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CO~TCLUDING REMARKS 

A class of codes, having check matrices which are the 
tensor products of the check matrices of nonbinary and 
binary codes has been described. In particular, it has been 
shown in detail how the error-correction, error-detection 
and error-location capabilities of such codes depend on 
the component codes. 

Many other variations of such codes exist in addition to 
those discussed in this paper. In some applications it 
may be desirable to have subblocks of various sizes. 
One of the most easily implemented means to this end 
would be to choose the code C’ to yield the maximum 
desired subblock size and then delete columns of the check 
matrix H’ corresponding to the desired “shorter” sub- 
blocks. (If C’ is a cyclic code, shortened cyclic codes would 
be used for the shorter subblocks). Alternatively, C’ can 
be replaced by a sequence of binary codes (each code for 
a separate subblock) all of which have p check digits but 
possibly have different lengths and error-control capabili- 
ties. Moreover, independent of the choice of block length 
other classes of error patterns in addition to random 
errors and single burst errors can be utilized for &i and G;‘. 
For example, the process can be iterated to obtain codes 
for the correction of “bursts of bursts . . . of bursts.” 
A channel model in which errors occur in “bursts of 
bursts . . . of bursts” has been proposed by Mandelbrot 
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Fibonacci Codes for Synchronization Control 
WILLIAM H. KAUTZ, MEMBER, IEEE 

Absfracf-A new family of codes is described for representing 
serial binary data, subject to constraints on the maximum sepa- 
ration between successive changes in value (0 + 1, 1 -j 0, or both), 
or between successive like digits (O’s, l’s, or both). These codes 
have application to the recording or transmission of digital data 
without an accompanying clock. In such cases, the clock must be 
regenerated during reading (receiving, decoding), and its accuracy 
controlled directly from the data itself. 

The codes developed for this type of synchronization are shown 
to be optimal, and to require a very small amount of redundancy. 
Their encoders and decoders are not unreasonably complex, and 
they can be easily extended to include simple error detection or 
correction for almost the same additional cost as is required for 
arbitrary data. 

Manuscript received October 1, 1964. 
The author is with the Stanford Research Institute, Menlo Park, 

Calif. 

I. INTRODUCTION \ w HENEVER a sequence of binary digits is re- 
corded on a continuous recording medium, some 
means must be provided for regenerating during 

reading the timing signals which separate and distinguish 
successive digits. Several methods are known for accom- 
plishing this synchronization, but they all are relatively 
costly in terms of the amount of redundancy which they 
devote to establish proper timing. Namely, 

1) A separate clock channel may be used to synchronize 
one or more parallel data channels. (Equivalently, 
the extra channel may be an odd-parity-check 
channel. ) 
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3) 

In 
such 
now 

Three-level signals may be employed, to distinguish 
a 1 (+ level) and 0 (- level) from no signal (zero 
level). Thus, each binary digit is self-timed, at the 
cost of using a ternary number representation 
system. 

Reading may be performed at an approximately uni- 
form rate: so that a fixed-frequency local clock may 
be used. In this case, a dummy block of one or more 
synchronizing digits is usually placed at the end of 
each block of data digits, so that the local clock 
rate can be servoed periodically to agree with the 
reading rate. 

this paper we propose the use of an arrangement 
as 3), except that the synchronizing information is 
to be distributed throughout the data block, with 

the aid of some special codes for representing the data. 
We show that this form of synchronization requires 
much less redundancy than the usual (‘block synchroniza- 
tion” method mentioned in 3). For the ranges of word 
lengths and synchronization intervals likely to be en- 
countered in practice, the complexity of the encoding and 
decoding circuitry is not unreasonable, even when the 
codes are augmented to include a small amount of error 
checking. 

The codes proposed here are related, though not cquiva- 
lent, to some prefix codes devised by Gilbert [I] for another 
type of synchronization problem. 

II. DERIVATION OF THE CODING PROBLEM 

Whether the redundant information is lumped in a 
block at the end of the code word or is distributed through- 
out the code word, synchronization control is based on 
repeated measurements of the times at which the read 
signal changes from 0 to 1 or from 1 to 0. When reading a 
sequence of binary digits, therefore, we must require that 
all successive transitions in binary-signal value within 
each allowable code word be separated by no more than 
some prescribed number m of digit positions. In terms of 
what we will call a string-an unlengthenable sequence of 
consecutive like digits within a code word-this condition 
reads: 

Every n-digit code word contains no 0 strings or 
1 strings longer than m. 1 

(1) 

We seek for arbitrary given m and n (where m 5 n) a code 
C,(m, n), which is a list of n-digit code words satisfying 
this condition. 

It will be convenient to first convert this coding problem 
into another equivalent form. Corresponding to each 
n-digit code word a = (a,a,-, * * . a2al) of C,(m, n), we 
may form an (n - 1)-digit companion word b = 
(b,-lb,-2 . . . b2bl), defined by 

bi = aj 0 aj+l, j=1,2 .*-n--l 7 

where @ designates exclusive-OR (module-2) addition. 

That is, each b-word is a kind of Boolean “derivative” of 
the corresponding a-word. By this reduction, each string 
of O’s or l’s in a is converted into a string of O’s (but shorter 
by one) in 6. Moreover, the reduction is reversible, except 
for the choice of value of al--5 reflection of the fact that if 
the code word a is in code C,, then 6 = (&&--l . . . CF&) 
is also in C,. Thus, to each pair (a, 6) of words in C,(m, n), 
there corresponds a unique word 6 in another code 
C,(m - 1, n - l), all of whose code words satisfy the 
condition that every (n - I)-digit code word contains 
no 0 string longer than m - 1. Equivalently, then, we may 
seek a code C,(m, n), all of whose code words satisfy the 
condition: 

Every n-digit code word contains 
no 0 strings longer than m. 1 (2) 

Rather trivially, we may also speak of a third code 
C3(m, n), all of whose code words c = (c,, end1 . . . cZc,) are 
the complements of those in C2(m, n) (that is, c = 6), 
and therefore satisfy the condition: 

Every n-digit code word contains 
no 1 strings longer than m. 1 (3) 

If we designate by N,(m, n) the total number of code 
words in a code C,(m, n) (i = 1, 2, 3), then we have im- 
mediately for the codes derived as above 

Nl(m, n) = 2Nz(m - 1,n - 1) 

The unique relations between code words in these three 
coding problems also guarantee that if any one of the three 
codes can be shown to be maximal-that is, if it contains 
the maximum possible number of code words consistent 
with its defining condition l), 2), or 3)-then the other 
two are also maximal. 

Note incidently at this point that these codes (if they 
can be found) would also solve directly the problem in 
which it is the level or gain of the reading mechanism, 
rather than its timing, which must be controlled by fre- 
quent readjustment in a closed-loop control device. In 
this case, we require that each pair of successive O’s [code 
Ca(m, n)], or each pair of successive l’s [code C,(m, n)] or 
each pair of consecutive like digits-O’s and l’s-[code 
C,(m, n)] be separated by no more than m intervening 
digits of opposite value, in each n-digit code word. The 
indicated codes would not only provide acceptable solu- 
tions to these three problems, but if maximal in the sense 
defined above, they would provide minimum redundancy 
solutions as well. 

III. CODE CONSTRUCTION 

A code family Cs(m, n) for all positive integral m and n 
(but m < n) may be constructed as follows. Recall first 
that a conventional binary number constitutes a maximal 
k-digit code for representing any integer x between 0 and 
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Nl(rn, n) = 2?&,(m) X2(m, n) = No(m, n) = w,+l(“*+‘) 

2k - 1; namely, 

x = 2 &2’-’ 

i=l w4 = 5, wa = 8, w6 = 13, etc. 
in which the binary coefficients di are the digits of the 
number x = (dkd,-, . . . d,d,) to the number base 2. The 
weights 2 ‘-I in this representation are simply powers of 
this number base (j = 1, 2, . . * k). 

This is the sequence of well-known Fibonacci numbers 
[a]. For arbitrary s > 0, we may call the sequence of 
weights defined by (5) (generalized) Fibonacci weights 
of order s. 

Consider now the use of a set of diminished weights, 
WI, wz, . . . w, for an n-digit representation x = 
(C&,-1 . . . c2c1) in the same form; namely: 

Table I lists the values of these weights for a range of 
values of j and s. Some aids to the calculation of these 
weights and of others outside of the range of the Table 
are presented in the Appendix. Observe for the moment 
only that the terms wj form an increasing sequence x = &,w. 7. (4) 

i=l 

For a given positive integer order s (where s < n), we will 
select the weights WI”’ = wi to satisfy’ 

Wj = p-1 1ljl.s 1. (5) 
wj = wj-1 + wj-2 + . . . + wj-, s<j J 
That is? the first s weights are the same as in the conven- 
tional binary case, but each weight after the sth weight 
is the sum of the previous s weights.’ 

1 The superscript on wi(“)$ will be dropped whenever it is clear 
which value of the order s is intended. 

2 We mention at this point the possible use of a number system 
with non-integral base B, hence weights wi = Bi-‘, which also 
satisfy the recurrent part of (5) for all integral j; hence, B8 = B8-l + 
BP2 + . . . + B + 1. However, number representations in this 
system are unnecessarily lengthy (e.g., 9 = 10010.0101 for s = 2, 
B = 1.618), and the relationship between these code words and the 
power-of-two-weighted code words is less direct than that derived 
for the codes developed in this section. 

April 

For s = 2, for example, we get the weight sequence 

WI = 1, wz = 2, w3 = 3, 

for any fixed s. 
W, > Wi-1 03) 

We now show by a constructive encoding process that, 
for fixed s, and for every integer x between 0 and w,+~ - 1, 
there exists a unique n-digit, Fibonacci-weighted binary 
representation x = (c,c,-, . . f c2cJ which satisfies Condition 
3) for a code C,(s - 1, n). 

This construction is inductive, i.e., iterative, and gener- 
ates the representation of x, most significant digit first, 
as follows. Let yn = x, and then form successively the 
numbers yn-,, Y%-~, . . . , yj, . . . , y1 according to: 

where 
yj-1 = yi - cjwj 

(7) 
ci=l iff wi<yi<witl. 

That is, the number x is successively diminished by which- 
ever weights of the sequence w,, w,-,, . . . wl, taken in 
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this order, do not produce a negative result. If the weight 
wj is actually substracted from the running difference, then 
ci = 1; if not, then ci = 0. For example, if s = 2, n = 6, 
and x = 19, then this construction yields from the weight 
sequence 13, 8, 5, 3, 2, 1 (listed above) the representation 

I 19 = (lOlOOl), as follows: 

19 - 13 = 6 cg = 1 

6-8 <o es = 0 

6-5 =l c4 = 1 

l-3 <o c3 = 0 

l-2 <o cz = 0 

l-l =o c, = 1. 

Note that this same construction is the one frequently 
used for expressing a decimal number x in power-or-two- 
weighted binary form. For this same example, for which 
19 =? (10011) 

19 - 16 = 3 cl, = 1 

3-8 <0 d, = 0 

3-4 <o d, = 0 

3-2 =1 d, = 1 

l-l =o d, = 1. 

The uniqueness of the representation obtained from the 
construction (7) follows directly from (4), if only it can 
be shown that the construction can always be carried to 
completion with a zero remainder. Assume this to be the 
case for every x in the range 0 < x < wi. (It is obviously 
so for j = 1.) Then for any x in the range wi < x < w~+~, 
the construction (7) yields c, = c,-~ = . . . = c~+~ = 0 
and ci = 1, since all of the differences x - w,, x - w,-~, . . . 
x - w~+~, x - wi are negative except the last one, by the 
inequality (6). Consider now the residue x - wi. The 
defining equation (5) for the weights wi may be expressed 
in the form (by subtracting (5) from itself, with j re- 
placed by j + 1): 

wi+1 = 2wi l<j<s 
(8) 

wi+l = 2wi - Wj-a s<j 

so that w~+~ _ < 2~~; thus, this residue x - wi is bounded 
according to 

x - wj < wi+1 - wi < wj 

By the inductive hypothesis, the construction (7) may 
therefore be carried to completion with a zero remainder, 
starting with this residue. 

The induction is valid up to j = n, so we have shown 
that for every integer x in range 0 < x < w+~ there exists 
a unique representation J; = (c,c,-I . . . c2c1). 

It remains to show that no more than s - 1 consecutive 
ci can have the value 1. By (4), any such sequence of 
s c-values, ci = ciml = .. . = c,-,+l = 1 (s 5 i 2 n), 
would contribute to the weighted sum for x an amount 

Wi f Wi-1 + *. * + Wi-s*l 

which by (5) equals the next larger weight w~+~. Take the 
leftmost such string. If i < n, then ci+l = 0, and the 
string 

L- 
. . 011 . . . 1 . . . 

T 
Ci 

could be replaced by 

7--f--. 
. . . 100 . . . 0 . . . 

T 
Ci 

without changing the value of the sum (4). The same sub- 
stitution can be made for any remaining strings of s l’s to 
the right. However, since the construction (7) prefers 
a 1 over a 0 in each digit position, working from the left, 
the former representation containing s consecutive l’s 
cannot arise. If i = n, then we would have x 2 w,,,, which 
also could not arise, since z was assumed to fall in the 
range 0 < x < wn+l. The particular Fibonacci-weighted 
representation which is generated by construction (7) 
therefore satisfies condition 3) for a C,(m, n) code, with 
m = s - 1, and the assertion of this section has been 
proved. 

IV. MAXIMALITY OF FIBONACCI-WEIGHTED CODES 

The uniqueness of the code representations of each of 
the w,+~ possible integral values of x in the range 
0 I x < w,+1, for the C,(m, n) code just described, guaran- 
tees that the code contains at least 

N,(m, n) = ~2:” 

code words. We now want to show that no C,(m, n) code 
can contain more than this number of code words, so that 
this Fibonacci-weighted code is maximal. 

By the equivalences developed in section II, the re- 
lated C,(m, n) and C,(m, n) codes derivable from this 
code are maximal if, and only if, C, (m, n) is itself maximal. 
It will be easier to derive this upper bound in terms of the 
first code C,(m, n). We then need to show that, for given 
m and n, the number Nl(m, n) of possible n-digit binary 
words containing no 0 strings or 1 strings longer than m 
cannot exceed 2~:“‘. To this end, observe that any com- 
plementary pair of words, such as 



zm ldrid ~16HlVhWL’I’lUlVil Ul\i 

can be represented uniquely and unambiguously by the 
ordered additive partition of n into its string lengths: 

10=1+1+2+1+1+1+3. 

Riordan [3] has shown that the number of such ordered 
additive partitions of n (which he calls compositions of n) 
having no constituent integer greater than m  is equal to 
the number which we have defined in (5) as wArnI. That is, 

Nl(m, n) 5 2~:“‘. 

Therefore, all three codes are maximal. 
Henceforth, we will use the designations C1(m, n), 

Cz(7n, n), and Cs(m, n) for these Fibonacci codes which 
are generated from construction (7) of the Section III. 

V. ENCODING ASD DECODING 

The central encoding and decoding processes may be 
discussed in terms of the code C,(m, n), since the conver- 
sion between its code words and those of C2(m, n) and 
C1(7n, n) is quite simple, both in concept and implementa- 
tion. 

The tasks of encoding and decoding are essentially the 
same, the basic process being one of converting a binary 
number representation from one set of weights to another: 

x = (d,d,-, . . . d,d,) e x = (c,c,-1 . . . c2c1) 

power-of-two weights Fibonacci weights. 

Unfortunately, however, such conversions require some 
sort of arithmetic computation, which might be carried 
out more easily in one of the number systems than the 
other. Consequently, the preferred encoder and decoder 
might employ entirely diff ercnt conversion algorithms. 

If the arithmetic is to be performed in the familiar 
power-of-two-weighted number system, then one can 
perform encoding according to the construction process 
expressed in (7), and decoding by (4). In each case, it is 
only necessary to express, that is, to have available in the 
encoder and decoder, each Ebonacci weight wi as a k- 
digit binary number. For x = 19 and s = 2 (our earlier 
example), these processes take the form 

Encoding : 

16 8 4 2 1 

19= 10011 
we = 13 = 0 110 1 

13 8 5 3 2 1 

00110=6 
W  1= 5= 00101 

00001=1 
W  1= 1 00001 

-c, 
00000 10 10 0 1 = 19 

April 

Decoding : 

13 8 5 3 2 1 16 8 4 2 1 

101001 00000 

Y 

01101 

01101 
00101 

10010 
00001 

10011=19. 

Alternatively, the arithmetic might be performed in the 
Fibonacci-weighted system, in which case the use of 
these two equations should be interchanged: (4) for 
encoding, and (7) for decoding. However, addition of 
Fibonacci-weighted binary numbers is not so simple. In the 
power-of-two-weighted system, an overflow in digit posi- 
tion j (whose weight equals 2jmI) contributes an amount 
2.2’-’ = 2j to the sum; this overflow is added in by pass- 
ing a 1 as a carry digit to the left, to digit position j + I 
(whose weight equals 2’). In the Fibonacci-weighted 
system, the identity (8), which may be expressed as 

2Wj = Wi+l l_<j<s 

2wi = wi+1 + wi-. s<j I 

indicates that the amount 2wj contributed by an overflow 
in digit position j must now be passed as a carry not only 
to the left to digit position (j + I), but also the right (if 
such position falls within the representation) to digit 
position (j - s). 

This double-carry seriously complicates the circuitry 
of a parallel adder, and its bidirectionality renders the 
conversion of the adder from a parallel to a simple serial 
form practically impossible. Moreover, the result of such 
Fibonacci addition must in general be further corrected 
to clear out to the left all 1 strings longer than s - 1. 
Consequently, power-of-two-based arithmetic, as first 
described, is much preferred. 

It is pertinent to inquire whether or not there exists a 
conversion procedure for either encoding or decoding, or 
both, in which the coded digits may be generated one at a 
time, in synchronism with the reception of successive 
source digits. Inspection of the power-of-two-weighted 
equivalents of the Fibonacci weights and the Fibonacci- 
weighted equivalents of the power-of-two weights reveals 
that, in general, neither the most significant nor the 
least significant digit of a resultant word can be known 
until all digits of the source word have been received and 
appropriately added. Thus, the circuit which performs 
conversion must contain signal propagation paths which 
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noise-freecase. Forexample, anerrorin thecentral between 
two 1 strings such as occur in . . . 011 . . . 1011 . . . 10 3 . . 

are both left-going and right-going within the entire length 
of the source word. Reduction of the coder to a purely 
serial and instantaneous mode of operation (as in a con- 
ventional binary adder) is, therefore, basically impossible. 

Both of the code conversion procedures described 
above require that the power-of-two-weighted representa- 
tions of the n Fibonacci weights be available during the 
conversion process. Thus, these weights must either be 
stored in an auxiliary memory, or be generated by local 
circuitry. The recurrence relations (5) and (8) indicate 
that each of these weights may be generated easily from 
previous values, requiring the storage of only s consecutive 
weights, regardless of how large n might be. 

can increase the maximum length of 1 strings fn a code 
word from m to 2nz - 1. Second, these errors misrepresent 
the data, so that error checking must be employed if 
accuracy is to be retained. The fact that the errors may 
be correctible does not in any way compensate for the 
first effect, since the guaranteed separations of O’s, etc., 
are needed during reading or demodulation, not after the 
code words have been read, checked, and corrected. 

Regarding the relation between the parameters 1~ and n, 
it is a simple matter to choose the parameter n just large 
enough so that 2” < N,(m, n) = WAY:“; that is, to choose 
n so that 

w, < 2k I w,+1. 

Inspection of Table I reveals that, except for rather small 
values of m = s - 1, even very long codes require a 
number n - k of redundant digits equal to only one or 
two. (The dotted line, whose position is derived in the 
Appendix, encloses the region of Table I within which 
n - lc = 1.) 

We will assume here that the possible presence of errors 
has already been taken into account in the original specifi- 
cation of the required value of m. Admittedly, some econ- 
omy might be achieved by using a code which has a smaller 
value of the maximum separation m, but which satisfies 
such additional conditions on the minimum separation 
that the effective value of m is made independent of 
these errors. The potential savings in redundancy and in 
encoding and decoding equipment which might result 
from this alternative are felt to be small. This would 
appear to be particularly the case when the ultimate 
statistical performance criteria, rather than the criteria 
of completely error-free behavior up to a certain noise 
level, are applied to the system. 

This situation may be compared with the block syn- 
chronization method discussed in Section I. To avoid 
long 1 strings under Condition (3), for example, a redun- 
dant 0 must be inserted after every (m - 1)th digit of an 
arbitrary /c-digit data word. Thus, a total of about 
l;/(m - 1) redundant digits are required for block syn- 
chronization. This number is generally much larger than 
the value of n - k required for l?ibonacci codes. 

With this assumption, we may therefore neglect t,he 
effect of the noise in increasing the effective value of m, 
and concern ourselves only with the error-checking process 
itself. 

Code words of code C2(m, n) may now be formed by 
merely complementing corresponding code words of code 
C,(772, n). Code words of code C1(m, n) may be formed 
by “integrating” the corresponding code words of 
C,(m - 1, n - 1) (the inverse of the “derivative” process 
described in Section II), with a, = d,. Alternatively, they 
can be generated by using a set of weights which (except 
for the first, which must equal unity) are the doubles of 
those employed for C,(V-1, n-l) and C3(m-1, n-l): 

In general, the error checking need not be applied over 
the Fibonacci code words themselves, but could be applied 
to portions of these code words, or to blocks of several 
such code words at a time. Aside from the necessity of 
interspersing buffer digits between code words in the 
latter case (so that strings at the ends of successive code 
words cannot combine to form strings of excessive length), 
these other alternatives contribute no new encoding 
problems. Therefore, we consider here only the most 
elementary case-namely, that checking redundancy in 
the form of p extra digits is to be added directly to the 
n-digit Fibonacci code words themselves, to yield (n + p)- 
digit, error-checked code words. 

1, 2wj”’ ) 2wi”’ ) * ’ . 2w:::. 

In this case the construction (7) must be modified some- 
what to use a more complex rule of preference for l’s and 
O’s, instead of a simple preference for 1’s. 

The number of possible combinat,ions of error types, 
number of errors, and separation conditions is so large 
that we will limit the present investigation to a brief 
consideration of a few particular and exemplary ways in 
which error checking can be applied to Fibonacci code 
words for code C,(m, n). The extension to the other 
Fibonacci codes introduces no fundamental difficulties. 

1) The simplest method of error checking is to treat 

VI. AUGMENTATION OF FIBONACCI CODES TO 
the Fibonacci code words as binary data in the usual 

INCLUDE ERROR CHECKING 
sense, neglecting for the moment the digit-separation 
properties of these code words. Any linear error-correcting 

The effects of binary errors on the code words is two- code [4] may bc used to generate a redundant subword, 
fold. First, these errors can cause the peak string lengths which is to be affixed to the end of the Fibonacci word. 
to be increased beyond the design value m specified in the This redundant subword must then be modified to satisfy 
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the separation condition; for example, buffer O’s may be 
inserted at the beginning of the subword, and after every 
mth position in the subword, in order to break up 1 strings 
longer than m. For single error correction, for example, the 
Hamming code requires exactly R = 1 + [log, [ 1 -I-n+log, n]] 
redundant digits, (where the brackets [ ] denote the 
integral part of the quantity within). After buffer O’s are 
inserted, this number increases from R to: 

R-l 
p=R+l+ 3 [ 1 

Normally, p << n and m < n, so that the required number 
of buffer O’s is relatively small. 

For this construction, the error-checked code word 
takes the form: 

In 
- 

Fib. code word 0 0 
1r-T07-^’ 
v 

la P 

The extra O’s could normally be inserted and removed with 
only a small amount of additional circuitry in the encoder 
and decoder, respectively. Thus, one may employ cyclic 
error-correcting codes for error checking, and retain 
their considerable advantages over other types of codes: 
simple encoders and decoders, a minimum or near-mini- 
mum number of redundant digits for a prescribed degree 
of error checking, and considerable versatility in the 
types and patterns of errors which can be handled by the 
same code: isolated or burst, detection or correction [4]. 

2) All 0 -+ 1 errors, in any pattern and number, may be 
detected with a modification of the Berger error-detection 
code [5]. In the Berger code, each n-digit code word has 
affixed to it a (1 + [log, n])-digit check word, which is 
the power-of-two-weighted binary representation of the 
total number of O’s in the code word. For example, code 
word 1011001 becomes 1011001011. This amount of 
redundancy is set by the fact that the total number of O’s 
may range from 0 to n. 

Actually, one may use for the check word any positive- 
weighted binary representation of the total number of O’s, 
such as the Fibonacci-weighted representation already 
employed for the code word itself. Moreover, for code 
G(m, n), the total number of O’s now ranges from 
[n/(m  + 111 to n. 

Allowing for a buffer 0 between the code and check 
words, the required number p of redundant digits may be 
readily determined to be the smallest integer which 
satisfies 

WY+l) 2n+l-- 5. [I 1 
The check word is simply the corresponding Fibonacci- 
encoded representation of the total number of O’s in the 
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code word in excess of the minimum possible number of 
O's, [n/(m + 111. 

This code provides a relatively economical form of 
detection of all 0 -+ 1 errors. It is easily modified to handle 
1 --+ 0 errors instead, should this case be desired. 

3) In what is called by Peterson [6] an “AN” code, 
originally developed by Brown [7] and Diamond [8], an 
n-digit binary number (code word) y is encoded by multi- 
plying it by a constant integer y, to obtain a new binary 
number 7~ having n + p digits. Decoding is performed by 
dividing the (possibly erroneous) number ry by y; this 
division will yield the number y, with a zero remainder if 
there has been no error, or possibly with some other re- 
mainder if an error has appeared in any position of the 
(n + p) digit code word. In fact, a 0 -+ 1 or 1 + 0 error 
in digit position j will add or subtract, respectively, to -ry 
an amount equal to the jth weight: 2’-1 in a power-of-two- 
weighted number system, and wi in a Fibonacci-weighted 
system. For single error correction, therefore, we require 
that the number y be selected large enough so that all of 
the weights used in the binary representation of yy, as well 
as the negatives of these weights, have distinct and non- 
zero remainders when divided by y. If only 0 -+ 1 errors 
are to be corrected, then the negative weights need not be 
considered. If only detection is needed, then the re- 
mainders must be nonzero, but not necessarily distinct. 

This encoding and decoding principle is valid whether 
the weights are powers of two or are Fibonacci weights, 
but the multiplication and division by y are awkward in 
the Fibonacci case. To circumvent this difficulty, the order 
of conversion with the Fibonacci and (‘AN” codes may be 
reversed. That is, encoding may be carried out by first 
multiplying the original k-digit binary word by y, and 
then converting this word to Fibonacci weights; decoding 
is performed by reconversion from Fibonacci to power-of- 
two weights before dividing by y. The final code word 
should now have a number n + p of digits just large enough 
so that 

w:;,‘:: > y(2k - 1). 

The constant y must still be selected so that all n + p 
weights and their negatives have distinct nonzero re- 
mainders when divided by y. The determination of a 
suitable y may involve considerable calculation, but it 
need be done only once for each pair of values of m  and k. 
For example, for m  = 2, k = 8, and the correction of single 
0 ---f 1 errors only, we may use y = 26, n + p = 15, since 

(3) W16 = 10609 > 26 1 (28 - 1) 

and since all of the weights wi3), wi3’, . . . w:“,’ have distinct 
nonzero remainders on division by 26. A lesser fractional 
redundancy may be expected for larger values of k. 

Note that the data and check digits in these codes are 
not separately identifiable. However, no buffer digit is 
required in the middle of the code word. 
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The “AN codes” were originally developed for protec- 
tion against errors arising during arithmetic operations. 
Even with Fibonacci weights, they still provide protection 
of this type, although the difficulties of Fibonacci addition 
noted previously make such application unlikely. 

VII. CONCLUSIONS 

We have shown with a new family of codes how the 
efficiency of binary data transmission or recording without 
an accompanying clock can be increased appreciably, 
in comparison with the systems in current use. This is 
done by arranging each valid code word to have a pre- 
scribable density of signal changes, so that the phase of 
the local clock (strobe) at the receiver or reading device 
can be controlled as accurately as necessary. The increase 
in efficiency is measured in terms of the number of re- 
dundant digits required. However, it is shown that the 
encoding and decoding apparatus is not unreasonably 
expensive, even when some common types of error detec- 
tion or correction are included. 

The existence of these codes therefore enlarges the 
available repertory of different channels and noise types 
against which error protection may be provided by coding 
means. 

These codes should most likely find application in the 
recording of single-track digital data on magnetic, photo- 
graphic, or similar continuous media, where the reading 
rate can be controlled in open-loop fashion only within a 
few per cent. A value of m between 5 and 20 should then 
be adequate to servo the reading clock to within a small 
fraction of one clock period. The block length n is most 
likely determined by the form of the source data to be 
recorded, and secondarily by the error rate. 

Extensions of these codes which might well be investi- 
gated are 1) more efficient Fibonacci type codes with error 
correction, particularly burst error correction, 2) codes in 
which the minimum as well as the maximum string length 
is limited, to avoid the need for the assumption made at 
the beginning of Section VI and 3) codes with simpler 
encoders and decoders, even though t.he codes are some- 
what more redundant. These last codes might be generated 
by attempting to modify or simplify the process of addition 
of Fibonacci-weighted code words. 
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APPENDIX 

CALCULATION OF FIBONACCI WEIGHTS 

While one may use the recurrence relations (5) or (8) to 
calculate recursively any desired weight WI’), it would be 
helpful to be able to estimate directly a particular weight 
without calculating all previous weights of the same order. 
To this end we derive an approximate expression for wi’), 
which incidentally indicates the asymptotic behavior of 
the Fibonacci code parameters. 

Our development parallels somewhat that of Gilbert [I]. 
Riordan [3] provides a generating function for wi8), namely 

W(*)(t) = 2 Jq7;“‘t’ = l $; f$). 
i=o 

That is, the jth weight is given by the coefficient of t’ in 
the power-series expansion of W’“‘(t). This rational func- 
tion may be expanded in partial fractions to give 

A(*)(t) 2 Ri"' 
-zz 

w'"'(t) =  p'(t) 
%=I T-zy 

in which the residue R!“’ is 

RIa) ; A’“‘(t) 

$ B’“‘(t) 

and the tf”’ are the s roots of the ( lenominator polynomial 

P(t) = 1 - t(2 - t”) = 0 

(The root at t = 1 does not contribute a term to W’“‘(t), 
since A’“‘(l) = 0 also). 

This polynomial equation may be expressed in the form 

1 
t = 2 _ t” (9) 

from which it is apparent that one root t = ti’) = t,, say, is 
positive, real, and somewhat less than unity. This root 
therefore contributes to W’“‘(t) a summand whose power- 
series expansion in t has terms which increase with in- 
creasing j 

All other roots are dist#inct and fall outside of the circle 
ItI = 1; they therefore contribute to TV’“‘(t) summands 
whose power-series expansions in t have terms which 
decrease with increasing j. Thus, for large j, we have: 

n(s) Jp(t) M n, 
t - t, 

or 



292 IEEE TRANSACTIONS ON 

The residue may be evaluated: 

- R:*) A’“‘(4) t,u - 0 k(l 4) 
=B’““ipJ= 

= 
(s + 1)t; - 2 2st, - s -3 

giving the weight value 

w;a) z 1 - 2, 
(s + 1 - ast,)t;’ 

But from (9) above, the root tl may be developed in the 
form of a rapidly converging series 

4 = -z.z 1 1 = . . 

2 - t; { > 
2- __ 1 

2 - t; 

t1 = 1 1 1 + ,JI, + ;1+,+ + . . . ) . (11) 

Equations (10) and (11) allow rapid calculation of the 
approximate value of any weight wj’). For j = 10, s = 4, 
for example, 

t, = +(I + 2-” + 5.2-’ + . . .) w 0.5206 

(41 - 0.4794 
WI0 - (o.8352)(o.5206)1” = 3g3 

in comparison with the exact value 

WlO (4) = 401. 

It is of interest to determine that portion of Table I 
over which a single redundant digit is required for the 
Fibonacci-weighted code: n - k = 1. Since an n-digit code 
has w,:“: code words, this region of the table is defined by 
the range 

2” = 2”-’ < wi’;‘, < 2” 
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The upper bound wj” < 2j-l is set by the first diagonal 
above the main diagonal, j = s + 1. The lower bound, 
w!‘) > 2’-“, may be estimated as follows. For s not too 
srkall~and j >> s, we may write, from (11) 

so that 

t, 23 4(1 + 2-,-l> 

,!a) N 
(1 - 2--s-y--1 

1 - (1 _ s2-s-‘)(1 _ ,-s-y 

Thus, the lower bound becomes 

p2 5 2j-l( 1 _ (j + 1 _ s~2-s-l + . . . 1 

or (j + 1 - s) < 2”. The range of values of j and s over 
which one redundant digit is required is outlined by a 
dotted line in Table I. For large s and j, it is expressed by 

s+l<j<2s+s- 1. 

This range therefore includes most of the useful part of the 
table. 
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