
(13)

for each positive



, is called the index � regularly varying function (rvf). If � �)C
, then rvf

WL��X �
is called the slowly varying

function (svf). If
WL��X �

is an index � rvf then
WL��XY�[��� �6XY� X �

where
� ��XY�

is a svf.

The followings are the definitions of long-range dependence (l-rd) processes(see [2],[5]).

Definition 2.3 A second-order stationary process
�

is called generalized long-range dependent process (gl-rd)with Hurst

parameter I � � - ��J K
�
�
,
C & J & �

, if its correlation coefficient satisfies

0 �=1>������� �=13�
1 T>U � 1�� (
(14)

where
� �=13�

is a slowly varying function(svf), c is a constant,
C & � & (

.

Especially, if
0 �=13������1 T U � 1�� (

(15)

X is called a long-range dependent process (l-rd).

Definition 2.4 A second-order-stationary process
�

is called asymptotically second-order self-similar (as-s)with Hurst pa-

rameter I �B� - �6J KM�E�
,
C & J & �

, if
���� 
�"!$#

0 � �=13�H�/N �213�A�'1 �?� � (16)

Definition 2.5 A second-order stationary process
�

is called generalized strong asymptotically second-order self-similar

(gsas-s)with Hurst parameter I �F� - �6J KM�E�
,
C & J & �

, if the variance of
� �����

satisfies

� � ����� � ] � ]
T>U � ] � (

(17)



where
� � ] � is a slowly varying function(svf), c is a constant,

C & � &)(
.

Especially, if
� � � � ]

T U � ] � (
(18)

X is called a strong asymptotically second-order self-similar(sas-s).

According to the Definitions 2.1-2.5 above and the Theorem 2 of [13], we have the following relationships

Lemma 2.1

� � ����� - ��� � � ��� - 0�	 � � � � N � - 0�	
� � � � N ��
�� - �
� � � ��
�� - �

� � ����� - ��� � � ��� - 0�	 � � � ����
�� - �

� � � � N ��
�� - �
� � � ��
�� - � �

that is,

� ��� - �  ��+� � - 0�	  ��)��N � - 0�	  ��+��N ��
�� - �  ��+� 
�� - �  
� ��� - �  �� � � - 0�	  ��)� ��
�� - �  ��+��N ��
�� - �  ��+� 
�� - �  

3. The Superposition of Self-similar Processes

In this section, we’ll discuss superposition of self-similar processes which is of great importance for network performance

evalution. Our main concern is under what conditions the superposition of self-similar streams will produce a self-similar

stream. In [12], statement 7 and 8 point lead to the following results:

Lemma 3.1 (1) If
���

and
��� �

are such uncorrelated processes that 0 �213�"� � � 1
T U�� � 1 � (

for
���

and 0 �=13��� � � 1
T>U�� ��1��

(
for

� � �
, where

���
and

J��
� �[� �E� �
are constants,

C & �!� &�( �
C & J�� & �
, then

� � R � � �
is an asymptotically self-similar

process with parameter I �F� - J K
�
where

J �  �#" �6JO� �ZJY�D�
.

(2) Let the uncorrelated processes
� �

and
� � �

be exactly second-order self-similar,
� �

with I � and
� � �

with I � . If

I � � I � � I then
��� R ��� �

is exactly second-order self-similar with parameter H. If I �%$� I � , then
���	R ��� �

is not exactly

second-order self-similar but is asymptotically second-order self-similar with I � ] 
 X � I � � I �D� .
We’ll consider the superposition of two self-similar processes and the superposition of a self-similar process and a short-

range dependent process. We obtain some very nice results about the property of merging self-simiar data treams.

Theorem 3.1 (1) If
���

and
��� �

are uncorrelated long-range dependent processes with Hurst parameters I � and I � respec-

tively, then
���ER ��� �

is a long-range dependent process with parameter I �  '&�( � I � � I � � .
(2) If

� �
and

� � �
are uncorrelated strong asymptotically self-similar processes with Hurst parameters I � and I � respec-

tively, then
���ER ��� �

is strong asymptotically self-similar with I � ] 
 X � I �M� I ��� .



Proof: (1)
���

and
��� �

are uncorrelated � - 0�	 processes, then for
1�� (

, we have

0 � �213�	�����P1 T U�� � 0 � � �=1>�����P�D1 T>U��

where
� �

and
J � � � �B�E� �

are constants,
C & � �G&/( �
C & J �G& �

, I � �F� - JO��K
�
, I � �F� - JY�DKM�

.

Suppose
J � � J �

, then
J � ] � � �6J � �ZJ � �H�)J �

.

Because 0 �213� , the correlation coefficient of
���ER ��� �

, satisfies

0 �=13� �)$,4Q��� �"�7.8 R � � �"�7 8 - # �3- # � � ����� �" R � � �" - # �>- # � � � 9=K�� * � � R * � � � �
�)$,4Q�����"�7.8 - # �Q�������" - # � �.R+����� �"�7.8 - # � � �P�6��� �" - # � �Q�:9�K3� * � � R * � � � �
R $,45�6���"�7.8 - # � �P�6��� �" - # � � ������� �"�7.8 - # � � �P�6���" - # � � 96K�� * � � R * � � � �
�)$,4Q�����"�7.8 - # �Q�������" - # � �.R+����� �"�7.8 - # � � �P�6��� �" - # � �Q�:9�K3� * � � R * � � � �
� 0 �2�213� * � � K�� * � � R * � � � � R 0 � �:�=13� * � � � K�� * � � R * � � � �

(19)

so ���� 8 ! # 0 �213�
K
1 T>U � ��� �� � � 7 � � � � ���� 8 !$# 0 � �=13� KM1
T U R ��� � �� � � 7 � � � � ���� ,8 !$# 0 � � �=1>�
KM1 T>U

� ��� �� � � 7 � � � � ���� 8 !$# � ���P1
T>U � �
K
1 T>U R ��� � �� � � 7 � � � � ���� ,8 !$# � �P��1

T U � �
KM1 T>U
� � � ��� �� � � 7 � � � � R ��� � �� � � 7 � � � � ���� 8 !$# �P��1

T � U � T U � �
� � � ��� �� � � 7 � � � �

(20)

That means 0 �=13������1
T U

,
1�� (

. The same result is also obtained when
J ��� J �

.

So,
����R ��� �

is � - 0�	 with I �  &�( � I � � I �D� .
(2)

���
and

��� �
are uncorrelated ��
�� - � processes, then for ] � (

, we have

� �� ��� � ]
T U � �
� � �� ��� � ]

T U �

and I � � � - J ��K
�
, I � �F� - JY�DK
�

.

Suppose
JO� � J �

, then
J � ] � � �6J � �ZJY���H�)J �

.

Due to
� � �

var
�6���ER ��� � �H������ R ��� �� , so

���� �"!$# � � K ]
T U � ���� �"!$# � ���� R ��� �� �
K ]

T U
� ���� �"!$# � ��� ]

T U � � K ]
T>U R ���� �"!$# � �P� ]

T>U � � K ]
T>U

� ���HR ���� ��! # �P� ]
T � U � T U � � � ���

(21)

That means
� � � � ]

T>U � ] � (
.

We obtained the same result when
J � � J �

. So, we have prove that
���3R ��� �

is a ��
�� - � process with Hurst parameter

I �F� -  ��#" ��JO� �
J �D�
KM�%�  &�( � I �	� I ��� .

Theorem 3.2 (1)
���

and
��� �

are long-range dependent processes that their correlation coefficients 0 � �=13��� � � 1
T>U �

,
1 � (

for
���

and 0 � �:�213� � � � 1 T U��
,
1 � (

for
��� �

. If there exist
J	�
�ZJ�
�� �  ��#" ��J � �
J � �
�

, such that � cov
�����" �Z��� �"�7.8 � � � �
��1 T U��

,

� cov
�����"�7.8 �Z��� �" � � � ��
D1

T>U��
,
1�� (

, where
�!�

and
J��
� �G�B�E� �����3�����

are constants,
C & �!� &/(

,
C & J � & �

, then
���ER ��� �

is

a long-range dependent process with parameter I �F� - J K
�
where

J �  ��#" �6J.�	�
J ���
.



(2)
���

and
��� �

are strong asymptotically self-similar processes with Hurst parameters I � and I � respectively. If there

exists
J	� �  ��#" ��J � �
J � �

, such that � cov
�6� � �����" �
� � � �����"�7.8 � � � �
� ]

T>U��
, ] � (

, where
�!�

and
J �
� �%� �E� �����E�

are constants,
C & ��� & (

,
C & J � & �

,
J � � �>� � - I � � , J � � �>� � - I � � , then

��� R+��� �
is strong asymptotically self-similar with

I � ] 
 X � I � � I � � .
Proof: (1)

���
and

��� �
are � - 0�	 processes, then for

1�� (
, we have

0 � �213�	�����P1 T U � � 0 � � �=1>�����P�D1 T>U �

where
���

and
J �Z� � �B�E� �

are constants,
C & �!� &/( �
C & J�� & �

, I � �F� - J � K
�
, I � �F� - J � KM�

.

Suppose
J � � J �

, then
J � ] � � �6J � �ZJ � �H�)J �

.

Because 0 �213� , the correlation coefficient of
���ER ��� �

, satisfies

0 �=13� �)$,4Q�����"�7.8 R ��� �"�7 8 - # � - # � �Q�������" R ��� �" - # � - # � � � 9=K�� * � � R * � � � �
�)$,4Q�����"�7.8 - # �Q�������" - # � �.R+����� �"�7.8 - # � � �P�6��� �" - # � �Q�:9�K3� * � � R * � � � �
R $,45�6� �"�7.8 - # � �P�6� � �" - # � � ����� � �"�7.8 - # � � �P�6� �" - # � � 96K�� * � � R * � � � �
�)$,4Q�����"�7.8 - # �Q�������" - # � �.R+����� �"�7.8 - # � � �P�6��� �" - # � �Q�:9�K3� * � � R * � � � �
R\4

cov
�����"�7.8 �
��� �" � R

cov
����� �"�7.8 �
���" � 96K�� * � � R * � � � �

�F4 0 � �=1>� * � � R 0 � � �213� * � � � 9�K3� * � � R * � � � �
R\4

cov
�����"�7.8 �
��� �" � R

cov
����� �"�7.8 �
���" � 96K�� * � � R * � � � �

(22)

and ���� ,8 !$# 4 � cov
�6���"�7.8 �
��� �" �.R

cov
�6��� �"�7.8 �
���" � � 96K�4 1

T>U � * � � R * � � � � 9
� ���� 8 !$# � � ��1 T U�� R ��
	1 T>U�� �
K34 1 T>U � * � � R * � � � �:9
� ���� 8 !$# � � ��1 U>T>U�� R ��
	1 U3T>U�� � K�� * � � R * � � � �'�)C

(23)

So ���� 8 ! # 0 �213�
K
1 T>U � � � �� � � 7 � � � � ���� 8 !$# 0 � �=13� KM1
T U R � � � �� � � 7 � � � � ���� ,8 !$# 0 � � �=1>�
KM1 T>U

R ���� �8 !$# 4 cov
�����"�7.8 �Z��� �" �.R

cov
����� �"�7.8 �Z���" � 96K�4 1 T>U � * � � R * � � � � 9

� ��� �� � � 7 � � � � ���� 8 !$# � ���P1
T>U � �
K
1 T>U R ��� � �� � � 7 � � � � ���� ,8 !$# � �P��1

T U � �
KM1 T>U
� � � ��� �� � � 7 � � � � R ��� � �� � � 7 � � � � ���� 8 !$# �P��1

T � U��AT U�� �
� � � ��� �� � � 7 � � � �

(24)

That means 0 �=13������1
T U

,
1�� (

. The same result is obtained when
J � � J �

.

Hence,
����R ��� �

is � - 0�	 with I �  &�( � I �M� I �D� .
(2)

���
and

��� �
are ��
�� - � processes, so, for ] � (

, we have

� �� ��� � ]
T U�� �
� � �� ��� � ]

T U��

and I � � � - J ��K
�
, I � �F� - JY�DK
�

.

Suppose
JO� � J �

, then
J � ] � � �6J � �ZJY���H�)J �

.
� � satisfies

� � �
cov

�6� � �����" R � � � �����" �Z� � �����" R � � � �����" �
������ R ��� �� R �

cov
��� � �����" �
� � � �����" � (25)



then ���� �"!$# � � K ]
T U � ���� ��! # 4 ���� R ��� �� R �

cov
��� � �����" �Z� � � �����" � 96K ]

T>U
� ���� ��! # � � � ]

T U�� � K ]
T>U R ���� �"!$# � � � ]

T>U�� �
K ]
T U

R � ���� �"!$# 4 cov
��� � �����" �
� � � �����" �:9�K ]

T U
�����GR ���� �"!$# ��� ]

T � U��AT U�� � R � ���� �"!$# 4 cov
�6� � �����" �Z� � � �����" � 96K ]

T>U
�����

(26)

That means
� � � � ]

T>U � ] � (
.

We obtained the same result when
J � � J �

. So, we have prove that
� � R � � �

is a ��
�� - � process with Hurst parameter

I �F� -  ��#" ��J � �
J � �
KM�%�  &�( � I � � I � � . � $��
Now, we’ll consider the superposition of a self-similar process and a short-range dependent process.

A process X is said to exhibit short-range dependent property if � #8�� @ � 0 �=13� � &/(
;

A process X is said to exhibit long-range dependent property if � #8�� @ � 0 �213� � � (
.

It is obious that all kinds of self-similar processes above have long-range dependent property. And the processes based

on exponential distribution have short-range dependent property. There are some propositions about short-range dependent

processes:

If 0 �=13� � ��1
T>U ��� � J & ����1�� (

, then
�

is short-range dependent;

If 0 �=13� � ��� �=13� �
8 � C & � & �
��1 � (

, then
�

is short-range dependent;

If
� � � � ]

T � � ] � (
, then

�
is short-range dependent.

Theorem 3.3 (1) If
���

and
��� �

are uncorrelated second-order stationary processes,
���

is � - 0�	 , 0 � �213� � ���P1
T U �

,
1 � (

,
C & JO� & �

,
C & ��� & (

, and
��� �

is short-range dependent, 0 � � �=13�$� �P��1 T U �
,
1 � (

,
� � JY� & �

,
C & �P� & (

, then
���ER ��� �

is a long-range dependent process with parameter I � � - J.�DKM�
.

(2) If
���

and
��� �

are uncorrelated second-order stationary processes,
���

is � - 0�	 , 0 � �213� � ����1
T>U �

,
1 � (

,
C & JO� & �

,
C & � � &�(

, and
��� �

is short-range dependent, 0 � � �=13� � � � � �213� �
T 8

,
1 � (

,
C & � & �

,
C & � � & (

, then
����R ��� �

is a

long-range dependent process with parameter I � � - J � K
�
.

(3) If
���

and
��� �

are uncorrelated second-order stationary processes,
���

is ��
�� - � ,
���� � � � ]

T>U �
, ] � (

,
C & J � & �

,
C & ��� &)(

, and
��� �

is short-range dependent,
�%� �� ���P� ]

T �
, ] � (

,
C & ��� &/(

, then
����R ��� �

is a strong asympotically

self-similar process with parameter I �F� - J ��KM�
.

Proof: (1) Due to
J � �/J �

, 0 �2�213� � � � 1
T U�� � 0 � � �=13��� � � 1 T U�� , 1 � (

, and 0 �=13��� 4 * � � 0 � �=1>� R * � � � 0 � �:�213� 96K�� * � � R * � � � � ,
so ���� 8 !$# 0 �=13� KM1

T U�� � ��� �� � � 7 � � � � ���� 8 !$# 0 � �=13� KM1
T U�� R ��� � �� � � 7 � � � � ���� 8 !$# 0 � � �=13� KM1

T U��
� ��� �� � � 7 � � � � ���� ,8 !$# � ����1

T>U � �
K
1 T>U � R ��� � �� � � 7 � � � � ���� 8 !$# � �P��1
T U�� �
KM1 T>U �

� � � ��� �� � � 7 � � � � R ��� � �� � � 7 � � � � ���� �8 !$# �P��1
T � U � T U � �

� � � ��� �� � � 7 � � � �
(27)

That means 0 �=13������1
T U��

,
1�� (

,
���ER ��� �

is � - 0�	 with I �B� - J � K
�
.

(2) The proof is similar to that of (1).
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Figure 2. Self-similarity of the output process.

(3)
���

and
��� �

are uncorrelated processes,
�%�� ��� � ]

T>U �
,
��� �� ��� � ]

TO�
, ] � (

, so

� � �
var

�6���ER ��� �Q�H� ���� R ��� ��
����� ]

T>U � R ��� ]
TO�

� ]
T U � � ���HR �P� ]

U � TO� �
����� ]

T>U �
(28)

That means,
���ER ��� �

is a ��
�� - � process with Hurst parameter I �F� - J � KM�
.
� $��

4. The Self-similarity of the Output Process

Referring to Figure 2, we consider a single server queueing system with infinite buffer. For simplicity, suppose there are

two classes of customers, and denote the input processes of the two classes of customers by
�

,and � , such that
� �

, and � �
,

respectively, are the corresponding output processes.
�6� �Z��� �

is the input-output processes pair that we are going to study, and
� � � � � �

represents all other input-output processes pair. Denote
� ����� �Z��� �����

the averaged (over blocks of length ] ) processes

of
� �Z� �

respectively.

we define
��

, the queue length process corresponding to the arrival process
�

, as

�� " �
the number of customer in queue from

�
at time � -

Assume that the average service rate is � , and input processes
� � � are stationary and ergodic with arrival rate of � �
J which

satisfy the stability condition of � R/J &
� . According to the results in [1, 8, 14], we may consider a stationary regime in

which the output process
���

, the queue length process,
��

, is stationary and ergodic, and
���"

has finite second order moment,

(i.e.
$ �� �" &/(

).

Let 0 � � �=1>�A� ; � � �=13� be the correlation coefficient and the autocovariance of
��� �����

, respectively.

In the next section, we will study the problem: To see whether the output process
� �

is sas-s, when the input process is

sas-s.

The following theorem is the major result of this paper, which states that the sas-s property of a network traffic is unchanged

by the delay of any server satisfying the queueing length process which has a finite second order moment (see [6]).

Theorem 4.1 In stationary regime, if
���"

has a finite second order moment, then the followings are equivalent

1.
�

is sas-s with Hurst parameter I (i.e.
� � � � ]

T>U � ] � (
).
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Figure 4. B after C.

2. ��� is sas-s with Hurst parameter � (i.e. ������
	���
���������� ).

where �������
� , 	 is a constant.

Moreover, � being gsas-s with Hurst parameter � is equivalent to ��� being gsas-s with Hurst parameter � , too.

Proof: First of all, we show that �
�� �"!# $ � �  �"!#&%('

�*)
� # � $

)
�  # 
�+ !,� %.- � (29)

Denote / , and 0 at the time points

�,1
$ � % � , and

1
� , respectively. 2 , and 3 are the corresponding virtue output time point of

an customer input at time

�41
$ � % �657�

1
�65 under a FIFO regime. Note that it is uncertain that there is an customer input at this

time, and the service is not necessary FIFO which will not effect the queue length and output process. We denote the numbers

of output customer of input process � among the time intervals /82 � /80 � 273 � 093 by :
�
/82 % � :

�
/80 % � :

�
273 % � :

�
093 % .

Therefore, we have

�  �;!# ' :
�
2�3 %.- �

�<�, �"!# ' :
�
/80 %=- �)

� # � ' :
�
093 %)

�  # 
>+ !4� ' :
�
/?2 %

(30)



then
� � �����" - ��� �����" � � � � ��� � � - � �����%� � K ]

� ��\" � - �� � " T � � � � � � � ��� � � - � �����\�Z� (31)

Note that if
� & �

(as in Figure 3) then

� ��� � � � � ��� � � R � �����%�
� ���	�%� � � ���	� � R � ���
�%� (32)

On the other hand, if
���
�

(as in Figure 4) then

� ��� � � � � ��� � � - � ����� �
� ���	�%� � � ���	� � - � �����\� (33)

In both cases, it is true that

� ��� � � - � �����%� � � ��� � � - � �����\� (34)

that is
�6� �����" - � � �����" �'�B� ���" � - �� � " TO� ��� � K ] (35)

Next, we will prove an inequality

var
��� � ��� �����" K � ��� �� � -

var
��� � �6� �����" K � ��� �� - � � �����" K � ��� �� �

�
var
��� � �6� � �����" K � ���
�� �

�
var
��� � �6� �����" K � ��� �� �.R

var
��� � ��� �����" K � ��� �� - � � �����" K � ��� �� �

(36)

This inequality is equivalent to

�var
��� � �6� �����" K � ��� �� � -

var
��� � ��� � �����" K � ��� �� � � � var

��� � �6� �����" K � ��� �� - � � �����" K � ���
�� �
(37)

and (37) are squared in two side

var
��� �����" K � ���
�� �.R

var
�6� � �����" K � ��� �� � - �

var
��� � ��� �����" K � ���
�� �

var
���
� ��� � �����" K � ��� �� �

�
var

��� �����" K � ��� �� - ��� �����" K � ���
�� � (38)

Using var
��� -

� �H�
var
� R

var �
- �

cov
�6� � � � , we can translate (38) into

cov
��� �����" K � ���
�� �Z��� �����" K � ��� �� � �

var
��� � ��� �����" K � ��� �� �

var
���
� ����� �����" K � ��� �� �

(39)

This is right because
cov ���������� ���

��� �
� � � �!������ ���

��� �
� �

var
��� �
��� ������ ���

��� �
� � var

��� �
��� � �"���� �#�

��� �
� �

� �
(40)

So we have proved (36).

At last, we prove that if
� � � � ]

T U � ] � (
, then

���� � � ]
T U � ] � (

.



By (35),we obtain
��� �����" K � ��� �� - � � �����" K � ��� �� �'�F� ���" � - �� � " TO� ��� �
K ] �

��� �
� (41)

Since
� � ��� ]

T>U
, we have

] �
��� �
� � ] � � ]

T>U  ��� � �
� � ]

�PT U  ���
� � ( � ] � ( �
(42)

By stationary and
���"

has a finite second order moment, we have

var
� �� " � �H� var

� �� � " T � ��� �H� var
� �� �P� &/(

(43)

By (42) and (43),we can get the limit of the variance of right hand of (41)

���� 
��! # var

4Q� �� " � - �� � " T � ��� �
K ] �
��� �
� 9O�)C

(44)

So, the variance of left hand side of (41) has limit

���� 
�"!$# var

�6� �����" K � ��� �� - � � �����" K � ��� �� �'�)C
(45)

Since

var
�6� �����" K � ��� �� �H�

var
��� �����" �
K � � �B�

(46)

(36) can be written as

� -
var
��� � ��� �����" K � ��� �� - � � �����" K � ��� �� �

�
var
��� � ��� � �����" K � ��� �� �

� �[R
var
��� � �6� �����" K � ��� �� - � � �����" K � ���
�� �

(47)

Let ] � (
, we get that

���� 
�"!$# var

��� � �����" K � ���
�� �'� �
(48)

By the definition of
�%�� , we have

���� 
�"!$#

� �� K � � �B�
(49)

that is
� �� � � ]

T>U
(50)

Reversely and similarly, we can proof that if
���

is sas-s,
�

is also sas-s. And using the same method, we can prove that
�

being
N ��
�� - � is equivalent to

���
being

N ��
�� - � .� $��
From this theorem, one can see that not only the sas-s properties of the input and output processes are equivalent, but their

Hurst parameters I � � - ��J K
�
�
are also the same.

For the condition of finite second-order moment of queue length, we could use the dynamic bandwidth allocation scheme

(see [4]) or other methods to assure it. In fact, this condition is mathematically convenient, since the buffer sizes in practice are

always finite, the queue length is bounded, and therefore, the condition is always satisfied.



5. End-to-end Delay

Theorem 4.1 can be applied to network traffic control for providing statistical guarantee for the end-to-end delay on switched

networks. In [10], a statistical delay bound on an single ATM switch with self-similar Input Traffic has been given, according

our result, the output process retains the same self- similarity property of the input process. Therefore, we can apply the same

statistical delay bound on the subsequent ATM switches along this connection. The advantage is that we only need to calculate

the Hurst parameter I � � - ��J K
�
�
at the first ATM switch, and once in for all other switches along the same connection.

Furthermore, given the method for determinating the worst case cell delay for an ATM switch with self-similar input traffic,

with this proof, we can determine the end-to-end delay for such real-time communications in an ATM network by summing the

cell delay experienced by each of the ATM switch along the connection.

A server � � provide delay bound
�	 � guarantee with probability

� - V � , means the delay of a cell in the connection satisfies:

�\� 	 � � �	 �  � � - V � �

We have a result for the end-to-end delay bound:

Lemma 5.1 If a connection go through � servers, and the server � � � � � �
���5�Q�Q� � � provide delay bound
�	 � guarantee with

probability
� - V � , then � �� � � �	 � is the end-to-end delay bound with guarantee probability

� - � �� � � V � .
Proof: For the given connection, the delay of a cell in server � � is bounded by

�	 � with probability
� - V � . Noted that 	 is the

end-to-end delay. From the event
� 	 � � �� � � �	 �  we can imply

� 	 � � �� � � �	 �: �� � 	 � � �	 �
� � �F�
�������5�Q�5� �  
��� �� � � � 	 � � �	 �  � �
	� � � � 	 � � �	 �Z 

The end-to-end delay 	 satisfies:

�\� 	 � � �� � � �	 �  ���\� 	 � � �	 � � � �F�
���5�Q�5� �  
��� - � �� � � �\� 	 � � �	 �  
��� - � �� � � V �

That means the end-to-end delay is bounded by � �� � � �	 � with a guarantee probability of
� - � �� � � V � .

6. Conclusion

In this paper, we have studied the performance guarantee of real-time communications from the network with self-similar

traffic. The performance analysis require to know the property of traffic superposition. Because the output traffic of a switch is

the input of the next switch, so we must study the self-similarity properties of output process.

Our results can be applied to network traffic control for statistical end-to-end delay guarantee on the networks. Given the

method for determinating the worst case cell delay for an ATM switch with self-similar input traffic, we can determine the

end-to-end delay for such real-time communications in an ATM network by summing the cell delay experienced by each of the

ATM switch in the connection.
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