
IEEE TRANSACTIONS ON INFORMATION THEORY

CO~TCLUDING REMARKS

A class of codes, having check matrices which are the
tensor products of the check matrices of nonbinary and
binary codes has been described. In particular, it has been
shown in detail how the error-correction, error-detection
and error-location capabilities of such codes depend on
the component codes.

Many other variations of such codes exist in addition to
those discussed in this paper. In some applications it
may be desirable to have subblocks of various sizes.
One of the most easily implemented means to this end
would be to choose the code C’ to yield the maximum
desired subblock size and then delete columns of the check
matrix H’ corresponding to the desired “shorter” sub-
blocks. (If C’ is a cyclic code, shortened cyclic codes would
be used for the shorter subblocks). Alternatively, C’ can
be replaced by a sequence of binary codes (each code for
a separate subblock) all of which have p check digits but
possibly have different lengths and error-control capabili-
ties. Moreover, independent of the choice of block length
other classes of error patterns in addition to random
errors and single burst errors can be utilized for &i and G;‘.
For example, the process can be iterated to obtain codes
for the correction of “bursts of bursts . . . of bursts.”
A channel model in which errors occur in “bursts of
bursts . . . of bursts” has been proposed by Mandelbrot

[II

PI

[31

[41

151

WI

[71

P31

WI

DOI

PU

WI

[I31

U41

Cl51

P61

REFERENCES
ml

Reed, I. S., A class of multiple-error-correcting codes and the
decoding scheme, IRE Trans. on Information Theory, vol IT-4, PO1
Sep 1954, pp 3849.

Calabi, L., Additions and mldtiplications of codes, Tech Memo
No 11, Park Math. Labs., Carlisle, Mass., Contract AF19(604)-
3471. .Jun 1959.
Slepfaan, D., Some flIrther theory of group codes, Bell Sys. Tech.
J., ~0139, 1960, pp 1219-1252.
Calabi, L., and H. G. Haefeli, A class of binary systematic
codes correcting errors occrcrring at random and in bursts, IRE
Trans. on Information Theory, vol IT-5, May 1959, pp 79-94.
Calabi, L., and R. Darst, Three operations on binary systematic
codes, Final Rept 3471, Park Math. Labs., Carlisle, Mass.,
1961.
--, A study of the sum and the product of two codes, Scient,ific
Rept No 3, Contract AF19(604)-7493, Park Math. Labs.,
Carlisle, Mass., Aug 1961.
Schmandt, F. D., Single burst-error-correction capabilities of
binary cyclic codes, RADC-TDR-63-301, RADC, Griffiss AFB,
N. Y., Aug 1963.
Wolf, J. K., and B. Elspas, Error-locating codes-a new con-
cept in error control, IEEE Trans. on Information Theory, vol
IT-g, Apr 1963, pp 113-117.
Wolf, J.- K., On -an extended class of error-locating codes,
(accepted for publication in Information and Control).
&/Iandebrot, B., Electromagnetic turbulence in communication

Bose, R. C., and D. K. Ray-Chaudhuri, A class of error-correct-
systems, Internat’l Conf. on Microwaves Circuit Theory and
Information Theory, Tokyo, Japan, Sep 1964.

ing binary group codes, Information and Control, vol 3, Mar
1960. nn 68-79. 112
Hocquenghem, A., Codes correcteurs derreurs, Chi$res, vol 2,
Sep 1959, pp 147-156.
Reed, I. S., and G. Solomon, Polynomial codes over certain
finite fields, J. Siam, vol 8, Jul 1960, pp 16-21.
Abramson, N. M., A class of systematic codes for non-inde-
pendent errors, IRE Trans. on Information Theory, vol IT-5,
Dee 1959, pp 150-157.
Fire, P., A class of multiple-error-correcting binary codes for
non-independent errors, Rept RSL-E-2, Sylvania Electric
Products, Inc., Mt. View, Calif., Mar 1959.
Elspas, B., and R. A. Short, A note on optimum burst-error-
correcting codes, IRE Trans. on Information Theory, vol IT-S,
Jan 1962, pp 39-42.
Gross, A. J., A note on some binary group codes which correct
errors in bursts of four or less, IRE Trans. on Information
Theory (Correspondence), vol IT-& Ott 1962, p 384.
Peterson, W. W., Error Correcting Codes, Cambridge, Mass.:
M.I.T. Press. 1961.
Stone, J. J.,’ Multiple burst error correction, Information and
Control, vol 4, Dee 1961, pp 324-331.
Corr, F., Multiple burst detection, hoc. IRE (Correspondence),
vol 49, Aug 1961, p 1337.

Fibonacci Codes for Synchronization Control
WILLIAM H. KAUTZ, MEMBER, IEEE

Absfracf-A new family of codes is described for representing
serial binary data, subject to constraints on the maximum sepa-
ration between successive changes in value (0 + 1, 1 -j 0, or both),
or between successive like digits (O’s, l’s, or both). These codes
have application to the recording or transmission of digital data
without an accompanying clock. In such cases, the clock must be
regenerated during reading (receiving, decoding), and its accuracy
controlled directly from the data itself.

The codes developed for this type of synchronization are shown
to be optimal, and to require a very small amount of redundancy.
Their encoders and decoders are not unreasonably complex, and
they can be easily extended to include simple error detection or
correction for almost the same additional cost as is required for
arbitrary data.

Manuscript received October 1, 1964.
The author is with the Stanford Research Institute, Menlo Park,

Calif.

I. INTRODUCTION \ w HENEVER a sequence of binary digits is re-
corded on a continuous recording medium, some
means must be provided for regenerating during

reading the timing signals which separate and distinguish
successive digits. Several methods are known for accom-
plishing this synchronization, but they all are relatively
costly in terms of the amount of redundancy which they
devote to establish proper timing. Namely,

1) A separate clock channel may be used to synchronize
one or more parallel data channels. (Equivalently,
the extra channel may be an odd-parity-check
channel.)

Kautz: Fibonacci Codes for Synchronization Control 285 1965

3)

In
such
now

Three-level signals may be employed, to distinguish
a 1 (+ level) and 0 (- level) from no signal (zero
level). Thus, each binary digit is self-timed, at the
cost of using a ternary number representation
system.

Reading may be performed at an approximately uni-
form rate: so that a fixed-frequency local clock may
be used. In this case, a dummy block of one or more
synchronizing digits is usually placed at the end of
each block of data digits, so that the local clock
rate can be servoed periodically to agree with the
reading rate.

this paper we propose the use of an arrangement
as 3), except that the synchronizing information is
to be distributed throughout the data block, with

the aid of some special codes for representing the data.
We show that this form of synchronization requires
much less redundancy than the usual (‘block synchroniza-
tion” method mentioned in 3). For the ranges of word
lengths and synchronization intervals likely to be en-
countered in practice, the complexity of the encoding and
decoding circuitry is not unreasonable, even when the
codes are augmented to include a small amount of error
checking.

The codes proposed here are related, though not cquiva-
lent, to some prefix codes devised by Gilbert [I] for another
type of synchronization problem.

II. DERIVATION OF THE CODING PROBLEM

Whether the redundant information is lumped in a
block at the end of the code word or is distributed through-
out the code word, synchronization control is based on
repeated measurements of the times at which the read
signal changes from 0 to 1 or from 1 to 0. When reading a
sequence of binary digits, therefore, we must require that
all successive transitions in binary-signal value within
each allowable code word be separated by no more than
some prescribed number m of digit positions. In terms of
what we will call a string-an unlengthenable sequence of
consecutive like digits within a code word-this condition
reads:

Every n-digit code word contains no 0 strings or
1 strings longer than m. 1

(1)

We seek for arbitrary given m and n (where m 5 n) a code
C,(m, n), which is a list of n-digit code words satisfying
this condition.

It will be convenient to first convert this coding problem
into another equivalent form. Corresponding to each
n-digit code word a = (a,a,-, * * . a2al) of C,(m, n), we
may form an (n - 1)-digit companion word b =
(b,-lb,-2 . . . b2bl), defined by

bi = aj 0 aj+l, j=1,2 .*-n--l 7

where @ designates exclusive-OR (module-2) addition.

That is, each b-word is a kind of Boolean “derivative” of
the corresponding a-word. By this reduction, each string
of O’s or l’s in a is converted into a string of O’s (but shorter
by one) in 6. Moreover, the reduction is reversible, except
for the choice of value of al--5 reflection of the fact that if
the code word a is in code C,, then 6 = (&&--l . . . CF&)
is also in C,. Thus, to each pair (a, 6) of words in C,(m, n),
there corresponds a unique word 6 in another code
C,(m - 1, n - l), all of whose code words satisfy the
condition that every (n - I)-digit code word contains
no 0 string longer than m - 1. Equivalently, then, we may
seek a code C,(m, n), all of whose code words satisfy the
condition:

Every n-digit code word contains
no 0 strings longer than m. 1 (2)

Rather trivially, we may also speak of a third code
C3(m, n), all of whose code words c = (c,, end1 . . . cZc,) are
the complements of those in C2(m, n) (that is, c = 6),
and therefore satisfy the condition:

Every n-digit code word contains
no 1 strings longer than m. 1 (3)

If we designate by N,(m, n) the total number of code
words in a code C,(m, n) (i = 1, 2, 3), then we have im-
mediately for the codes derived as above

Nl(m, n) = 2Nz(m - 1,n - 1)

The unique relations between code words in these three
coding problems also guarantee that if any one of the three
codes can be shown to be maximal-that is, if it contains
the maximum possible number of code words consistent
with its defining condition l), 2), or 3)-then the other
two are also maximal.

Note incidently at this point that these codes (if they
can be found) would also solve directly the problem in
which it is the level or gain of the reading mechanism,
rather than its timing, which must be controlled by fre-
quent readjustment in a closed-loop control device. In
this case, we require that each pair of successive O’s [code
Ca(m, n)], or each pair of successive l’s [code C,(m, n)] or
each pair of consecutive like digits-O’s and l’s-[code
C,(m, n)] be separated by no more than m intervening
digits of opposite value, in each n-digit code word. The
indicated codes would not only provide acceptable solu-
tions to these three problems, but if maximal in the sense
defined above, they would provide minimum redundancy
solutions as well.

III. CODE CONSTRUCTION

A code family Cs(m, n) for all positive integral m and n
(but m < n) may be constructed as follows. Recall first
that a conventional binary number constitutes a maximal
k-digit code for representing any integer x between 0 and

286 IEEE TRANSACTIONS ON INFORMATION THEORY

TAULE 1

FIBO~ACCIWEIC;~~~ 201(S)

j=
___---

s= 1

2

3

4

5

6

7

s

9

10

11

12

2 3 4 3 6 7 s 9 10 11 12

--
11; 1 1 1 1 1 1 1 1 1 1
----------------\

2 ‘\\ ;: 5 6 ‘\ 1:; 21 34 jj sn 144 2:x:
‘--

2 ‘\
\---------------------\

4 q- 13 24 44 Hl 149 2i4 ‘\ 504 < 927

2 4 s ‘\ \\ 15 29 56 108 208 401 7’73 1496
--\

2 4 s 16 ‘\,Z’_ 61 120 236 464 912 179:;

2 4 s 16 32 ‘\\ 6:; 12.5 248 4’3% 9i6 1936
\--,

2 4 s 16 X2 64 ‘x,11’: 2.5:: 564 1004 2006
\

1”s ‘\ “I5 509 1616 202s
\--
236 ‘\ q11 1021 2040

--\
51” ‘\ 1023 2045

\.--,
1024 ‘\ 2647

\----.
2 4 S 16 ::2 64 1% 256 51% 1034 2048

Nl(rn, n) = 2?&,(m) X2(m, n) = No(m, n) = w,+l(“*+‘)

2k - 1; namely,

x = 2 &2’-’

i=l w4 = 5, wa = 8, w6 = 13, etc.
in which the binary coefficients di are the digits of the
number x = (dkd,-, . . . d,d,) to the number base 2. The
weights 2 ‘-I in this representation are simply powers of
this number base (j = 1, 2, . . * k).

This is the sequence of well-known Fibonacci numbers
[a]. For arbitrary s > 0, we may call the sequence of
weights defined by (5) (generalized) Fibonacci weights
of order s.

Consider now the use of a set of diminished weights,
WI, wz, . . . w, for an n-digit representation x =
(C&,-1 . . . c2c1) in the same form; namely:

Table I lists the values of these weights for a range of
values of j and s. Some aids to the calculation of these
weights and of others outside of the range of the Table
are presented in the Appendix. Observe for the moment
only that the terms wj form an increasing sequence x = &,w. 7. (4)

i=l

For a given positive integer order s (where s < n), we will
select the weights WI”’ = wi to satisfy’

Wj = p-1 1ljl.s 1. (5)
wj = wj-1 + wj-2 + . . . + wj-, s<j J
That is? the first s weights are the same as in the conven-
tional binary case, but each weight after the sth weight
is the sum of the previous s weights.’

1 The superscript on wi(“)$ will be dropped whenever it is clear
which value of the order s is intended.

2 We mention at this point the possible use of a number system
with non-integral base B, hence weights wi = Bi-‘, which also
satisfy the recurrent part of (5) for all integral j; hence, B8 = B8-l +
BP2 + . . . + B + 1. However, number representations in this
system are unnecessarily lengthy (e.g., 9 = 10010.0101 for s = 2,
B = 1.618), and the relationship between these code words and the
power-of-two-weighted code words is less direct than that derived
for the codes developed in this section.

April

For s = 2, for example, we get the weight sequence

WI = 1, wz = 2, w3 = 3,

for any fixed s.
W, > Wi-1 03)

We now show by a constructive encoding process that,
for fixed s, and for every integer x between 0 and w,+~ - 1,
there exists a unique n-digit, Fibonacci-weighted binary
representation x = (c,c,-, . . f c2cJ which satisfies Condition
3) for a code C,(s - 1, n).

This construction is inductive, i.e., iterative, and gener-
ates the representation of x, most significant digit first,
as follows. Let yn = x, and then form successively the
numbers yn-,, Y%-~, . . . , yj, . . . , y1 according to:

where
yj-1 = yi - cjwj

(7)
ci=l iff wi<yi<witl.

That is, the number x is successively diminished by which-
ever weights of the sequence w,, w,-,, . . . wl, taken in

1965 Kautz: Fibonacci Codes for Synchronization Control 287

this order, do not produce a negative result. If the weight
wj is actually substracted from the running difference, then
ci = 1; if not, then ci = 0. For example, if s = 2, n = 6,
and x = 19, then this construction yields from the weight
sequence 13, 8, 5, 3, 2, 1 (listed above) the representation

I 19 = (lOlOOl), as follows:

19 - 13 = 6 cg = 1

6-8 <o es = 0

6-5 =l c4 = 1

l-3 <o c3 = 0

l-2 <o cz = 0

l-l =o c, = 1.

Note that this same construction is the one frequently
used for expressing a decimal number x in power-or-two-
weighted binary form. For this same example, for which
19 =? (10011)

19 - 16 = 3 cl, = 1

3-8 <0 d, = 0

3-4 <o d, = 0

3-2 =1 d, = 1

l-l =o d, = 1.

The uniqueness of the representation obtained from the
construction (7) follows directly from (4), if only it can
be shown that the construction can always be carried to
completion with a zero remainder. Assume this to be the
case for every x in the range 0 < x < wi. (It is obviously
so for j = 1.) Then for any x in the range wi < x < w~+~,
the construction (7) yields c, = c,-~ = . . . = c~+~ = 0
and ci = 1, since all of the differences x - w,, x - w,-~, . . .
x - w~+~, x - wi are negative except the last one, by the
inequality (6). Consider now the residue x - wi. The
defining equation (5) for the weights wi may be expressed
in the form (by subtracting (5) from itself, with j re-
placed by j + 1):

wi+1 = 2wi l<j<s
(8)

wi+l = 2wi - Wj-a s<j

so that w~+~ _ < 2~~; thus, this residue x - wi is bounded
according to

x - wj < wi+1 - wi < wj

By the inductive hypothesis, the construction (7) may
therefore be carried to completion with a zero remainder,
starting with this residue.

The induction is valid up to j = n, so we have shown
that for every integer x in range 0 < x < w+~ there exists
a unique representation J; = (c,c,-I . . . c2c1).

It remains to show that no more than s - 1 consecutive
ci can have the value 1. By (4), any such sequence of
s c-values, ci = ciml = .. . = c,-,+l = 1 (s 5 i 2 n),
would contribute to the weighted sum for x an amount

Wi f Wi-1 + *. * + Wi-s*l

which by (5) equals the next larger weight w~+~. Take the
leftmost such string. If i < n, then ci+l = 0, and the
string

L-
. . 011 . . . 1 . . .

T
Ci

could be replaced by

7--f--.
. . . 100 . . . 0 . . .

T
Ci

without changing the value of the sum (4). The same sub-
stitution can be made for any remaining strings of s l’s to
the right. However, since the construction (7) prefers
a 1 over a 0 in each digit position, working from the left,
the former representation containing s consecutive l’s
cannot arise. If i = n, then we would have x 2 w,,,, which
also could not arise, since z was assumed to fall in the
range 0 < x < wn+l. The particular Fibonacci-weighted
representation which is generated by construction (7)
therefore satisfies condition 3) for a C,(m, n) code, with
m = s - 1, and the assertion of this section has been
proved.

IV. MAXIMALITY OF FIBONACCI-WEIGHTED CODES

The uniqueness of the code representations of each of
the w,+~ possible integral values of x in the range
0 I x < w,+1, for the C,(m, n) code just described, guaran-
tees that the code contains at least

N,(m, n) = ~2:”

code words. We now want to show that no C,(m, n) code
can contain more than this number of code words, so that
this Fibonacci-weighted code is maximal.

By the equivalences developed in section II, the re-
lated C,(m, n) and C,(m, n) codes derivable from this
code are maximal if, and only if, C, (m, n) is itself maximal.
It will be easier to derive this upper bound in terms of the
first code C,(m, n). We then need to show that, for given
m and n, the number Nl(m, n) of possible n-digit binary
words containing no 0 strings or 1 strings longer than m
cannot exceed 2~:“‘. To this end, observe that any com-
plementary pair of words, such as

zm ldrid ~16HlVhWL’I’lUlVil Ul\i

can be represented uniquely and unambiguously by the
ordered additive partition of n into its string lengths:

10=1+1+2+1+1+1+3.

Riordan [3] has shown that the number of such ordered
additive partitions of n (which he calls compositions of n)
having no constituent integer greater than m is equal to
the number which we have defined in (5) as wArnI. That is,

Nl(m, n) 5 2~:“‘.

Therefore, all three codes are maximal.
Henceforth, we will use the designations C1(m, n),

Cz(7n, n), and Cs(m, n) for these Fibonacci codes which
are generated from construction (7) of the Section III.

V. ENCODING ASD DECODING

The central encoding and decoding processes may be
discussed in terms of the code C,(m, n), since the conver-
sion between its code words and those of C2(m, n) and
C1(7n, n) is quite simple, both in concept and implementa-
tion.

The tasks of encoding and decoding are essentially the
same, the basic process being one of converting a binary
number representation from one set of weights to another:

x = (d,d,-, . . . d,d,) e x = (c,c,-1 . . . c2c1)

power-of-two weights Fibonacci weights.

Unfortunately, however, such conversions require some
sort of arithmetic computation, which might be carried
out more easily in one of the number systems than the
other. Consequently, the preferred encoder and decoder
might employ entirely diff ercnt conversion algorithms.

If the arithmetic is to be performed in the familiar
power-of-two-weighted number system, then one can
perform encoding according to the construction process
expressed in (7), and decoding by (4). In each case, it is
only necessary to express, that is, to have available in the
encoder and decoder, each Ebonacci weight wi as a k-
digit binary number. For x = 19 and s = 2 (our earlier
example), these processes take the form

Encoding :

16 8 4 2 1

19= 10011
we = 13 = 0 110 1

13 8 5 3 2 1

00110=6
W 1= 5= 00101

00001=1
W 1= 1 00001

-c,
00000 10 10 0 1 = 19

April

Decoding :

13 8 5 3 2 1 16 8 4 2 1

101001 00000

Y

01101

01101
00101

10010
00001

10011=19.

Alternatively, the arithmetic might be performed in the
Fibonacci-weighted system, in which case the use of
these two equations should be interchanged: (4) for
encoding, and (7) for decoding. However, addition of
Fibonacci-weighted binary numbers is not so simple. In the
power-of-two-weighted system, an overflow in digit posi-
tion j (whose weight equals 2jmI) contributes an amount
2.2’-’ = 2j to the sum; this overflow is added in by pass-
ing a 1 as a carry digit to the left, to digit position j + I
(whose weight equals 2’). In the Fibonacci-weighted
system, the identity (8), which may be expressed as

2Wj = Wi+l l_<j<s

2wi = wi+1 + wi-. s<j I

indicates that the amount 2wj contributed by an overflow
in digit position j must now be passed as a carry not only
to the left to digit position (j + I), but also the right (if
such position falls within the representation) to digit
position (j - s).

This double-carry seriously complicates the circuitry
of a parallel adder, and its bidirectionality renders the
conversion of the adder from a parallel to a simple serial
form practically impossible. Moreover, the result of such
Fibonacci addition must in general be further corrected
to clear out to the left all 1 strings longer than s - 1.
Consequently, power-of-two-based arithmetic, as first
described, is much preferred.

It is pertinent to inquire whether or not there exists a
conversion procedure for either encoding or decoding, or
both, in which the coded digits may be generated one at a
time, in synchronism with the reception of successive
source digits. Inspection of the power-of-two-weighted
equivalents of the Fibonacci weights and the Fibonacci-
weighted equivalents of the power-of-two weights reveals
that, in general, neither the most significant nor the
least significant digit of a resultant word can be known
until all digits of the source word have been received and
appropriately added. Thus, the circuit which performs
conversion must contain signal propagation paths which

1965 Kautx: Fibonacci Codes for Synchronization Control 289

noise-freecase. Forexample, anerrorin thecentral between
two 1 strings such as occur in . . . 011 . . . 1011 . . . 10 3 . .

are both left-going and right-going within the entire length
of the source word. Reduction of the coder to a purely
serial and instantaneous mode of operation (as in a con-
ventional binary adder) is, therefore, basically impossible.

Both of the code conversion procedures described
above require that the power-of-two-weighted representa-
tions of the n Fibonacci weights be available during the
conversion process. Thus, these weights must either be
stored in an auxiliary memory, or be generated by local
circuitry. The recurrence relations (5) and (8) indicate
that each of these weights may be generated easily from
previous values, requiring the storage of only s consecutive
weights, regardless of how large n might be.

can increase the maximum length of 1 strings fn a code
word from m to 2nz - 1. Second, these errors misrepresent
the data, so that error checking must be employed if
accuracy is to be retained. The fact that the errors may
be correctible does not in any way compensate for the
first effect, since the guaranteed separations of O’s, etc.,
are needed during reading or demodulation, not after the
code words have been read, checked, and corrected.

Regarding the relation between the parameters 1~ and n,
it is a simple matter to choose the parameter n just large
enough so that 2” < N,(m, n) = WAY:“; that is, to choose
n so that

w, < 2k I w,+1.

Inspection of Table I reveals that, except for rather small
values of m = s - 1, even very long codes require a
number n - k of redundant digits equal to only one or
two. (The dotted line, whose position is derived in the
Appendix, encloses the region of Table I within which
n - lc = 1.)

We will assume here that the possible presence of errors
has already been taken into account in the original specifi-
cation of the required value of m. Admittedly, some econ-
omy might be achieved by using a code which has a smaller
value of the maximum separation m, but which satisfies
such additional conditions on the minimum separation
that the effective value of m is made independent of
these errors. The potential savings in redundancy and in
encoding and decoding equipment which might result
from this alternative are felt to be small. This would
appear to be particularly the case when the ultimate
statistical performance criteria, rather than the criteria
of completely error-free behavior up to a certain noise
level, are applied to the system.

This situation may be compared with the block syn-
chronization method discussed in Section I. To avoid
long 1 strings under Condition (3), for example, a redun-
dant 0 must be inserted after every (m - 1)th digit of an
arbitrary /c-digit data word. Thus, a total of about
l;/(m - 1) redundant digits are required for block syn-
chronization. This number is generally much larger than
the value of n - k required for l?ibonacci codes.

With this assumption, we may therefore neglect t,he
effect of the noise in increasing the effective value of m,
and concern ourselves only with the error-checking process
itself.

Code words of code C2(m, n) may now be formed by
merely complementing corresponding code words of code
C,(772, n). Code words of code C1(m, n) may be formed
by “integrating” the corresponding code words of
C,(m - 1, n - 1) (the inverse of the “derivative” process
described in Section II), with a, = d,. Alternatively, they
can be generated by using a set of weights which (except
for the first, which must equal unity) are the doubles of
those employed for C,(V-1, n-l) and C3(m-1, n-l):

In general, the error checking need not be applied over
the Fibonacci code words themselves, but could be applied
to portions of these code words, or to blocks of several
such code words at a time. Aside from the necessity of
interspersing buffer digits between code words in the
latter case (so that strings at the ends of successive code
words cannot combine to form strings of excessive length),
these other alternatives contribute no new encoding
problems. Therefore, we consider here only the most
elementary case-namely, that checking redundancy in
the form of p extra digits is to be added directly to the
n-digit Fibonacci code words themselves, to yield (n + p)-
digit, error-checked code words.

1, 2wj”’) 2wi”’) * ’ . 2w:::.

In this case the construction (7) must be modified some-
what to use a more complex rule of preference for l’s and
O’s, instead of a simple preference for 1’s.

The number of possible combinat,ions of error types,
number of errors, and separation conditions is so large
that we will limit the present investigation to a brief
consideration of a few particular and exemplary ways in
which error checking can be applied to Fibonacci code
words for code C,(m, n). The extension to the other
Fibonacci codes introduces no fundamental difficulties.

1) The simplest method of error checking is to treat

VI. AUGMENTATION OF FIBONACCI CODES TO
the Fibonacci code words as binary data in the usual

INCLUDE ERROR CHECKING
sense, neglecting for the moment the digit-separation
properties of these code words. Any linear error-correcting

The effects of binary errors on the code words is two- code [4] may bc used to generate a redundant subword,
fold. First, these errors can cause the peak string lengths which is to be affixed to the end of the Fibonacci word.
to be increased beyond the design value m specified in the This redundant subword must then be modified to satisfy

290 IEEE TRANSACTIONS ON

the separation condition; for example, buffer O’s may be
inserted at the beginning of the subword, and after every
mth position in the subword, in order to break up 1 strings
longer than m. For single error correction, for example, the
Hamming code requires exactly R = 1 + [log, [1 -I-n+log, n]]
redundant digits, (where the brackets [] denote the
integral part of the quantity within). After buffer O’s are
inserted, this number increases from R to:

R-l
p=R+l+ 3 [1

Normally, p << n and m < n, so that the required number
of buffer O’s is relatively small.

For this construction, the error-checked code word
takes the form:

In
-

Fib. code word 0 0
1r-T07-^’
v

la P

The extra O’s could normally be inserted and removed with
only a small amount of additional circuitry in the encoder
and decoder, respectively. Thus, one may employ cyclic
error-correcting codes for error checking, and retain
their considerable advantages over other types of codes:
simple encoders and decoders, a minimum or near-mini-
mum number of redundant digits for a prescribed degree
of error checking, and considerable versatility in the
types and patterns of errors which can be handled by the
same code: isolated or burst, detection or correction [4].

2) All 0 -+ 1 errors, in any pattern and number, may be
detected with a modification of the Berger error-detection
code [5]. In the Berger code, each n-digit code word has
affixed to it a (1 + [log, n])-digit check word, which is
the power-of-two-weighted binary representation of the
total number of O’s in the code word. For example, code
word 1011001 becomes 1011001011. This amount of
redundancy is set by the fact that the total number of O’s
may range from 0 to n.

Actually, one may use for the check word any positive-
weighted binary representation of the total number of O’s,
such as the Fibonacci-weighted representation already
employed for the code word itself. Moreover, for code
G(m, n), the total number of O’s now ranges from
[n/(m + 111 to n.

Allowing for a buffer 0 between the code and check
words, the required number p of redundant digits may be
readily determined to be the smallest integer which
satisfies

WY+l) 2n+l-- 5. [I 1
The check word is simply the corresponding Fibonacci-
encoded representation of the total number of O’s in the

INFORMATION THEORY April

code word in excess of the minimum possible number of
O's, [n/(m + 111.

This code provides a relatively economical form of
detection of all 0 -+ 1 errors. It is easily modified to handle
1 --+ 0 errors instead, should this case be desired.

3) In what is called by Peterson [6] an “AN” code,
originally developed by Brown [7] and Diamond [8], an
n-digit binary number (code word) y is encoded by multi-
plying it by a constant integer y, to obtain a new binary
number 7~ having n + p digits. Decoding is performed by
dividing the (possibly erroneous) number ry by y; this
division will yield the number y, with a zero remainder if
there has been no error, or possibly with some other re-
mainder if an error has appeared in any position of the
(n + p) digit code word. In fact, a 0 -+ 1 or 1 + 0 error
in digit position j will add or subtract, respectively, to -ry
an amount equal to the jth weight: 2’-1 in a power-of-two-
weighted number system, and wi in a Fibonacci-weighted
system. For single error correction, therefore, we require
that the number y be selected large enough so that all of
the weights used in the binary representation of yy, as well
as the negatives of these weights, have distinct and non-
zero remainders when divided by y. If only 0 -+ 1 errors
are to be corrected, then the negative weights need not be
considered. If only detection is needed, then the re-
mainders must be nonzero, but not necessarily distinct.

This encoding and decoding principle is valid whether
the weights are powers of two or are Fibonacci weights,
but the multiplication and division by y are awkward in
the Fibonacci case. To circumvent this difficulty, the order
of conversion with the Fibonacci and (‘AN” codes may be
reversed. That is, encoding may be carried out by first
multiplying the original k-digit binary word by y, and
then converting this word to Fibonacci weights; decoding
is performed by reconversion from Fibonacci to power-of-
two weights before dividing by y. The final code word
should now have a number n + p of digits just large enough
so that

w:;,‘:: > y(2k - 1).

The constant y must still be selected so that all n + p
weights and their negatives have distinct nonzero re-
mainders when divided by y. The determination of a
suitable y may involve considerable calculation, but it
need be done only once for each pair of values of m and k.
For example, for m = 2, k = 8, and the correction of single
0 ---f 1 errors only, we may use y = 26, n + p = 15, since

(3) W16 = 10609 > 26 1 (28 - 1)

and since all of the weights wi3), wi3’, . . . w:“,’ have distinct
nonzero remainders on division by 26. A lesser fractional
redundancy may be expected for larger values of k.

Note that the data and check digits in these codes are
not separately identifiable. However, no buffer digit is
required in the middle of the code word.

1965 Kautz: Fibonacci Codes for Synchronizatim Control 291

The “AN codes” were originally developed for protec-
tion against errors arising during arithmetic operations.
Even with Fibonacci weights, they still provide protection
of this type, although the difficulties of Fibonacci addition
noted previously make such application unlikely.

VII. CONCLUSIONS

We have shown with a new family of codes how the
efficiency of binary data transmission or recording without
an accompanying clock can be increased appreciably,
in comparison with the systems in current use. This is
done by arranging each valid code word to have a pre-
scribable density of signal changes, so that the phase of
the local clock (strobe) at the receiver or reading device
can be controlled as accurately as necessary. The increase
in efficiency is measured in terms of the number of re-
dundant digits required. However, it is shown that the
encoding and decoding apparatus is not unreasonably
expensive, even when some common types of error detec-
tion or correction are included.

The existence of these codes therefore enlarges the
available repertory of different channels and noise types
against which error protection may be provided by coding
means.

These codes should most likely find application in the
recording of single-track digital data on magnetic, photo-
graphic, or similar continuous media, where the reading
rate can be controlled in open-loop fashion only within a
few per cent. A value of m between 5 and 20 should then
be adequate to servo the reading clock to within a small
fraction of one clock period. The block length n is most
likely determined by the form of the source data to be
recorded, and secondarily by the error rate.

Extensions of these codes which might well be investi-
gated are 1) more efficient Fibonacci type codes with error
correction, particularly burst error correction, 2) codes in
which the minimum as well as the maximum string length
is limited, to avoid the need for the assumption made at
the beginning of Section VI and 3) codes with simpler
encoders and decoders, even though t.he codes are some-
what more redundant. These last codes might be generated
by attempting to modify or simplify the process of addition
of Fibonacci-weighted code words.

ACKNOWLEDGMENT

For time and facilities in the preparation of this paper,
the author is indebted to the Technical University of
Denmark, Copenhagen, to Stanford Research Institute,
Menlo Park, Calif., and particularly to Compagnie des
Machines Bull, Paris, at whose premises the major part of
the work was conducted. He is especially grateful to
H. Azuelos and M. Nadler of this organization for their
direct collaboration and other valuable assistance.

APPENDIX

CALCULATION OF FIBONACCI WEIGHTS

While one may use the recurrence relations (5) or (8) to
calculate recursively any desired weight WI’), it would be
helpful to be able to estimate directly a particular weight
without calculating all previous weights of the same order.
To this end we derive an approximate expression for wi’),
which incidentally indicates the asymptotic behavior of
the Fibonacci code parameters.

Our development parallels somewhat that of Gilbert [I].
Riordan [3] provides a generating function for wi8), namely

W(*)(t) = 2 Jq7;“‘t’ = l $; f$).
i=o

That is, the jth weight is given by the coefficient of t’ in
the power-series expansion of W’“‘(t). This rational func-
tion may be expanded in partial fractions to give

A(*)(t) 2 Ri"'
-zz

w'"'(t) = p'(t)
%=I T-zy

in which the residue R!“’ is

RIa) ; A’“‘(t)

$ B’“‘(t)

and the tf”’ are the s roots of the (lenominator polynomial

P(t) = 1 - t(2 - t”) = 0

(The root at t = 1 does not contribute a term to W’“‘(t),
since A’“‘(l) = 0 also).

This polynomial equation may be expressed in the form

1
t = 2 _ t” (9)

from which it is apparent that one root t = ti’) = t,, say, is
positive, real, and somewhat less than unity. This root
therefore contributes to W’“‘(t) a summand whose power-
series expansion in t has terms which increase with in-
creasing j

All other roots are dist#inct and fall outside of the circle
ItI = 1; they therefore contribute to TV’“‘(t) summands
whose power-series expansions in t have terms which
decrease with increasing j. Thus, for large j, we have:

n(s) Jp(t) M n,
t - t,

or

292 IEEE TRANSACTIONS ON

The residue may be evaluated:

- R:*) A’“‘(4) t,u - 0 k(l 4)
=B’““ipJ=

=
(s + 1)t; - 2 2st, - s -3

giving the weight value

w;a) z 1 - 2,
(s + 1 - ast,)t;’

But from (9) above, the root tl may be developed in the
form of a rapidly converging series

4 = -z.z 1 1 = . .

2 - t; { >
2- __ 1

2 - t;

t1 = 1 1 1 + ,JI, + ;1+,+ + . . .) . (11)

Equations (10) and (11) allow rapid calculation of the
approximate value of any weight wj’). For j = 10, s = 4,
for example,

t, = +(I + 2-” + 5.2-’ + . . .) w 0.5206

(41 - 0.4794
WI0 - (o.8352)(o.5206)1” = 3g3

in comparison with the exact value

WlO (4) = 401.

It is of interest to determine that portion of Table I
over which a single redundant digit is required for the
Fibonacci-weighted code: n - k = 1. Since an n-digit code
has w,:“: code words, this region of the table is defined by
the range

2” = 2”-’ < wi’;‘, < 2”

INFORMATION THEORY April

The upper bound wj” < 2j-l is set by the first diagonal
above the main diagonal, j = s + 1. The lower bound,
w!‘) > 2’-“, may be estimated as follows. For s not too
srkall~and j >> s, we may write, from (11)

so that

t, 23 4(1 + 2-,-l>

,!a) N
(1 - 2--s-y--1

1 - (1 _ s2-s-‘)(1 _ ,-s-y

Thus, the lower bound becomes

p2 5 2j-l(1 _ (j + 1 _ s~2-s-l + . . . 1

or (j + 1 - s) < 2”. The range of values of j and s over
which one redundant digit is required is outlined by a
dotted line in Table I. For large s and j, it is expressed by

s+l<j<2s+s- 1.

This range therefore includes most of the useful part of the
table.

111

PI

I

r51

WI
171

REFERENCES
Gilbert, E. N., Synchronization of binary messages, IRE TWULS.
on Information Theory, vol IT-6, Sep 1960, pp 470-477.
Kiordan, J., An Introduction to Combinatorial Anal&s, New
York: Wiley, 1958, p 14.
Ibid., pp 124-125, 154-155.
Peterson, W. TV., Error-Correcting Coodes, New York: Wiley,
1961, chaps 8-9.
Berger, J. M., A note on error detection codes for asymmetric
channels, Information and Control, vol 4, Mar 1961, pp 68-73.
Peterson, 0~. cit., chap 13.
Brown. D. T.. Error det,ect,ine and correctine binarv codes for
arithmktic opkrations, IRE ‘?IYWLS. on E&ronic *Computers,
vol H-9, Sep 1960, pp 333-337.
Diamond, J. ill., Checking Codes for Digital Computers, Proc.
IRE (Correspondence), vol 43, Apr 1955, pp 487-488.

