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ABSTRACT

Recent studies of real teletraffic data in modern computer networks have shown

that teletraffic exhibits self-similar (or fractal) properties over a wide range of

time scales. The properties of self-similar teletraffic are very different from the

traditional models of teletraffic based on Poisson, Markov-modulated Poisson,

and related processes. The use of traditional models in networks characterised

by self-similar processes can lead to incorrect conclusions about the perfor-

mance of analysed networks. These include serious over-estimations of the

performance of computer networks, insufficient allocation of communication

and data processing resources, and difficulties ensuring the quality of service

expected by network users. Thus, full understanding of the self-similar nature

in teletraffic is an important issue.

Due to the growing complexity of modern telecommunication networks,

simulation has become the only feasible paradigm for their performance evalu-

ation. In this thesis, we make some contributions to discrete-event simulation

of networks with strongly-dependent, self-similar teletraffic.

First, we have evaluated the most commonly used methods for estimating

the self-similarity parameter H using appropriately long sequences of data.

After assessing properties of available H estimators, we identified the most

efficient estimators for practical studies of self-similarity.

Next, the generation of arbitrarily long sequences of pseudo-random num-

bers possessing specific stochastic properties was considered. Various genera-

tors of pseudo-random self-similar sequences have been proposed. They differ

in computational complexity and accuracy of the self-similar sequences they

generate. In this thesis, we propose two new generators of self-similar tele-

traffic: (i) a generator based on Fractional Gaussian Noise and Daubechies

Wavelets (FGN-DW), that is one of the fastest and the most accurate gener-
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ators so far proposed; and (ii) a generator based on the Successive Random

Addition (SRA) algorithm. Our comparative study of sequential and fixed-

length self-similar pseudo-random teletraffic generators showed that the FFT,

FGN-DW and SRP-FGN generators are the most efficient, both in the sense

of accuracy and speed.

To conduct simulation studies of telecommunication networks, self-similar

processes often need to be transformed into suitable self-similar processes with

arbitrary marginal distributions. Thus, the next problem addressed was how

well the self-similarity and autocorrelation function of an original self-similar

process are preserved when the self-similar sequences are converted into suit-

able self-similar processes with arbitrary marginal distributions. We also show

how pseudo-random self-similar sequences can be applied to produce a model

of teletraffic associated with the transmission of VBR JPEG/MPEG video.

A combined gamma/Pareto model based on the application of the FGN-DW

generator was used to synthesise VBR JPEG/MPEG video traffic.

Finally, effects of self-similarity on the behaviour of queueing systems have

been investigated. Using M/M/1/∞ as a reference queueing system with no

long-range dependence, we have investigated how self-similarity and long-range

dependence in arrival processes affect the length of sequential simulations being

executed for obtaining steady-state results with the required level of statistical

error. Our results show that the finite buffer overflow probability of a queueing

system with self-similar input is much greater than the equivalent queueing

system with Poisson or a short-range dependent input process, and that the

overflow probability increases as the self-similarity parameter approaches one.

2



Chapter 1

INTRODUCTION

The growth of broadband networks and the Internet has been exponential in re-

cent years. These high-speed communication networks have had a tremendous

impact on our civilisation. High-speed communication networks offer a range

of multimedia applications, such as audio, video and computer data, which dif-

fer significantly in their traffic characteristics and performance requirements

[100], [133], [150]. Current Internet protocol (IP)-based communication net-

works can barely meet current demands. The goal now for telecommunication

developers is to develop a universal high-speed communication network plat-

form capable of carrying diverse traffic and supporting diverse levels of quality

of service (QoS), building on the strengths of the QoS record of asynchronous

transfer mode (ATM) [34]. However, many different technologies are involved

in the successful development of new networks. Some of the development diffi-

culties relate to teletraffic engineering, in particular, the modelling of teletraffic

for simulation studies of multimedia communication networks.

Recent studies of real teletraffic data in modern computer networks have

shown that teletraffic exhibits self-similar (or fractal) properties over a wide

range of time scales [89], [172]. The properties of self-similar teletraffic are

very different from properties of traditional models based on Poisson, Markov-

modulated Poisson, and related processes. The use of traditional models in

networks characterised by self-similar processes can lead to incorrect conclu-

sions about the performance of analysed networks. The use of traditional

models leads to over-estimation of the performance quality of computer net-

works, insufficient allocation of communication and data processing resources,
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and difficulties in ensuring the quality of service expected by network users.

Thus, full understanding of the self-similar nature in teletraffic is an important

issue.

1.1 Self-Similar Nature of Real-World Tele-

traffic

Self-similar processes are relevant not only in telecommunication networks, but

also in such areas of scientific activity as climatology, economics, environmental

sciences, geology, geophysics, hydrology, computer science and computer engi-

neering. In networks, they provide good models of packet traffic, for example,

in local area networks (LANs) [89], [172], and video traffic [8], [10].

High-speed computer networks should be designed to carry a range of

telecommunication services, some requiring very special treatment. Thus, un-

derstanding the self-similar nature of network traffic, identifying its charac-

teristics, and developing appropriate traffic models are crucial to teletraffic

engineering and the performance evaluation of networks with self-similar tele-

traffic [89], [111], [118].

Many analytical studies have shown that self-similar network traffic can

have a detrimental impact on network performance, including amplified queue-

ing delays and packet loss rates in broadband wide area networks [117], [139].

While Poisson and simple Markov-based models have been acceptable, for ex-

ample, for remote-login and file-transfer [54], real packet sequences do not obey

Poisson models in most cases [89], [125], [147]. Paxson and Floyd [125] found

that wide-area network traffic consists of more bursts than Poisson models

predict over many time scales. This difference has implications for congestion

control mechanisms and performance. Park et al. [118] observed the effect

of congestion control on network performance when networks were subject to

highly self-similar traffic conditions. Crovella and Bestavros [21] found evi-

dence and possible causes of self-similarity in World Wide Web (WWW) traf-

fic, such as WWW document file size data. Heyman et al. [59] discovered that

long-range dependence can significantly affect data cell loss rates when both

the Hurst parameter and traffic intensity are high.
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1.2 Structure of this Thesis

The self-similar nature of teletraffic in modern communication networks is

unquestionable. The fact that many network performance evaluation studies

were conducted using Markov-based traffic models has produced growing con-

cerns about the potential impact of their inaccurate performance predictions,

due to the essential difference between results obtained for self-similar and

Markovian models.

Motivated by such concerns, we scrutinised the following areas to investi-

gate the consequences of stochastic self-similarity on network performance:

• Traffic models: New, accurate self-similar traffic models are necessary to

reveal the dynamics of individual streams of data and how they give rise

to the self-similar characteristics observed in real-world situations. Such

models must be analytically tractable or algorithmic to enable simulation

studies. In the latter case, one should be able to generate fast synthetic

streams of data with desired self-similar properties. For self-similar mod-

els to be practical, they must be able to capture actual properties of

traffic in an Ethernet LAN, or in a WAN carrying VBR video traffic, for

example.

• Exhaustive performance evaluation studies of networks with self-similar

teletraffic: The performance of communication networks with the self-

similar characteristics of teletraffic must be studied to determine the

consequences of self-similarity of data streams on queueing performance.

1.2 Structure of this Thesis

Mathematical properties of stochastic self-similar processes are summarised

in Chapter 2. A critical review of Hurst parameter estimation techniques is

given in Chapter 3. Generators of pseudo-random self-similar data streams

are surveyed in Chapter 4. A new generator of self-similar teletraffic is also

proposed and assessed. Chapter 4 describes a comparative study of selected

self-similar pseudo-random teletraffic generators. In Chapter 5, we investigate

the generation of self-similar processes with arbitrary marginal distributions.

The generation of a specific self-similar data stream (self-similar VBR video)

is discussed in Chapter 6, and steady-state simulation studies of self-similar ef-
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1.2 Structure of this Thesis

fects in queueing systems are reported in Chapter 7. Conclusions are presented

in Chapter 8. A detailed summary of each chapter follows.

Chapter 2: Properties of Self-Similar Teletraffic explains

why self-similarity is so important in computer systems and telecommunication

networks, and shows where self-similar behaviour can be observed. The defini-

tions of deterministic and stochastic self-similarity are given, and their relevant

statistics are described. Then, important properties of stochastic self-similar

processes are presented, including three definitions of long-range dependence,

the slowly decaying variance of the sample mean, the Hurst effect, the power-

law behaviour of the spectral density at the origin, and the role played by

heavy-tailed distributions. The relationships among self-similarity, time scales

and power-law behaviour are explained. We show that the relevant statistics

of self-similar network traffic exhibit power-law behaviour over a wide range

of time scales.

Chapter 3: Critical Review of Hurst Parameter Es-
timation Techniques exhaustively evaluates the most commonly used

methods for estimating the self-similarity parameter H . The Durbin-Levinson

algorithm is used to generate exact self-similar FGN (Fractional Gaussian

Noise) sequences. Mean values of estimated H and other statistical tests on

estimated H values were used to statistically prove which of the Hurst param-

eter estimators is more accurate than the others. The results of our analysis

have pointed to the wavelet-based H estimator and Whittle’s MLE as the most

efficient estimators of H .

Chapter 4: Algorithmic Generators of Self-Similar Tele-
traffic presents a detailed survey of self-similar generators proposed for gener-

ating sequential and fixed-length self-similar pseudo-random sequences. Both

sequential and fixed-length sequence generators can be used for sequential and

non-sequential simulations. If a fixed-length sequence generator is used for

sequential simulation, however, then a sufficiently long self-similar sequence of

numbers must be generated before the simulation begins. We considered the

following sequential and fixed-length self-similar generators:

A. Six sequential generators based on: fractal-binomial-noise-driven Poisson

processes (FBNDP), superposition of fractal renewal processes (SFRP),

output processes ofM/G/∞ queueing systems (MGIP), Pareto-modulated
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1.2 Structure of this Thesis

Poisson processes (PMPP), spatial renewal processes and fractional Gaus-

sian noise (SRP-FGN), and superposition of autoregressive processes

(SAP).

B. Five fixed-length generators based on: fast Fourier transform (FFT),

fractional-autoregressive integrated moving average (F-ARIMA), ran-

dom midpoint displacement (RMD), successive random addition (SRA),

and fractional Gaussian noise and Daubechies wavelets (FGN-DW).

We evaluate and compare the operational properties of the fixed-length

and sequential generators of self-similar pseudo-random sequences considered

in the same chapter. The statistical accuracy and time required to produce

long sequences are discussed theoretically and studied experimentally. The

evaluation of the generators concentrated on two aspects: (i) how accurately

self-similar processes can be generated (assuming a given mean, variance and

self-similarity parameter H), and (ii) how quickly the generators can generate

long self-similar sequences.

Six sequential and five fixed-length generators of self-similar sequences are

compared and analysed using the most efficient estimators of H found in Chap-

ter 3: the wavelet-based H estimator and Whittle’s MLE.

Chapter 5: Generation of a Self-Similar Process with
an Arbitrary Marginal Distribution investigates the transforma-

tion of self-similar processes into suitable self-similar processes with arbitrary

marginal distributions, based on the method of inverse transformation of cu-

mulative probability functions. We show the degree to which the self-similarity

and autocorrelation function of the original self-similar process are preserved

when the self-similar sequences are converted into self-similar processes with

arbitrary marginal distributions.

Chapter 6: Modelling and Generation of Self-Similar
VBR Video Traffic shows that pseudo-random self-similar sequences

representing VBR video streams, compressed under JPEG/ MPEG standards,

might be required to simulate ATM networks. We show how such pseudo-

random VBR video streams can be obtained by appropriate transformation of

data generated by the FGN-DW generator and the combined gamma/Pareto

model of teletraffic. JPEG, MPEG-1 and MPEG-2 compression standards are

considered. Results of a steady-state simulation of a single buffer fed by these
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1.3 Contributions of this Thesis

synthetic video streams are used to show that simulations based on synthetic

streams of teletraffic can give the same qualitative and quantitative results as

simulations based on real traces of VBR video.

Chapter 7: Steady-State Simulation of Self-Similar
and Queueing Processes considers basic features of steady-state sim-

ulation studies of self-similar queueing processes. We investigate run lengths

of sequential steady-state simulations of queueing models with self-similar ar-

rivals to estimate mean response times, under two different methods of output

data analysis. The results are theoretically and experimentally compared with

simulation run lengths of the same queueing models fed by Poisson processes.

We also demonstrate how input self-similarity can affect the overflow proba-

bility of finite buffers.

Chapter 8: Conclusions summarise the main contributions and

suggest the direction of future research work.

1.3 Contributions of this Thesis

The following is a list of the main contributions of this thesis to the field of

modelling of self-similar teletraffic for simulation. Contributions are noted in

order of appearance in this thesis, with corresponding Chapter numbers. We

show relevant publications in parentheses, and list them in Section 1.4.

1. Comparative analysis and evaluation of estimators of the self-similarity

parameter H . The estimators considered include the wavelet-based H

estimator and Whittle’s Maximum Likelihood Estimator (MLE), and

estimators obtained from periodogram analysis, R/S-statistic analysis,

variance-time analysis and IDC(t) analysis. Their properties were as-

sessed on the basis of mean estimates and other statistical tests to statis-

tically prove which of the estimators should be recommended in practice

(Chapter 3, [JMP01a]).

2. Proposal of two new fixed-length pseudo-random generators of self-similar

teletraffic (SRA and FGN-DW generators) (Chapter 4, [JMP99a], [JMP99b],

[JMP99d]).
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1.4 Publications by the Author Related to this Thesis

3. Comparative analysis of practical pseudo-random generators of self-similar

teletraffic. Both sequential and fixed-length generators have been con-

sidered (Chapter 4, [JMP99a], [JMP99b], [JMP99d]).

4. Transformation of marginal distributions of self-similar processes: a study

of necessary conditions for preservation of the Hurst parameter and ACFs

in resulted processes. Our studies allow us to formulate the hypothesis

that the transformation preserves both the Hurst parameter and ACF

of the input self-similar process if the variance of the output marginal

distribution of the transform process is finite (Chapter 5, [JMP99c],

[JMP01b]).

5. Influence of compression algorithms on correlation structure of com-

pressed teletraffic: generalisation of findings of Garrett and Willinger,

showing that video compression algorithms (MPEG-1 and MPEG-2)

lead to self-similar processes. We considered outcomes of MPEG-1 and

MPEG-2 in addition to previously studied outcomes of JPEG (Garrett

and Willinger), to show that the results (of Garrett and Willinger) do

not depend on the compression algorithms (Chapter 6).

6. We have analysed run-lengths of sequential steady-state simulations of

queueing models with self-similar arrivals, under two different methods

of simulation output data analysis (spectral analysis and batch means).

Steady-state simulations of queueing processes with self-similar input

processes were conducted for studying the influence of the degree of self-

similarity on run-lengths of sequential simulation and on the overflow

probability of finite buffers (Chapter 7, [JMP00], [PJL02]).

1.4 Publications by the Author Related to this

Thesis

The following papers were prepared during the PhD study:

[JMP99a] Jeong, H.-D.J., McNickle, D., and Pawlikowski, K. A Search for Com-

putationally Efficient Generators of Synthetic Self-Similar Teletraffic. In
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Proceedings of the Twenty Second Australasian Computer Science Con-

ference (Auckland, New Zealand, 1999), vol. 21, pp. 75-86.

[JMP99b] Jeong, H.-D.J., McNickle, D., and Pawlikowski, K. A Comparative

Study of Three Self-Similar Teletraffic Generators. In Proceedings of

13th European Simulation Multiconference (ESM’99) (Warsaw, Poland,

1999), pp. 356-362.

[JMP99c] Jeong, H.-D.J., McNickle, D., and Pawlikowski, K. Generation of Self-

Similar Time Series for Simulation Studies of Telecommunication Net-

works. In Proceedings of the First Western Pacific and Third Australia-

Japan Workshop on Stochastic Models in Engineering, Technology and

Management (Christchurch, New Zealand, 1999), pp. 221-230.

[JMP99d] Jeong, H.-D.J., McNickle, D., and Pawlikowski, K. Fast Self-Similar

Teletraffic Generation Based on FGN and Wavelets. In Proceedings of

IEEE International Conference on Networks (ICON’99) (Brisbane, Aus-

tralia, 1999), pp. 75-82.

[ JMP00 ] Jeong, H.-D.J., McNickle, D., and Pawlikowski, K. Some Problems

in Sequential Simulation with Self-Similar Processes. In Proceedings of

the 2000 Summer Computer Simulation Conference (Vancouver, British

Columbia, Canada, 2000), pp. 175-180.

[JMP01a] Jeong, H.-D.J., McNickle, D., and Pawlikowski, K. Hurst Parameter

Estimation Techniques: A Critical Review. In Proceedings of Operational

Research Society of New Zealand (ORSNZ) Conference Twenty Naught

One (Christchurch, New Zealand, 2001), pp. 165-172.

[ PJL02 ] Pawlikowski, K., Jeong, H.-D.J., and Lee, J.R. On Credibility of Simu-

lation Studies of Telecommunication Networks. IEEE Communications

Magazine 40, 1 (2002), pp. 132-139.

[JMP01b] Jeong, H.-D.J., McNickle, D., and Pawlikowski, K. Generation of Self-

Similar Processes for Simulation Studies of Telecommunication Networks.

Mathematical and Computer Modelling, (In press, 2003).
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Chapter 2

PROPERTIES OF

SELF-SIMILAR

TELETRAFFIC:

AN OVERVIEW

2.1 Mathematical Definition of Self-Similarity

Self-similarity can be classified into two types: deterministic and stochastic.

In the first type, deterministic self-similarity, a mathematical object is said to

be self-similar (or fractal) if it can be decomposed into smaller copies of itself.

That is, self-similarity is a property in which the structure of the whole is

contained in its parts. An example of a deterministic approximately self-similar

object is given in Figure 2.1. The term self-similar (or fractal) was coined by

Mandelbrot [104]. He and his co-workers brought self-similar processes to

the attention of statisticians, mainly through applications in such areas as

hydrology and geophysics [104], [105].

In this thesis we focus on the latter, i.e., stochastic self-similarity. In this

case, probabilistic properties of self-similar processes remain unchanged or in-

variant when the process is viewed at varying time scales. This is in contrast to

Poisson processes which lose their burstiness and flatten out when time scales

are changed. However, such a time series exhibits burstiness over a wide range



2.1 Mathematical Definition of Self-Similarity

Figure 2.1: Dryopteris Erythrosora, the Autumn Fern [47]: a simple example

of a deterministic self-similar object.

of time scales. Self-similarity can statistically describe teletraffic that is bursty

on many time scales.

One can distinguish two types of stochastic self-similarity. A continuous-

time stochastic process Yt is strictly self-similar with a self-similarity param-

eter H(1
2
< H < 1), if Yct and cHYt (the rescaled process with time scale ct)

have identical finite-dimensional probability for any positive time stretching

factor c [9], [120], [155]. This means that, for any sequence of time points

t1, t2, . . . , tn, and for any c > 0,

{Yct1, Yct2, . . . , Yctn} d
= {cHYt1 , c

HYt2 , . . . , c
HYtn},

where
d
= denotes equivalence in distribution. This definition of the strictly

self-similarity is in a sense of probability distribution (or narrow sense), quite

different from that of the second-order self-similar process (or self-similar pro-

cess in a broad sense). Self-similarity in the broad sense is observed at the

mean, variance and autocorrelation level, whereas self-similarity in the narrow

sense is observed at the probability distribution level, see Figure 2.2.
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2.1 Mathematical Definition of Self-Similarity

        Broad sense
(ACF, E[X], Var[X])

          Narrow sense
(probability distribution)

Figure 2.2: Block diagram of the definitions of the strictly (in a narrow sense)

and second-order (or in a broad sense) self-similar stochastic processes.

When the weakly continuous-time self-similar process Yt has stationary

increments, i.e., the finite-dimensional probability distributions of Yt0+t−Yt0

do not depend on t0, we can construct a stationary incremental process X =

{Xi = Yi+1 − Yi : i = 0, 1, 2, · · · }. Namely, in the discrete-time case, let

X be a (discrete-time) stationary incremental process with mean µ = E[X],

variance σ2 = E[(X − µ)2], and (normalised) autocorrelation function (ACF)

{ρk}, k = 0, 1, 2, · · · , where

ρk =
E[(Xi − µ)(Xi+k − µ)]

σ2
. (2.1)

X is strictly stationary if {Xi1, Xi2 , . . . , Xin} and {Xi1+k, Xi2+k, . . . , Xin+k}
possess the same joint distribution. However, we limit our attention to pro-

cesses with a weaker form of stationarity, i.e., second-order stationarity (or

weak, broad, or wide sense stationarity). Let X(m) = {X(m)
1 , X

(m)
2 , · · · },

m = 1, 2, 3, · · · , be a sequence of batch means, that is,

X
(m)
i =

1

m
(Xim−m+1 + · · ·+Xim), i ≥ 1, (2.2)

and let {ρ(m)
k } denote the ACF of X(m). The process X is called exactly second-

order self-similar with 0.5 < H < 1, if for all m ≥ 1,

ρ
(m)
k = ρk, k ≥ 0. (2.3)

In other words, the process X and the aggregated processes X(m), m ≥ 1, have

an identical correlation structure. The process X is asymptotically second-
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2.2 Properties of Long-Range Dependent Self-Similar Processes

order self-similar with 0.5 < H < 1, if for all k large enough,

ρ
(m)
k → ρk, as m→∞. (2.4)

In general, two features of stochastic processes can be considered: (i)

long-range dependence (LRD) or short-range dependence (SRD), and (ii) self-

similarity or non-self-similarity [173]. LRD involves the tail behaviour of the

ACF of a stationary sequence, while self-similarity typically refers to the scaling

behaviour of the finite dimensional distributions of continuous time or discrete

time processes. However, as it will be discussed later, a relationship between

the ACFs and self-similarity does exist. Namely, in the case of asymptotic

second-order self-similarity, by the restriction 1
2
< H < 1 in the definition,

self-similarity implies LRD, and vice versa. Thus, we use the terms long-range

dependence and (exact or asymptotic) self-similar processes in an interchange-

able fashion, because both refer to the tail behaviour of the autocorrelations

and are essentially equivalent.

2.2 Properties of Long-Range Dependent Self-

Similar Processes

The most striking feature of some second-order self-similar processes is that the

ACFs of the aggregated processes do not degenerate as the non-overlapping

batch size m increases to infinity. Such processes are known as long-range

dependent. This is in contrast to traditional processes used in models of tele-

traffic, all of which have the property that the ACFs of their aggregated pro-

cesses degenerate as the non-overlapping batch size m increases to infinity, i.e.,

ρ
(m)
k → 0 or ρ

(m)
k = 0(|k| > 0), for m > 1. The main properties of second-order

LRD self-similar processes are described below; see [9], [17], and [89], for more

detail.

Two equivalent definitions of long-range dependence (LRD) are as follows:

• The first definition of LRD is given in (2.5). The stationary process X

is said to be a long-range dependent process if its ACF is non-summable
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2.2 Properties of Long-Range Dependent Self-Similar Processes

[17], i.e.,

∞∑
k=−∞

ρk =∞. (2.5)

The details of how ACF decays with k are of interest because the be-

haviour of the tail of ACF completely determines its summability.

• Another definition of LRD is given by

ρk ∼ L(t)k−(2−2H), as k →∞, (2.6)

where 1
2
< H < 1 and L(·) slowly varies at infinity, i.e.,

lim
t→∞

L(xt)

L(t)
= 1,

for all x > 0; see [89]. The Hurst parameter H characterises the relation

in (2.6), which specifies the form of the tail of the ACF.

One can show that, for 1
2
< H < 1,

ρk =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H ], (2.7)

see Figure 2.3 [9]. For 0 < H < 1
2
, the process has SRD and the ACFs sum up

to zero, namely:
∞∑

k=−∞
ρk = 0. (2.8)

For H = 1
2
, all ACFs at non-zero lags are zero and we deal with processes with

IID Gaussian increments. For 1
2
< H < 1, a process has LRD and the ACFs

decay to zero very slowly (i.e., Equation (2.5)). For H = 1, all autocorrelation

coefficients are equal to one, no matter how far apart in time the sequences are.

This case has no practical importance in the case of real teletraffic modelling.

If we had H > 1, then ACFs would diverge to infinity. Namely, we would have

ρk =

{
1 for k = 0,

1
2
k2Hg(k−1) for k > 0,

(2.9)

where

g(x) = (1 + x)2H − 2 + (1− x)2H . (2.10)
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 H = 0.6
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 H = 0.7
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 H = 0.8
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Figure 2.3: Autocorrelation function plots for ρk = 1
2
[(k+1)2H − 2k2H +(k−

1)2H ] in Equation (2.7) (H = 0.6, 0.7, 0.8, 0.9).

One can see that g(x)→∞ as H > 1; see [9] (p.52), [146]. If 0 < H < 1 and

H 6= 1
2
, then the first non-zero term in the Taylor expansion of g(x) is equal

to 2H(2H − 1)x2. Therefore,

ρk/(H(2H − 1)k2H−2)→ 1, as k →∞. (2.11)

This contradicts the fact that ρk must be between -1 and +1. Therefore, it

can be concluded that if covariances exist and limk→∞ ρk = 0, then 0 < H < 1.

In some cases of teletraffic models, it was shown by statistical measurements

that 1
2
< H < 1 [89].

We call X an asymptotically second-order process with long memory, long-
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2.2 Properties of Long-Range Dependent Self-Similar Processes

range dependence, or strong dependence, when it satisfies Equation (2.4), and

we call it an exactly second-order process with LRD when it satisfies Equation

(2.3). The asymptotically and exactly second-order processes are characterised

by ACFs which decay hyperbolically. The process with LRD contrasts with

processes with short memory, short-range dependence, or weak dependence.

These processes have ACFs that decay exponentially.

2.2.1 Slowly Decaying Variance

The variances of the aggregated self-similar processes X(m), m ≥ 1, decrease

more slowly than the reciprocal of the non-overlapping batch size m. From

Equation (2.2), this property is given by

V ar[X(m)]→ c1m
−β1,

as m→∞, where c1 is a constant and 0 < β1 < 1.

For short-range dependent processes such as Poisson processes and related

processes, β1 = 1. Here Xi might represent the number of packets, cells, or

bytes that have arrived at a telecommunication buffer during the i-th time

interval of Ts seconds. Note that Xi is obtained by

Xi = Ni −Ni−1 (2.12)

when it is constructed from an underlying counting process N. To illustrate

this, let the process X defined in Equation (2.12) be constructed from a Poisson

process. Then, for any independent random variables,

Var[X(m)] = Var[
1

m
(X1 +X2 + . . .+Xm)]

=
1

m2
·m · Var[X1]

=
1

m
· Var[X1].

In this case, V ar[X(m)] decays as m−1 for all m = 1, 2, . . .. This property

can be illustrated by the variance-time plot log(V ar[X(m)]) against log(m);

see Section 3.4.5. If this plot forms a straight line with an absolute slope of

less than one over a wide range of m, then we say the process X possesses the

slowly decaying variance property.
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2.2 Properties of Long-Range Dependent Self-Similar Processes

2.2.2 Hurst Effect

Historically, the importance of self-similar processes lies in the fact that they

provide an elegant explanation and interpretation of strong correlations in

some empirical data. Namely, for a given sequence of random variables X =

{Xt}nt=1 = {X1, X2, · · · , Xn}, one can consider the so-called rescaled adjusted

range R(t,m)
S(t,m)

(or R/S-statistic), with

R(t,m) = max
i

[Nt+i −Nt − i

m
(Nt+m −Nt), 0 ≤ i ≤ m]−

min
i

[Nt+i −Nt − i

m
(Nt+m −Nt), 0 ≤ i ≤ m], (2.13)

where 1 ≤ t ≤ n, m is the batch size and Nt =
∑t

i=1Xi; and

S(t,m) =

√√√√m−1

t+m∑
i=t+1

(Xi − X̄t,m)2, (2.14)

where X̄t,m = m−1
∑t+m

i=t+1Xi.

Hurst found empirically that for many time series observed in nature, the

expected value of R(t,m)
S(t,m)

asymptotically satisfies the power-law relation:

E[
R(t,m)

S(t,m)
]→ c2m

H , as m→∞, with
1

2
< H < 1,

where c2 is a finite positive constant [9]. This empirical finding was in contra-

diction to previously known results for Markovian and related processes. For a

stationary process with SRD, E[R(t,m)
S(t,m)

] behaves asymptotically like a constant

times m
1
2 . Therefore, for large values of m, the R/S-statistic plot is randomly

scattered around a straight line with slope 1
2
. Hurst’s finding that for the Nile

River data, and for many other hydrological, geophysical, and climatological

data, R(t,m)
S(t,m)

is randomly scattered around a straight line with slope H > 1
2
,

is known as the Hurst effect, and H is known as the Hurst parameter (or

self-similarity parameter). Mandelbrot and Wallis [105] showed that the Hurst

effect can be modelled by FGN with the self-similarity parameter 1
2
< H < 1.
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2.2 Properties of Long-Range Dependent Self-Similar Processes

2.2.3 Spectral Density Obeys a Power-Law

In the frequency domain, an essentially equivalent definition of LRD for a

process X with given spectral density

f(λ) =
σ2

2π

∞∑
k=−∞

ρke
ikλ,

is that in the case of LRD processes, this function is required to satisfy the

following property:

f(λ) ∼ cf1λ
−γ, as λ→ 0, (2.15)

where cf1 is a positive constant and 0 < γ < 1, γ = 2H − 1 < 1 [9]. Thus,

LRD manifests itself in the spectral density that obeys a power-law in the

vicinity of the origin. This implies that f(0) =
∑

k ρk =∞. Thus, it requires

a spectral density which tends to +∞ as the frequency λ approaches 0. In

contrast to LRD, SRD is characterised by a spectral density function f(λ)

which is positive and finite for λ = 0.

For a fractional Gaussian noise (FGN) process, the spectral density f(λ,H)

is given by

f(λ,H) = 2cf(1− cos(λ))B(λ,H) (2.16)

with 0 < H < 1 and −π ≤ λ ≤ π, where

cf = σ2(2π)−1sin(πH)Γ(2H + 1),

B(λ,H) =

∞∑
k=−∞

|2πk + λ|−2H−1, (2.17)

and σ2 = Var[Xk] and Γ(·) is the gamma function; see [9].

The spectral density f(λ,H) in Equation (2.16) obeys a power-law at the

origin, i.e.,

f(λ,H)→ cfλ
1−2H , as λ→ 0, (2.18)

where 1
2
< H < 1. We will use these formulae in Chapter 4.4.
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2.3 Heavy-Tailed Distributions

2.3 Heavy-Tailed Distributions

There is an intimate relationship between heavy-tailed distributions and LRD

processes. Let X be a random variable with a cumulative distribution function

(CDF) F (x) = Pr[X ≤ x] and complementary CDF

F̄ (x) = 1− F (x) = Pr[X > x].

A distribution of X is heavy-tailed if

Pr[X > x] ∼ L(x)x−α, x→∞, (2.19)

where 0 < α < 2 is called the tail index (or shape parameter or coefficient of

heavy-tailedness), and L(·) slowly varies at infinity. That is, the tail of the

distribution asymptotically decays hyperbolically. This is in contrast to light-

tailed distributions such as exponential and normal distributions which possess

an exponentially decreasing tail [49], [50].

The simplest heavy-tailed distribution is the Pareto distribution. This

exhibits power-law behaviour over its entire range and its probability density

function (PDF) is

f(x) = αbαx−(α+1), (2.20)

where α is the shape parameter, α > 0, and b is the minimum allowed value

of x, 0 < b ≤ x. Its CDF is given by

F (x) = Pr[X ≤ x] = 1−
(
b

x

)α

. (2.21)

If α ≤ 2, then the distribution has an infinite variance; if α ≤ 1, then the

distribution has an infinite mean. Thus, as α decreases, an arbitrarily large

portion of the PDF may be present in the tail of the distribution. In practical

terms, a random variable that follows a heavy-tailed distribution can take

on extremely large values with non-negligible probability. Figure 2.4 shows

10,000 observations synthetically generated from a Pareto distribution with

α = 1.6 and b = 1. This figure shows the characteristic, visually striking

behaviour of heavy-tailed random variables. In such observations, most of the

values are small (97.48% < 10), but the greatest contribution to the sample

mean or variance comes from the few large values (2.52% ≥ 10). Heavy-tailed
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Figure 2.4: A sequence plot generated from a Pareto distribution with α = 1.6

and b = 1.

distributions can be used to characterise probability distributions that describe

teletraffic processes such as inter-arrival times and burst length.

Other examples of heavy-tailed distributions are:

• Lognormal distribution

F (x) = Φ
(

logx−µ

σ

)
, for σ > 0, where Φ is the standard normal distribu-

tion.

• Weibull distribution

F (x) = 1− e−xβ
, for 0 < β < 1, see [80] for a more detailed discussion.

2.3.1 Slow Convergence to Steady-State in Simulations

with Heavy-Tailed Input

Computer network designers and researchers are increasingly interested in em-

ploying heavy-tailed distributions in simulation studies of computer systems

and telecommunication networks since recent evidence shows that some char-

acteristics of these networks may be described well using heavy-tailed distribu-
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Figure 2.5: Number of theoretically required observations to achieve two digit

accuracy in simulations with heavy-tailed input for c2 = 1 and α = 1.1 to 2.0

obtained from Equation (2.28).

tions [23]. However, properties of heavy-tailed distributions are not only very

different from the conventional distributions described above, but also make

simulation stability hard to achieve.

Erramilli et al. [28] analyse the impact of heavy-tailed service times in

packet loss systems. Packet losses occur at much higher rates than the long

term rates (e.g., ATM cell loss rates of the order of 10−10), and correspondingly

the impact on applications will be considerably more than that indicated by

the long term rate. They also show that Pareto service time densities converge

so slowly to the Erlang B result that one can significantly underestimate the

true blocking probability in typical engineering intervals. Crovella and Lipsky

[23] show that if α is close to 1, a huge number of observations are required

to stop simulations (see Figure 2.5). They also show that such simulations

can take a very long time to reach steady-state; and be much less stable at

steady-state than typical for traditional systems.

Figure 2.5 shows that the number of required observations to obtain con-

vergence in the sample mean significantly increases when α is close to 1. There
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Figure 2.6: The superposition of ON/OFF processes with a heavy-tailed dis-

tribution converges to a self-similar count process with H = (3− α)/2.

is a relationship between the shape parameter α of heavy-tailed distributions

and the self-similarity parameter H : H = (3 − α)/2. The relationship with

H = (3 − α)/2 arises in the ON/OFF model whose ON- or OFF-periods

have heavy-tailed distributions [159]. The range of the Hurst parameter (i.e.,
1
2
< H < 1) is equivalent to the range of the thickness of the heavy-tailed

distribution (i.e., 1 < α < 2)[89], [159]. The convergence of a superposition

of sources converges to a self-similar process depending on the normalisation

used [3]; see also Figure 2.6.

For α = 1.6, 1.2 and 1.1 (i.e., for H = 0.7, 0.9 and 0.95, as H = (3− α)/2

characterises the thickness of the heavy-tailed distribution), the number of

theoretically required observations to achieve two digit accuracy in Figure 2.5

is 215,443, 1012 and 1022, respectively. Thus, it may be infeasible in any

reasonable amount of time to observe a steady-state in a simulation with such

a heavy-tailed distribution. Over any reasonable time scale, such a simulation

would be always in a transient state.

The behaviour of the sample means of common statistics can be statis-

tically analysed on the basis of observations obtained from simulations. We
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consider the convergence properties of sums of random variables. If observa-

tions x1, x2, . . . , xn are sequences of independent and identically distributed

(IID) random variables X1, X2, . . . , Xn, then the central limit theorem (CLT)

states that the distribution of the variable X̄ becomes closer to the normal

distribution as the number of collected observations n increases [122]. Un-

fortunately, the CLT applies only to sums of random variables with a finite

variance. Otherwise we need to use the limit theorems for heavy-tailed random

variables first formulated by Lévy [23], [151].

When Xi are IID and drawn from some distribution F (x) with mean µ and

variance σ2 <∞, the usual CLT is defined by

Z
d−→ N(0, σ2), (2.22)

where

Z = n−1/2(X̄ − µ),

X̄ =
1

n

n∑
i=1

Xi (2.23)

and N(0, σ2) is a normal distribution [23].

However, when Xi are IID and drawn from some distribution F (x) that is

heavy-tailed with the shape parameter 1 < α < 2, then the CLT applied to

Z = n1−1/α(X̄ − µ). (2.24)

says that the limit distribution of Z, as n → ∞, converges to a heavy-tailed

distribution; see Crovella and Lipsky [23]. For large n, (2.24) can be written

as

|X̄ − µ| ∼ n1/α−1. (2.25)

Equation (2.25) shows how slowly |X̄ − µ| converges to n1/α−1. Alternatively,

if α is close to 1, then the speed of convergence is very slow, but for α = 1,

the average does not converge at all; the mean is infinite.

We assume that the sample mean X̄ can be used to form an estimate of

the mean µ that is accurate until the relative error drops to 10−i · 100%. In

other words, one might describe a simulation that has reached steady-state
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when the observed mean of the input X̄ agrees with µ until the relative error

drops to 10−i · 100% given by

|X̄ − µ|
µ

≤ 10−i. (2.26)

Assuming

|X̄ − µ| = c1n
1/α−1, (2.27)

where c1 is a positive constant, then, from Equations (2.26) and (2.27), the

number of required observations is given by

c210
i

1−1/α ≤ n, (2.28)

where c2 is a positive constant and i is a digit accuracy. For more detailed

discussion, see Crovella and Lipsky [23].

Thus, we conclude that heavy-tailed distributions have convergence prop-

erties very different from those of conventional distributions. This means that

the convergence of a simulation with heavy-tailed random variables to the

steady-state can be very slow.

2.4 Self-Similar Processes in Computer Sys-

tems and Telecommunication Networks

Many recent studies of real teletraffic data have shown that teletraffic exhibits

self-similar behaviour over a wide range of time scales in computer systems

and telecommunication networks (see [8] and [172]). The self-similar nature of

teletraffic (in the sense that long-range dependent behaviour is exhibited over

a range of time scales: milliseconds, seconds, minutes and hours) can have a

significant impact on computer network performance [29], [114]. When Park

et al. [117], [118] explored the relationship between file sizes, transport pro-

tocols and self-similarity, they found that self-similar network traffic can have

a detrimental impact on network performance (including amplified queueing

delay, retransmission rate and packet loss rate).

The properties of teletraffic in self-similar scenarios are very different from

the traditional models, and can lead to incorrect conclusions about the perfor-

mance of analysed networks. For example, Paxson and Floyd [125] analysed
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twenty one wide area network (WAN) traces, investigating a number of wide-

area transmission control protocol (TCP) arrival processes to determine the

error introduced by modelling them using Poisson processes. They showed

that in cases of connection arrivals and TELNET packet inter-arrivals [109],

Poisson models resulted in serious overestimations of the burstiness of TCP

traffic over a wide range of time scales (i.e., time scales of 0.1 seconds and

longer). On the other hand, if the strongly correlated character of teletraffic

is explicitly taken into account, this can lead to more efficient traffic control

mechanisms [70], [113].

Various studies of real teletraffic include local area networks (LAN) and

WAN, networks operating under asynchronous transfer mode (ATM), Internet

and World Wide Web (WWW), transmission control protocol/ Internet proto-

col (TCP/IP), video, queueing performance, congestion control of self-similar

traffic, and others. We will first consider cases in which apparent self-similar

behaviour of teletraffic has been found. Then we will discuss theoretical models

proposed.

2.4.1 Self-Similar Nature of Real Teletraffic

• LAN, MAN and WAN traffic:

In the early-1990s, Leland et al. [89] and Willinger et al. [90], [172]

demonstrated that Bellcore Ethernet LAN traffic is statistically self-

similar in nature. While they looked at the count processes (the number

of packets submitted within a time unit in the second column), we took

the same traces of teletraffic as in [89] and having tested inter-arrival

times for self-similarity, we have found that they have self-similar prop-

erties too. On the basis of our statistical analysis we can conclude that

traces of teletraffic investigated by Willinger et al. [90] have self-similar

properties not only when one investigates their count processes, but also

when one characterises them by processes assembled from inter-event

times, see in Appendix B.

As Addie et al. [5] shown, teletraffic in a commercial public broadband

data network FASTPAC, an Australian high speed data network provid-

ing services of 2 Mb/sec. and 10 Mb/sec., is also self-similar. The traffic

measurements were taken by a bus monitor which counted the number
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of segments within every consecutive time interval. Each time interval

is 1 millisecond long. The measurements were taken for a period of one

busy hour on six different days: March 29 and April 11-15, 1994.

Paxson and Floyd [126] studied how Poisson processes fail as accurate

models for WAN packet arrival processes. They found that only user-

initiated TCP session arrivals such as remote-login and file-transfer are

well-modelled as Poisson processes. Other TCP and FTP connection

arrivals, over time scales of 0.1 seconds and longer, are not captured

by Poisson models. Furthermore, the Poisson arrivals commonly used to

model packet arrivals generated by the user side of a TELNET connection

result in serious overestimations of the burstiness of the traffic. They

also found that the distribution of the number of bytes in each burst

has a very heavy upper tail, and a small part of the largest bursts has a

majority of the traffic in almost all of the FTP traffic. FTP connection

arrivals completely dominate FTP traffic. For example, for FTP traffic

(PKT-1 trace and PKT-3 trace), the upper 2% tail holds about 50% of

all the traffic; and for the PKT-2 trace and PKT-5 trace, the upper 2%

tail holds 85% of all the traffic.

Erramilli et al. [29] showed that LRD has considerable impact on queue-

ing performance and is a dominant characteristic for determining sev-

eral issues of packet traffic engineering problems such as dimensioning of

buffers and determining usable capacity.

• Internet and WWW traffic:

Crovella and Bestavros [21] found evidence and possible causes of self-

similarity in World Wide Web (WWW) traffic. They presented the LRD

structure of WWW traffic using a set of traces of actual user execu-

tions of the National Centre for Super-computing Applications (NCSA)

Mosaic (the first popular graphical World Wide Web browser in early

1993). Then, using WWW traffic, user preference, and WWW docu-

ment file size data, they showed that the transmission times and quiet

times for any particular WWW session are heavy-tailed, which is an es-

sential characteristic of the proposed mechanism for the self-similarity of

traffic.
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• Video traffic:

Analysis of variable-bit-rate (VBR) video traffic measurements produced

similar results to that of the Internet and WWW traffic. Beran et al. [10]

analysed a few million observed frames from VBR video services and

found that LRD is an inherent feature of VBR video traffic. They also

showed that the LRD property allows us to distinguish between the mea-

sured data and synthetic traffic generated VBR source models currently

used in the literature, see also [77], [101], [102].

• Others:

Gribble et al. [51] found evidence of self-similarity in file systems. They

demonstrated the existence of self-similar behaviour in high-level file sys-

tem events, such as file opens, block reads or writes, file closes, and file

deletes, over short-term time scales of less than a day in length, but

showed that this behaviour does not persist across time scales of days,

weeks, and months.

2.4.2 Theoretical Models of Self-Similar Teletraffic

• LAN and WAN traffic:

Later, Willinger et al. [173] and Taqqu et al. [159] developed and proved

a result for self-similar traffic modelling . They found that the superpo-

sition of strictly independent alternating ON/OFF traffic models whose

ON- or OFF-periods have heavy-tailed distributions with infinite vari-

ance can be used to model aggregate network traffic that exhibits self-

similar (or long-range dependent) behaviour typical for measured Ether-

net LAN traffic over a wide range of time scales.

• ATM network traffic:

Georganas [45] and Likhanov et al. [95] proposed self-similar traffic mod-

els constituting of a superposition of infinite number of individual Pareto

source models (i.e., an M/G/1 queueing system where the service time is

Pareto distributed with infinite variance and the transmission discipline

is a first-in, first-out (FIFO) manner for sources). They showed that

self-similar traffic arriving at an ATM buffer results in a heavy-tailed
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buffer occupancy distribution. They also found that the buffer cell loss

probability decreases with the buffer size, not exponentially as in tradi-

tional Markovian models, but hyperbolically. Tsybakov and Georganas

[162], [163], [165] constructed mathematical models for self-similar cell

traffic and analysed the overflow behaviour of a finite-sized ATM buffer

fed by self-similar traffic. They demonstrated that both asymptotic up-

per and lower bounds to the overflow probability decrease hyperbolically

with increasing buffer size, and this decay is much slower than exponen-

tial decay. They also pointed out that previous calculations and buffer

dimensioning of ATM switches will have to be reconsidered in view of

the new analytical results obtained from self-similar processes. Tsybakov

and Georganas [164] also gave a model for ATM cell traffic in commu-

nication networks and found general conditions of self-similarity for this

model. A consequence is that the merging of traffic, as in a statisti-

cal multiplexer or an ATM switch, does not result in smoothing of traffic

[35]. Bursty traffic that is multiplexed tends to produce bursty aggregate

traffic. Thus, they showed that ATM network traffic is also self-similar.

Ryu [146] showed that self-similar models based on fractal point processes

are able to capture accurately the queueing behaviour of various traffic

streams and are tractable for queueing analysis under diverse scenarios

of ATM networks.

• Internet and WWW traffic:

Crovella and Bestavros [21] found that many characteristics of WWW

use can be modelled using heavy-tailed distributions, including the distri-

bution of transfer times, the distribution of user requests for documents,

and the underlying distribution of WWW document sizes.

Twenty one researchers [22] met to take stock of the field of Internet

performance modelling in 1999, as this has played an increasingly signif-

icant role for computer network users. They reported three dimensions

to the problems: (i) measurement techniques for the Internet have be-

gun to develop, but significant unresolved problems remain. One of the

main reasons for this is that traffic streams in the Internet exhibit high

variability across a wide range of time scales (i.e., self-similar behaviour);

(ii) models and solution techniques are not yet well developed because

all related network conditions simultaneously interact; (iii) methods to
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improve resource management and control in the Internet are being de-

veloped, but change rapidly and so are often not subjected to rigorous

performance evaluation, which is also difficult on the Internet.

• TCP/IP network traffic:

Park et al. [117], [118] examined a mechanism that creates self-similar

network traffic, and presented some of its performance implications. This

mechanism is the transfer of files or messages whose size is drawn from a

heavy-tailed distribution. They showed that properties of the transport

layer play an important role in preserving and modulating the relation-

ship between file sizes, transport protocols and self-similar network traf-

fic. In particular, the reliable transmission and flow control mechanisms

of TCP serve to maintain the LRD structure induced by heavy-tailed file

size distributions. They also presented data on the relationship between

self-similar traffic and network performance as captured by performance

measures such as packet loss rate, retransmission rate and queueing de-

lay. They showed that increased self-similarity results in degradation of

performance, and queueing delay exhibits a dramatic increase as self-

similarity increases.

Veres et al. [169] demonstrated how induced self-similarity is propagated

and spread in modern computer networks by TCP congestion control,

which represents the dominant transport protocol of the Internet. This

is due to its congestion control algorithm, which adapts to self-similar

fluctuations on several time scales. They also demonstrated that if a

TCP connection shares a bottleneck link with a self-similar background

traffic flow, it propagates the correlation structure of the background flow

to a characteristic time scale. They showed that if congestion periods

are LRD, then the end-user perceived end-to-end traffic is also LRD, and

found that the self-similarity of a TCP stream can be passed on to other

TCP streams.

• Video traffic:

Garrett and Willinger [42], and Rose [141] showed that models for VBR

video traffic using heavy-tailed distributions give more accurate results

than the commonly used stochastic processes (see Appendix A.1). The

main finding of their analysis was that the autocorrelation of the VBR

30



2.4 Self-Similar Processes in Computer Systems and Telecommunication Networks

video sequence decays hyperbolically and can be modelled using F-ARIMA

and FGN self-similar processes. Trace-driven simulations showed that

statistical multiplexing results in significant bandwidth efficiency even

when LRD is present. Simulations of their gamma/Pareto model fed

by Hosking’s algorithm (one of the F-ARIMA processes) showed LRD

and heavy-tailed marginals to be important features which are not taken

into account in currently used VBR video traffic models. Sahinoglu and

Tekinay [150] presented a survey of the self-similarity phenomenon ob-

served in multimedia traffic such as video and voice, and its important

implications for network performance.

• Queueing performance:

The impact of self-similar models on queueing performance has been in-

vestigated in many papers. Beginning with the work by Norros [114],

there has been mounting evidence that clearly shows that the perfor-

mance of queueing models with self-similar inputs can be dramatically

different from the performance predicted by traditional models of tele-

traffic based on Markovian processes [27].

Erramilli et al. [29] gave conditions under which the use of accurate and

simple traffic models that capture LRD in a parsimonious manner is jus-

tified, and obtained practically relevant solutions to performance prob-

lems of high-speed communication networks that carry self-similar-like

traffic. Willinger et al. [173] complemented this evidence by illustrating

the practical relevance of such findings for (i) parsimonious traffic mod-

elling for high-speed networks, (ii) efficient simulation of actual network

traffic, and (iii) analysing queueing models and protocols under realistic

traffic scenarios. The traditional models of teletraffic that assume inde-

pendent arrivals, based on Poisson processes, Markov-modulated Pois-

son processes and other related processes, with an ACF that drops off

exponentially rather than hyperbolically, are not able to capture the self-

similar nature of teletraffic [126]. Addie et al. [4], [6] developed a heuristic

method to evaluate the performance of a queue fed by a self-similar traf-

fic stream. They showed the accuracy of their evaluation on six different

real traffic networks and found that the inaccuracy was usually low.

Jelenković [67] developed techniques for approximating buffer overflow

probabilities in a network multiplexer. He also found that MPEG video
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traffic in multimedia networks exhibits multiple time scales and sub-

exponential characteristics that are heavy-tailed. Resnick and Samorod-

nitsky [134] and Dahl and Willemain [24] investigated how self-similar

processes can have a large impact on queue performance, and demon-

strate that the distributions of the waiting time and the queue length

have heavy tails, using a fixed sample size of 10,000 observations.

Greiner et al. [49], [50] investigated how power-tailed distributions (a sub-

class of heavy-tailed distributions) can occur in computer systems and

developed a truncated analytical model that in the limit is power-tail.

They demonstrated power-tailed distributions for modelling a steady-

state GI/M/1 queueing system in simulation studies of telecommunica-

tion networks and showed that steady-state behaviour varies smoothly

with α > 1.

Neame et al. [112] showed that the queueing performance of the M/Pareto

process as a model for an arbitrary broadband traffic stream depends on

the level of aggregation in the process. The M/Pareto process is com-

posed of a number of overlapping bursts as a sub-group of the more

general M/G/∞ processes. Bursts arrive according to a Poisson process

with rate λ. The duration of each burst is random, and chosen from a

Pareto distribution. Then, the M/Pareto process converges to a long-

range dependent Gaussian process when the aggregation level is high.

They also showed that the M/Pareto process is capable of modelling the

queueing performance of real broadband traffic sequences such as Ether-

net LAN and VBR MPEG video sequences when the aggregation level is

low. However, their M/Pareto process still has some limitations because

the choice of the arrival rate is complicated by the fact that the correct

value of the arrival rate differs depending on the service rate.

Neidhardt and Wang [113] pointed out that larger values of H are not

always associated with longer queues, but Dahl and Willemain [24] did

not observe this phenomenon with their choice of parameter values. Like-

wise Grossglauer and Bolot [53] showed that some buffer overflow prob-

lems are relatively insensitive to certain long-range dependent structures,

whereas Dahl and Willemain [24] found strong sensitivities for the means

and maxima of queue statistics. Clearly, more research is needed to fully

understand the effect of self-similar processes on the queueing behaviour
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in different queueing systems.

Jeong et al. [75] found that when self-similar input with H ≥ 0.6 is as-

sumed in a steady-state simulation of queueing models using the spectral

analysis method, one needs many more observations to obtain the final

simulation results with a relative precision ≤ 10%, at 95% confidence

level, than when assuming Poisson processes.

Boxma and Cohen [12] presented an approximation for the waiting time

distribution for an M/G/1 queueing system with a heavy-tailed service

time distribution by using the heavy traffic limit theorem. This resulting

approximation is sharp even when the traffic intensity is not heavy. For

different service disciplines, such as first-come-first-served (FCFS), pro-

cessor sharing (PS) and last-come-first-served preemptive resume (LCFS-

PR), we need to investigate further the behaviour of other queueing sys-

tems with heavy-tailed inter-arrival and/or service time distributions. It

is important to perform additional empirical experiments to fully un-

derstand the effect of heavy-tailed traffic characteristics on performance

measures, and develop useful approximations.

• Congestion control system:

Park et al. [118], and Park and Tuan [119] investigated the effect of

multiple time scale congestion control on network performance when the

network is subject to highly self-similar traffic conditions. Decreasing the

arrival rate results in a decline in packet loss rate, whereas link utilisation

increases. They also found that increasing sophistication of control leads

to improved performance that is preserved even under highly self-similar

traffic conditions.

Östring et al. [116] found that when existing self-similarity of teletraf-

fic is employed in designing available-bit-rate (ABR) congestion control

algorithms, then queue lengths at finite buffers can be lower and cell

losses can be significantly smaller. In the case of finite buffer sizes,

self-similarity of teletraffic causes higher cell losses within the system

and these cell losses decrease hyperbolically as the buffer size increases,

rather than decreasing exponentially as in case of Poisson processes.
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• Others:

An ON/OFF source model was used for synthesising file system traffic

that exhibits the same self-similar behaviour as observed in the file sys-

tem sequences [51]. A comprehensive bibliographical guide to self-similar

traffic and performance modelling for modern high-speed computer net-

works is presented in [171].

2.5 Conclusions

Given the strong empirical evidence that self-similar processes are better than

Poisson processes in capturing crucial network teletraffic characteristics such

as burstiness, it has become vital to develop and apply tools for understanding

self-similar processes, and for generating synthetic network traffic for use in

simulations.

The methods of verification and modelling of self-similar behaviour of tele-

traffic are further discussed in this thesis. The scope of the thesis is practi-

cally limited to issues related with important, but one characteristic of self-

similarity: the Hurst parameter.

In Chapters 3 – 7 some definitions and statistical properties of self-similarity

described above are used to compare and analyse sequences generated by self-

similar pseudo-random teletraffic generators.
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Chapter 3

CRITICAL REVIEW OF

HURST PARAMETER

ESTIMATION TECHNIQUES

3.1 Introduction

Many studies have investigated possible causes of LRD phenomena in real

networks. Two main sources of them have been identified. Firstly, LRD can

be the result of users’ behaviour. For instance, network users usually do not

care about sizes of files stored in their servers. Typically there are collections

of very short and very long files which are transmitted between computers

whenever it is needed, regardless of their sizes. Despite the existence of very

powerful compression algorithms, data compression is generally rarely used.

Lack of rationality when dealing with very long files is one of likely causes of

the probability of distributions of file sizes being heavy-tailed and, as explained

in Chapter 2, heavy-tailed inter-events times cause LRD of count processes.

Secondly, the other source of LRD can exist within networks themselves,

since they have become complex adaptive systems. In the case of retransmis-

sion protocols, for example, such protocols as the exponential back-off algo-

rithm, LRD can occur when network becomes congested. Hara and Taketsugu

[55] found that DCA-TDMA (dynamic channel allocation-based time division

multiple access) cellular networks have a hidden cause of LRD: a strong inter-
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dependencies between cells cause inter-cell interference.

While researchers largely acknowledge the significance of LRD phenomena,

they still disagree on two issues: (i) selection of the best LRD models for buffer

dimensioning and bandwidth allocation, and (ii) selection of the best measures

of LRD, including statistical estimators; see e.g., Krunz and Matta [82]. In

this thesis, we focus on the second issue.

The LRD phenomenon is well characterised by the Hurst parameter. As

mentioned in Chapter 2, the Hurst parameter shapes ACFs of LRD processes,

and it is needed for determining variance of such a process. In this chapter we

limit our attention to estimators of the Hurst parameter.

For practical reasons, we consider here the methods of estimation of the

Hurst parameter H from a finite time series. Some popular Hurst parameter

estimation techniques are based on the idea of estimating the slope of a linear fit

in a log-log plot; for detailed discussion, see [9]. For example, the R/S-statistic

estimation technique is a well-known example of this approach, although, as

we will see, it has poor statistical performance; notably it has a high bias

when the value of the Hurst parameter (1
2
< H < 1) is small or large. Another

example is the periodogram plot based on a linear fit in a log10(P (λ)) against

log10(λ) plot, where P (·) is the periodogram and λ is frequency.

We report results of our comparative analysis of H estimators. Estimators

considered include the wavelet-based H estimator and Whittle’s Maximum

Likelihood Estimator (MLE), as well as estimators based on periodogram anal-

ysis, R/S-statistic analysis, variance-time analysis and IDC(t) analysis. We

have focused on the wavelet-based H estimator and Whittle’s MLE of H , as

they are asymptotically unbiased and efficient in theory, at least in the FGN

case [2], [167].

This chapter is organised as follows. In Section 3.2 we describe the genera-

tion of exact pseudo-random self-similar sequences, which are used as reference

sequences for assessing estimation techniques of the Hurst parameter. We use

an exact self-similar FGN process based on the Durbin-Levinson algorithm.

Section 3.4 describes the most frequently used estimation techniques of the

Hurst parameter. To enable estimation techniques to be analysed, the appro-

priate sample size must first be determined. This is discussed in Section 3.3.

Quality of the considered estimators of H is discussed on the basis of numeri-
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Table 3.1: Mean generation times of the exact self-similar sequences (FGN

process) when using the Durbin-Levinson algorithm. The results obtained

using the SunOS 5.7 time command on a Pentium II (233 MHz, 512 MB);

each mean time is an average over 30 iterations.

Sequence of

32,768 65,536 131,072 262,144 524,288 1,048,576

Numbers Numbers Numbers Numbers Numbers Numbers

Mean running time (hour:minute:second)

00:01:44 00:07:28 00:39:08 02:41:09 10:55:04 44:13:37

cal results showing mean values of the estimated H parameters, as well as the

results of appropriate statistical tests, see Section 3.5.

3.2 Generation of Exact Self-Similar Sequences

To assess the quality of various estimators of H experimentally, one needs to

apply them to self-similar stochastic processes of exactly known properties. In

the study presented in this chapter, the role of such a reference process will be

played by an FGN process.

Following the recommendation given in [1], [13], [158], we generated exact

self-similar FGN sequences by using the Durbin-Levinson algorithm. This

algorithm, with complexity O(n2), is the fastest currently known algorithm

for generation of exactly self-similar processes; see [136]. Therefore, we use

this algorithm to generate exact self-similar sequences for our comparative

analysis of H estimation techniques. This algorithm written in C is given in

Appendix C, see also Taqqu et al. [158]. Table 3.1 shows the mean running

times of the FGN generator based on the Durbin-Levinson algorithm. The

generation of a sequence of one million numbers took approximately 44 hours.

Such a rate of generation of pseudo-random self-similar sequences would be

too slow in simulation practice, for example, when simulating performance

of telecommunication networks. So, generators of approximately self-similar

sequences are of great practical importance and are discussed in Chapter 4.
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3.3 Determining Minimal Sample Sizes

3.3 Determining Minimal Sample Sizes

We determine the minimal length of a sequence used as the sample for estimat-

ing H parameter, to ensure that our estimates can be satisfactorily accurate,

despite using finite sequences. Such an approach makes our analysis different

from majority of published results on H estimation which did not consider

this practical aspect. The exact estimation of the Hurst parameter from finite

sequences is still an open problem. Thus, when undertaking a comparative

study of different estimators, we assume that we deal with satisfactorily long

sequences for producing H estimates close to the values that would be obtained

if sequences were infinite long.

Different reported studies have used sequences of different length (different

sample sizes). For example, Mandelbrot and Wallis [105] used a sample of 9,000

numbers using the R/S-statistic. Leland et al. [89], [172] analysed sequences of

360,000 observations, where each observation represented the number of bytes

sent over the Ethernet per 10 milliseconds. Garrett and Willinger [42] pre-

sented a statistical analysis of a two-hour long empirical sample of VBR video

with 171,000 frames. Paxson [124], for each input H value, used ten samples

of 32,768 numbers to obtain estimates of the Hurst parameter. He confirmed

that the stochastic dependence present in the generator was consistent with

having the required value of H using Whittle’s MLE. Rose [141] studied traffic

modelling of VBR MPEG video and its impacts on ATM networks with dif-

ferent sequences of 40,000 frames of MPEG traffic data (it takes 30 minutes

to obtain each sequence). An R/S-statistic estimation technique and Whit-

tle’s MLE were used to estimate the Hurst parameter for MPEG traffic in

[141]. Abry and Veitch [2], [167] compared the wavelet-based H estimator

and Whittle’s MLE using small synthetic sample sequences of 4,096 numbers

and the real Ethernet LAN data set. A minimisation procedure is involved in

Whittle’s MLE estimator which requires many repetitive calculations, leading

to a significantly higher overall cost than in the case of the wavelet-based H

estimator, which requires simple calculations of discrete wavelet transforms in

O(n) operations.

We evaluate the most commonly used methods for estimating the self-

similarity parameter H to find the best estimator in the sense of bias. We de-

termine the minimal length of sequences for which bias becomes negligible, and
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3.3 Determining Minimal Sample Sizes

then analyse Hurst parameter estimation techniques using synthetic sequences

generated by the exact pseudo-random self-similar FGN process discussed in

Section 3.2. To determine the minimal length of sequences, we investigate

accuracy of H estimates as a function of the length of batch sizes and sample

sizes.

Firstly, for each H = 0.6, 0.7, 0.8 and 0.9, each sequence with one million

numbers is divided into sub-sequences (i.e., batch size)m of 210, 211, . . . , 219, 220

numbers. For example, let a sequence (x1, . . . , xn) be divided into i sub-

sequences (x1, . . . , xl), (xl+1, . . . , x2l), . . ., (x(i−1)l+1, . . . , xil), l > 0, i = [n/l].

Each estimate Ĥj, j = 1, . . . , i is obtained using the considered estimation

techniques of H . The mean and variance of these estimates are given by

Ĥ =
i∑

j=1

Ĥj

i
, (3.1)

and

σ̂2[Ĥ ] =
i∑

j=1

(Ĥj − Ĥ)2

i
, (3.2)

respectively [11].

In Figures 3.1 and 3.2, log2 (Batch Size) is plotted against Ĥ obtained from

the exact self-similar FGN process using the wavelet-based H estimator and

Whittle’s MLE, for H = 0.6, 0.7, 0.8 and 0.9. These estimators have also been

widely used in the analysis of computer network traffic [2], [89], [167]. Figure

3.1 shows that for all H values, all curves for Ĥ, using the wavelet-based

H estimator, quickly converge toward the true values. The 95% confidence

intervals of H , Ĥ ± 1.96σ̂[Ĥ ], are computed using the mean from Equation

(3.1) and the variance from Equation (3.2).

As a measure of bias of the estimators we use their relative inaccuracy ∆H ,

as defined as:

∆H =
Ĥ −H
H

∗ 100%, (3.3)

whereH is the exact value assumed and Ĥ is its empirical mean value. Further,

we assume that a sample size is acceptable when the relative inaccuracy drops

below one percent.
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3.3 Determining Minimal Sample Sizes

Table 3.2 shows that the relative inaccuracies for all curves of estimates

of H are less than one percent from m = 212. The relative inaccuracy ∆H

in Table 3.2 is calculated using the formula: These curves converge to the

required values. The range of scale (i1, i2) = (4, 10) is used. Figure 3.2 also

shows that all curves of Ĥ using Whittle’s MLE converge to true values. The

bottom-most curve matches the true values for all m, except for H = 0.6

at m = 210. However, for H = 0.7, 0.8 and 0.9, the curves of Ĥ converge

more slowly toward the true values than for the wavelet-based H estimator as

m increases. Table 3.3 shows that its relative inaccuracies are less than one

percent from m = 215.

Figures 3.3 and 3.4 show estimates ofH obtained from the exact self-similar

FGN process using the wavelet-based H estimator and Whittle’s MLE as the

length of the sample size n increases from 210 to 217, for H = 0.6, 0.7, 0.8

and 0.9. (We chose the length 217 for the largest sample, because mean values

of estimates of H using the wavelet-based H estimator and Whittle’s MLE

reached the required values when n ≥ 213 and n ≥ 210, respectively, for all H

values.) Figure 3.3 shows that for all H values, all curves of H estimates from

the wavelet-based H estimator converge to the required values. They have a

positive bias if n ≤ 212, and then the curves converge to the required values

for n ≥ 213. Table 3.4 shows that the relative inaccuracies for all curves of

H estimates are less than one percent for n ≥ 213. In contrast, Figure 3.4

shows that all curves of estimates of H from Whittle’s MLE converge to the

exact values faster than estimates from the wavelet-based H estimator, and

reach the required values already at n = 210. Table 3.5 shows that its relative

inaccuracies are less than one percent for n ≥ 210.

Thus, minimal lengths of sequences for estimating H parameter are recom-

mended to be between 215 and 217. We have chosen the minimum sequence

length to be 32,768 (215) in our study of these estimators.
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Figure 3.1: For H = 0.6, 0.7, 0.8 and 0.9, estimates of H obtained from the

exact self-similar FGN process using the wavelet-based H estimator as the

length of the batch size increases from 210 to 220. The vertical bars at each

batch size give 95% confidence intervals for the H values.
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Figure 3.2: For H = 0.6, 0.7, 0.8 and 0.9, estimates of H obtained from the

exact self-similar FGN process using Whittle’s MLE as the length of the batch

size increases from 210 to 220.
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Table 3.2: Relative inaccuracy, ∆H , of mean values of estimates of H using

the wavelet-based H estimator for the exact self-similar FGN process as the

length of the batch size increases, for H = 0.6, 0.7, 0.8 and 0.9.

Batch Size ∆H (%)

m .6 .7 .8 .9

210 +2.1130 +2.1740 +2.0170 +1.7920

211 +1.2910 +1.1530 +0.9807 +0.8061

212 +0.2280 +0.1856 +0.1207 +0.0677

213 +0.8436 +0.7212 +0.5857 +0.4626

214 +0.5144 +0.4488 +0.3544 +0.2589

215 +0.4824 +0.4440 +0.3826 +0.3192

216 +0.5050 +0.4694 +0.4197 +0.3704

217 +0.4717 +0.4271 +0.3725 +0.3225

218 +0.4679 +0.4375 +0.3941 +0.3506

219 +0.4867 +0.4543 +0.4119 +0.3700

220 +0.5317 +0.4914 +0.4425 +0.3967

Table 3.3: Relative inaccuracy, ∆H , of mean values of estimates of H using

Whittle’s MLE for the exact self-similar FGN process as the length of the

batch size increases, for H = 0.6, 0.7, 0.8 and 0.9.

Batch Size ∆H (%)

m .6 .7 .8 .9

210 +5.0180 −4.6000 −9.8830 −8.8450

211 +0.6811 −4.5720 −6.2520 −5.7690

212 +0.2291 −3.9760 −3.5360 −3.1770

213 +0.0254 −2.7640 −2.4500 −2.2190

214 +0.0131 −1.3220 −1.1830 −1.0720

215 +0.1747 −0.6896 −0.5995 −0.5320

216 +0.1264 −0.4406 −0.3788 −0.3462

217 +0.1415 −0.0636 −0.0516 −0.0446

218 −0.0304 −0.0143 −0.0163 −0.0119

219 +0.0833 −0.0086 −0.0113 −0.0089

220 +0.1583 −0.0057 −0.0075 −0.0067

42



3.4 Hurst Parameter Estimators

10 11 12 13 14 15 16 17

0.6

0.65

0.7

0.75

0.8

0.85

0.9

 log
2
(Sample Size)

 H
 V

alu
e

 H = 0.6
 H = 0.7
 H = 0.8
 H = 0.9

Figure 3.3: The wavelet-based H estimator for sample sizes from 210 to 217.
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Figure 3.4: Whittle’s MLE for sample sizes from 210 to 217.

3.4 Hurst Parameter Estimators

3.4.1 Wavelet-Based H Estimator

The original wavelet-based H estimator, proposed by Abry and Veitch in 1998

[2], is a fast estimator based on a wavelet transform, with a fast pyramidal
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algorithm for the wavelet transform, with its complexity of order O(n). How-

ever, as argued in [167] this estimator suffers from a bias associated with its

log-log regression component. Later, Veitch and Abry [167] proposed a new

improved method of estimation of the H parameter within a so-called wavelet-

based joint estimator, which allows us to estimate both H and so-called power

parameter, an independent quantitative parameter with the unit of variance;

Table 3.4: Relative inaccuracy, ∆H , of mean values of estimates of H using

the wavelet-based H estimator for the exact self-similar FGN process as the

length of the sample size increases, for H = 0.6, 0.7, 0.8 and 0.9.

Sample Size ∆H (%)

n .6 .7 .8 .9

210 +1.7870 +2.6530 +2.9670 +3.0340

211 +0.9794 +1.8880 +2.2650 +2.3760

212 +1.6810 +1.5360 +1.3170 +1.1110

213 +0.4068 +0.4232 +0.3838 +0.3292

214 +0.2352 +0.2762 +0.2615 +0.2278

215 +0.0258 +0.0920 +0.1096 +0.1075

216 +0.0095 +0.0593 +0.0672 +0.0603

217 - 0.4140 - 0.3001 - 0.2304 - 0.1759

Table 3.5: Relative inaccuracy of Whittle’s MLE.

Sample Size ∆H (%)

n .6 .7 .8 .9

210 +0.2873 +0.2193 +0.1459 - 0.0601

211 - 0.0512 - 0.0381 - 0.0314 - 0.0891

212 +0.0032 +0.0050 +0.0046 - 0.0235

213 +0.1594 +0.1501 +0.1419 +0.1252

214 +0.0155 +0.0238 +0.0310 +0.0332

215 +0.0435 +0.0443 +0.0441 +0.0435

216 +0.0656 +0.0647 +0.0663 +0.0661

217 +0.0303 +0.0303 +0.0275 +0.0289
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see [142] and [167] for details. The resulted wavelet-based H estimator, that we

further simply call the wavelet-based H estimator, is asymptotically unbiased

and (almost) the most efficient [167].

The wavelet transform generates the wavelet coefficients dx(i, j) from a

sequence of given numbers. For an LRD process, the variance of the wavelet

coefficients at each level i is defined by

E[dx(i, ·)2] = CAf2
i(2H−1), (3.4)

where C > 0 and

Af = 2(2π)1−2HcγE(2H − 1)sin((1−H)π),

where E(·) is the Euler function and cγ is a positive constant. The power

parameter Af that plays a major role in fixing the absolute size of LRD gener-

ated effects in applications is an independent quantitative parameter with the

dimensions of variance.

Abry and Veitch ([2], [167]) have suggested that a spectral estimator can

be obtained by calculating a time average µi of the dx(i, ·) at a given scale,

that is,

µi =
1

ni

ni∑
j=1

d2
x(i, j), (3.5)

where ni is the number of wavelet coefficients at scale i, i.e., ni = 2−in, where

n is the number of the data points. The estimator uses a weighted linear

regression as the variances of log2(µi) vary with log2(2
i). Ĥ , an estimated

Hurst parameter H is obtained from a linear regression [167]:

yi = log2(µi) = (2Ĥ − 1)i+ c+ 1/(niln2), (3.6)

where c is a constant; see [167] for details. Mean values of experimental values

of the dx(i, ·) for 1 ≤ i ≤ 10, and regression lines defined by points yi [see

Equation (3.6)], for scale (i1, i2) = (4,10), are shown in Figure 3.5, for the

exact self-similar FGN process with H = 0.6, 0.7, 0.8 and 0.9.

In practice, we need to select the scales i = i1, . . . , i2 over which the

power-law behaviour in Equation (3.4) holds, since the definition of LRD in

f(λ,H) → cλ1−2H , as λ → 0, is asymptotic. For a more detailed discussion,
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see also Veitch and Abry [167]. Table 3.6 shows that the mean values of Ĥ

obtained from 100 exact self-similar sequences are biased when the scale i1 is

small (the minimum scale is one).

Table 3.7 shows variances of Ĥ values Var[Ĥ] for the exact FGN generator

for different scales and H values. The variances gradually increase as the value

of i1 increases. Our results showed that the wavelet-based H estimator is the

least biased at scales i1 = 4 and 5. Therefore, scale i1 = 4 is chosen for all our

experiments.

Furthermore, Figure 3.5 shows that the estimates of H at higher scales

are not only highly variable, but also biased, as Roughan et al. [143], [144]

Table 3.6: ∆H of mean values of estimated H using the wavelet-based H

estimator for the exact self-similar FGN process for different scales and H

values. n = 32,768 (215).

Scale ∆H (%)

(i1, i2) .6 .7 .8 .9

(1,10) +5.8590 +6.1380 +6.0870 +5.8800

(2,10) +1.3000 +1.7920 +1.9410 +1.9290

(3,10) +0.2200 +0.4090 +0.4639 +0.4628

(4,10) +0.0258 +0.0920 +0.1096 +0.1075

(5,10) -0.0783 -0.0788 -0.0904 -0.1033

(6,10) -0.4554 -0.3627 -0.3088 -0.2806

Table 3.7: Var[Ĥ] of the wavelet-based H estimator for the exact self-similar

FGN process for different scales and H values. n = 32,768 (215).

Scale Estimated Variances

(i1, i2) .6 .7 .8 .9

(1,10) 1.713e-05 1.700e-05 1.697e-05 1.703e-05

(2,10) 4.356e-05 4.362e-05 4.383e-05 4.420e-05

(3,10) 7.630e-05 7.716e-05 7.851e-05 8.058e-05

(4,10) 1.892e-04 1.922e-04 1.951e-04 1.985e-04

(5,10) 4.863e-04 4.912e-04 4.952e-04 4.955e-04

(6,10) 1.228e-03 1.277e-03 1.337e-03 1.393e-03
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discussed. Slope of all curves in Figure 3.5 at log2(2
i) = 9 sharply goes down

because of insufficient numbers of data points at the end of these values of

scale. Thus, this results in the under-sampling of events at these scales, and,

if these scales were used in the H estimation, they might result in noticeable

inaccuracies.
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Figure 3.5: Mean values of dx(i, ·), and their confidence intervals, for 1 ≤
i ≤ 10, and regression curves for wavelet-based H estimates in the case of the

exact self-similar FGN process, with H = 0.6, 0.7, 0.8 and 0.9, for scale (i1, i2)

= (4,10). n = 32,768 (215).

47



3.4 Hurst Parameter Estimators

3.4.2 Whittle’s Approximate MLE

It is possible to employ more refined data analysis to obtain confidence intervals

(CIs) for the Hurst parameter H applying MLEs (Maximum Likelihood-type

Estimators) and related methods based on the periodogram [9]. Several ver-

sions of the periodogram-based estimator can be found in the literature (see

[8], [9], [141]). Whittle’s approximate MLE, proposed by Whittle in 1953 [9],

has been studied extensively and has shown to have desirable statistical prop-

erties for Gaussian processes, as presented in [8] and [172]. It is defined as

follows.

Let f(λ, θ), for −π ≤ λ ≤ π, be the spectral density of the self-similar

process with θ = (V ar(εi), H, θ3, . . . , θk), where V ar(εi) is the variance of

the innovation εi in the infinite autoregressive representation of the process

X = {Xi}i=∞
i=0 , with Xi =

∑∞
j=1 αjXi−j + εi, H is the Hurst parameter, and

the parameters (θ3, . . . , θk) describe the SRD behaviour of the process. This

implies
∫ π

−π
log(f(λ, (1, η)))dλ = 0.

Let P (λ),−π ≤ λ ≤ π, denote the periodogram of the given sequence

{X1, X2, . . . , Xn} defined by

P (λ) =
1

2πn

∣∣∣∣∣
n∑

j=1

Xje
ijλ

∣∣∣∣∣
2

. (3.7)

Ĥ, Whittle’s Approximate MLE is defined as the value of H which minimises

Q(H), where

Q(H) =

∫ π

−π

P (λ)

f(λ,H)
dλ. (3.8)

Along with Whittle’s MLE, the estimate of σ2
H is given by

σ̂2
H = 4π

[∫ π

−π

(
∂logf(ωi)

∂H

)2

dω

]−1

, (3.9)

where ωi = 2πi/n(i = 1, 2, . . . , n∗), n∗ = (n − 1)/2 if n − 1 is even and n∗ =

(n− 1)/2− 1/2 if n− 1 is odd.

Combining Whittle’s approximate MLE approach with a technique of data

aggregation leads to the so-called aggregated Whittle’s MLE, proposed in [172].
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Another semi-parametric, Whittle’s type estimator, known as the local Whit-

tle’s MLE was proposed in [140]. However, comparative studies of these es-

timators showed that the original Whittle’s MLE remains by far the most

accurate [157], and because of that we use it in the research reported in this

thesis.

3.4.3 Periodogram-Based Estimators

A few different techniques of H estimation on the basis of periodograms have

been proposed. We discuss them briefly in this section.

Periodogram

The periodogram estimator, proposed by Daniell in 1948 [19], is a graphical

method of assessing H . The periodogram of Xi = {X1, X2, . . . , Xn} is defined

by Equation (3.7). This shows that if the autocorrelations are summable, i.e.,

SRD, then, near the origin, it should be scattered randomly around a constant

level. If the autocorrelations are non-summable, i.e., LRD-type, the points

are scattered around a negative slope. The periodogram plot is obtained by

plotting log10(P (λ)) against log10(λ). Periodograms for the exact self-similar

FGN process are shown in Figure 3.6. An estimate of the Hurst parameter is

given by Ĥ = (1−β̂3)
2

, where β̂3 is the slope of a regression line which is fitted

to a number of low frequencies [9]. In some cases, this plot will lead to a quite

inaccurate estimate of H since the periodogram estimation method is biased

and inconsistent [9]. However, this plot can reveal the power spectrum near

the origin [111]. In practice we use only the lowest 10% of the frequencies for

the calculation, since this phenomenon holds only for frequencies close to zero.

Properties of this periodogram-based estimator of H are analysed further in

this chapter, since it has been found to be superior to other estimators of this

class [158].

Modified Periodogram

A modification of the periodogram estimation technique compensates for the

fact that on a log-log plot most of the points are scattered on the far right,

thus exerting a very strong influence on the least-squares line fitted to the
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3.4 Hurst Parameter Estimators

periodogram. The frequency axis is divided into logarithmically equally spaced

boxes, and the periodogram values corresponding to the frequencies inside each

box are averaged. Several values at the very low frequencies are left untouched,

since there are so few of them to begin with. Taqqu and et al. [158] showed

that in general, results did not seem to show an improvement on the original

periodogram technique.
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Figure 3.6: Periodogram plots for time series generated by the exact self-

similar FGN process with H = 0.6, 0.7, 0.8 and 0.9. n = 32,768 (215).
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Cumulative Periodogram

The cumulative periodogram can be calculated instead of using the peri-

odogram itself, and it can be plotted in a log-log scale [158]. The slope of

a regression line which is fitted to a number of low frequencies would then be

proportional to |λ|2−2Ĥ . The advantage of the cumulative periodogram is that

it is somewhat smoother than the original periodogram technique, although

more approximations are used in the cumulative periodogram. However, both

periodograms are biased because we treat them as discrete functions, and,

thus, instead of integrating, which would result in the slope of a regression line

proportional to |λ|2−2Ĥ , we approximate them by

Cκ1(λi) =
2π

n

i∑
j=κ1+1

P (λj), κ1 < i ≤ κ2,

where n is the length of the sequence, λκ1 < λi ≤ λκ2 (λκ1 and λκ2 are a lower

and a higher cut-off frequency, respectively), and P (λj)(λκ1+1 ≤ λj ≤ λi)

is the periodogram given in Equation (3.7). For small enough i, Cκ1(λi) ∼
c(λ2−2Ĥ

i −λ2−2Ĥ
κ1

), where c is a constant. Thus, we select values of κ1 and κ2, and

then calculate Cκ1(λi). Then, a least-squares fit of Cκ1(λi) against c(λ2−2Ĥ
i −

λ2−2Ĥ
κ1

) is performed. However, as shown in [158], the original periodogram is

consistently more accurate. Because of that, we have chosen the method based

on the original periodogram in our further study.

3.4.4 R/S Statistic

An R/S statistic estimator, proposed by Hurst in 1951 [9], is used to estimate

the Hurst parameter H based on the rescaled adjusted range (or R/S statistic)

from empirical data. Given empirical data of length n(Xi : i = 1, . . . , n),

the whole sequence is subdivided into i non-overlapping batches. Now, we

compute the R/S statistic Rt,m

St,m
from Equations (2.13) and (2.14). The R/S

statistic plot is obtained by plotting log10(
Rt,m

St,m
) against log10(m) (also called

the pox diagram of R/S); see also Figure 3.7. When H is well defined, a typical

R/S statistic plot starts with a transient zone representing the nature of SRD

in the sample, but eventually settles down and fluctuates around a straight

line of a slope β̂2. The graphical R/S statistic is used to determine whether

such asymptotic behaviour appears to be supported by the data. An estimate
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Figure 3.7: R/S statistic plots for time series generated by the exact self-

similar FGN process with H = 0.6, 0.7, 0.8 and 0.9. n = 32,768 (215).

of H is given by the asymptotic slope β̂2 of the R/S statistic plot, which can

take any value between 1/2 and 1, i.e., Ĥ = β̂2 [9].

3.4.5 Moment-Based Estimators

A number of different estimators of H derived from formulas for moments have

been proposed. The most important of them is briefly discussed in this section.
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3.4 Hurst Parameter Estimators

Variance-Time

The variance-time estimator, proposed by Cox and Smith in 1953 [19], is based

on the property of self-similar processes that the variances of the sample means

converge more slowly to zero than m−1 [89], [154], i.e.,

Var(X(m)) ∼ cm2H−2,

where c > 0, and X(m) is the process obtained by aggregation of the original

process X, as defined on page 13. In contrast, the variances of the aggregated

processes X(m), m ≥ 1, decrease linearly for large m in log-log plots against m

with slopes arbitrarily flatter than -1. The variance-time plot is obtained by

plotting log10(V ar(X
(m))) against log10(m) and by fitting a simple regression

line through the resulting points; see also Figure 3.8. An estimate of the Hurst

parameter is given by Ĥ = 1 − β̂1

2
, where β̂1 is the slope, 0 < β̂1 < 1. The

variance-time plot needs three steps for estimating H [9]:

(i) for different integers m in the range 2 ≤ m ≤ n
2
, and a sufficient number

(say i) of a sub-series of lengthm, calculate the sample means X̄
(m)
1 , X̄

(m)
2 , . . . , X̄

(m)
i

and the overall mean X̄(m)

X̄(m) =
1

i

i∑
j=1

X̄
(m)
j ; (3.10)

(ii) for each m, calculate the sample variance of the sample means X̄
(m)
j (j =

1, . . . , i):

V ar(X(m)) =
1

i− 1

i∑
j=1

(X̄
(m)
j − X̄(m))2;

and (iii) plot log10(V ar(X
(m))) against log10(m).

In practice, it is assumed that both n and m are large. This ensures

that both the length of each batch and the number of batches is large. If

the sequence does not have long-range dependencies and finite variance, the

estimate of Ĥ is 0.5 and the slope of the fitted line should be -1. Some points

at the very low and high ends of the plots are not used practically to fit the

least-squares line. In other words, short-range effects can distort the estimates

of H if the very low end of the plot is used, and at the very high end of the

plot there are hardly any blocks to obtain reliable estimates of the variance.

This is probably the most popular estimator of H . Its properties are further

investigated in this chapter.
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3.4 Hurst Parameter Estimators

Absolute Moments

This estimation technique is very similar to the variance-time plot in Section

3.4.5. The sequence is split in the same way, and the aggregated sequence

Equation (3.10) computed. Instead of calculating the sample variance, one

can find the kth absolute moment A
(m)
k of the aggregated sequence given by

A
(m)
k =

1

n/m

n/m∑
j=1

∣∣∣X(m)
j − X̄

∣∣∣k ,
where X̄ is the overall mean.
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Figure 3.8: Variance-time plots for time series generated by the exact self-

similar FGN process with H = 0.6, 0.7, 0.8 and 0.9. n = 32,768 (215).
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3.4 Hurst Parameter Estimators

To find an estimate ofH , the logarithm of the statistic log10(A
(m)
k ) is plotted

against log10(m). The aggregated sequence X
(m)
i behaves asymptotically in a

similar manner to cmk(Ĥ−1) for large m, where c is a positive constant. Thus,

A
(m)
k is proportional to mk(Ĥ−1). For k = 2, this technique reduces to the

variance-time estimation technique. If the original sequences have long-range

dependencies, it should result in a line with a slope k(Ĥ − 1) [158].

Fractal Dimension

The technique proposed by Higuchi [61] is very similar to the absolute moments

estimation technique with n = 1. This technique calculates the length of

a sequence and finds its fractal dimension. The fractal dimension (FD) is

defined by

FD(m) =
n− 1

m3

m∑
i=1

[
n− i
m

]−1 [(n−i)/m]∑
l=1

∣∣∣∣∣∣
i+lm∑

j=i+(l−1)m+1

Xj

∣∣∣∣∣∣ ,
where [x] denotes the largest integer smaller or equal x (or the so-called Gauss’

notation). If a sequence is LRD, then E[FD(m)] ∼ cmĤ−2, where E[·] means

the mean value, and c is a positive constant. This technique requires much

more computational time since the difference from the absolute moments es-

timation technique lies in using a sliding window to compute the aggregated

sequence, instead of using non-intersecting batches. While this modification

may result in increased accuracy in shorter time sequences, there seems to be

no advantage in using it for a sequence length of over 10,000 numbers [158].

Variance of Residuals

The technique introduced by Peng et al. [129] consists of several steps. The

sequence is divided into batches of size m. Then, within each of the batches,

the partial sums of the sequence are calculated, Yi =
∑i

j=1Xj, i = 1, 2, . . . , m.

A least-squares line, a+ bi, is fitted to the partial sums within each batch, and

the sample variance of the residuals is computed by

1

m

m∑
i=1

(Yi − a− bi)2.
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3.4 Hurst Parameter Estimators

This step is repeated for each of the batches, and the resulting sample variances

are averaged. This is equivalent to calculating the sample variance of the entire

sequence since the batches are all of the same size. Taqqu et al. [158] proved

that for large m, the variance of residuals is proportional to m2Ĥ for FGN, and

a similar result is obtained for F-ARIMA. A straight line with a slope 2Ĥ is

obtained from a log-log plot against m [158].

3.4.6 Index of Dispersion for Counts/Intervals

The index of dispersion for counts, IDC(t), and the index of dispersion for

intervals, IDI(t), proposed by Rao and Chakravati in 1956 [19], are often used

to describe burstiness because they are relatively straightforward to estimate

and convey much more information than simpler indices such as the coeffi-

cient of variation. The IDC(t) captures the variability of traffic over different

time scales for a count process. Let {X1, X2, . . . , Xn} be the number of events

recorded in consecutive time intervals of length T1. Then, the index of disper-

sion for counts over t consecutive time intervals is defined as

IDC(t) =
V ar

[∑t
i=1Xi

]
E
[∑t

i=1Xi

] . (3.11)

Self-similar processes produce a monotonically increasing IDC(t) of the

form ct2H−1, where c is a finite positive constant that does not depend on

t. In other words, this behaviour contrasts entirely with traditional processes

such as Poisson, Poisson-related processes, and Markov-modulated Poisson

processes. Their IDC(t) curves are either constant or converge to a fixed value

quite rapidly.

The IDC(t) needs three steps for estimating H [19], [54], [89]: (i) for a finite

sequence of numbers, the variance of {∑t
i=1Xi} can be calculated by dividing

the whole series into non-overlapping blocks of length t and treating them

as different instances of {∑t
i=1Xi}; (ii) calculate IDC(t); and (iii) plotting

log10(IDC(t)) against log10(t) results in an asymptotic straight line with slope

2H - 1; see Figure 3.9.

To characterise inter-event processes by the index of dispersion for intervals,

one needs to know consecutive inter-event intervals ∆t1 = te2 − te1,∆t2 =

te3 − te2 , . . . ,∆tn = ten+1 − ten , where tei
is the time instance when the event
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Figure 3.9: Index of dispersion for counts plots for time series generated by

the exact self-similar FGN process with H = 0.6, 0.7, 0.8 and 0.9. n = 32,768

(215).

i happens. Then, for the time interval of length ∆t, where ∆t = ten − te1 , the

IDI(t) is defined as

IDI(∆t) =
V ar [

∑n
i=1 ∆ti]

∆t {E [
∑n

i=1 ∆ti]}2
. (3.12)

The IDI(∆t) curves are also obtained by plotting log10(IDI(∆t)) against

log10(∆t) using Equation (3.12). This method was used to obtain the results

presented in Appendix B, Figures B.5 and B.6, for studying self-similarity of

Bellcore Ethernet LAN teletraffic.
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3.5 Numerical Comparison

3.5.1 Mean Values of Estimated H and Relative Inac-

curacies, ∆H

Tables 3.8 and 3.9 show the relative inaccuracies, ∆H , of mean values of

estimated H using these techniques. We give 95% confidence intervals for the

means of the Hurst parameter estimators in parentheses.

• The results for the wavelet-based H estimator of H with the correspond-

ing 95% confidence intervals Ĥ ± 1.96σ̂Ĥ , (see Tables 3.8 and 3.9), show

that for all input H values, confidence intervals for the exact self-similar

FGN process are within the assumed theoretical values. For H = 0.6,

the wavelet-based H estimator is the most accurate. For 0.6 ≤ H ≤ 0.9,

the relative inaccuracies are less than 0.11%.

Table 3.8: Relative inaccuracy, ∆H , of mean values of estimated H using the

Hurst parameter estimation techniques for the exact self-similar FGN process

for H = 0.6 and 0.7. We give 95% confidence intervals for the means of the

Hurst parameter estimation techniques in parentheses. n = 32,768 (215).

Mean Values of Estimated H and ∆H

Methods .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

Wavelet-based .6002 +0.026 .7006 +0.092

(.573,.628) (.673,.728)

Whittle’s MLE .6003 +0.043 .7003 +0.044

(.591,.610) (.691,.710)

Periodogram .6008 +0.128 .7025 +0.358

(.599,.603) (.700,.705)

R/S-statistic .6277 +4.623 .7118 +1.689

(.624,.632) (.708,.716)

Variance-time .5964 -0.608 .6917 -1.192

(.594,.599) (.689,.695)

IDC(t) .5968 -0.528 .6919 -1.153

(.594,.600) (.689,.695)
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Table 3.9: Relative inaccuracy, ∆H , of mean values of estimated H using the

Hurst parameter estimation techniques for the exact self-similar FGN process

for H = 0.8 and 0.9. We give 95% confidence intervals for the means of the

Hurst parameter estimation techniques in parentheses. n = 32,768 (215).

Mean Values of Estimated H and ∆H

Methods .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

Wavelet-based .8009 +0.110 .9010 +0.108

(.773,.828) (.874,.929)

Whittle’s MLE .8004 +0.044 .9004 +0.043

(.791,.810) (.891,.909)

Periodogram .8040 +0.496 .9054 +0.598

(.802,.806) (.903,.908)

R/S-statistic .7916 -1.053 .8621 -4.210

(.787,.796) (.857,.867)

Variance-time .7814 -2.327 .8600 -4.439

(.778,.785) (.856,.864)

IDC(t) .7812 -2.349 .8593 -4.520

(.778,.785) (.855,.863)

• Tables 3.8 and 3.9 show that Whittle’s MLE is the most accurate for the

exact self-similar FGN process, as shown in Figure 3.10. For 0.6 ≤ H ≤
0.9, the estimates of Whittle’s MLE match the true values very closely

(i.e., |∆H| < 0.05%).

• The periodogram plots have slopes decreasing as H increases. The neg-

ative slopes of all plots for H = 0.6, 0.7, 0.8 and 0.9 are evidence of

self-similarity. (Periodograms for FGN are shown in Figure 3.10.) The

estimated Hurst parameters, assessed using periodogram plots, show pos-

itively biased Ĥ values. For H = 0.6 and 0.7, the confidence intervals of

the estimated Hurst parameter contain the exact values, while for H =

0.8 and 0.9, they do not.

• For H < 0.76, the R/S statistic H estimates are positively biased, and

for 0.76 < H , it is negatively biased, with |∆H| < 4.63%.
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Figure 3.10: Bias performance of H estimators for the exact self-similar FGN

process. n = 32,768 (215).

• The variance-time estimator produces negatively biased Ĥ values as H

increases, with |∆H| < 4.44% and ∆H < 0.

• The IDC(t) H estimator gives a negatively biased Ĥ as H increases, with

|∆H| < 4.53% and ∆H < 0.

So far we have concentrated on bias of the Hurst parameter estimators. A

“good” estimator is not only one which produces an estimate whose expected

value is close to the true parameter (low bias), but also one which has small

variance. Table 3.10 shows that the variances of Whittle’s MLE are much

smaller than in the case of other estimators.

As the wavelet-based estimator and Whittle’s MLE are substantially more

accurate than the other methods, these have been chosen for further analysis.

Figure 3.11 shows that for H = 0.7, 0.8 and 0.9, the estimates using Whittle’s

MLE are less biased, in all cases except H = 0.6. Figures 3.12 – 3.15 show

that as indicated in Table 3.10, the H estimates from Whittle’s MLE have a

much lower variance than those from the wavelet-based H estimator.
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Table 3.10: Variances of estimated H obtained using the Hurst parameter

estimators for the exact self-similar FGN process for H = 0.6, 0.7, 0.8 and 0.9.

n = 32,768 (215).

Methods Variances of Estimated H

.6 .7 .8 .9

Wavelet-based 1.892e-04 1.922e-04 1.951e-04 1.985e-04

Whittle’s MLE 1.093e-05 1.145e-05 1.179e-05 1.217e-05

Periodogram 1.288e-04 1.306e-04 1.291e-04 1.279e-04

R/S-statistic 3.971e-04 4.724e-04 5.400e-04 5.669e-04

Variance-time 1.928e-04 2.571e-04 3.405e-04 3.826e-04

IDC(t) 2.227e-04 2.812e-04 3.613e-04 3.947e-04

The same 100 sequences were used for Whittle’s MLE and the wavelet-

based H estimator. Thus we can further quantify their relative accuracies by

counting how often (out of 100 Bernoulli trials) each estimator produced the

more accurate estimate. The results are given in Table 3.11. The P values

given in Table 3.11 give the chance of getting these descripancies or worse by

chance alone if the two estimators were equally accurate. For more than 85%

of the series Whittle’s MLE is the most accurate for all the values of H .

3.6 Conclusions

Many studies of H parameter estimators have used sequences that are quite

short. The exact estimation of the Hurst parameter from finite sequences is still

an open problem. Thus, when undertaking a comparative study of different

estimators, we assume that we deal with a satisfactorily long sequence for

producing H estimates close to the values that would be obtained if sequences

were infinite long.
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We have determined the minimal length of a sequence for estimating H

parameter to ensure that our estimates can be satisfactorily accurate, despite

using finite sequences. Such a approach makes our analysis different from
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Figure 3.11: Bias performance of the wavelet-based H estimator and Whittle’s

MLE for the exact self-similar FGN process. n = 32,768 (215).
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Figure 3.12: Histograms of estimated H values for the exact self-similar FGN

process obtained from the wavelet-based H estimator and Whittle’s MLE for

H = 0.6. These are based on 100 replications. n = 32,768 (215).
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majority of publications on H estimation which neglect this practical aspect.

Minimal numbers of a sequence for analysing H parameter estimators are rec-

ommended to be between 215 and 217. We have chosen the minimum sequence

length to be 32,768 (215) for our review of these estimators.

A comparative analysis of the most frequently used H estimation tech-

niques, the wavelet-based H estimator and Whittle’s MLE estimator, peri-

odogram, R/S-statistic, variance-time and IDC(t) estimators, has been done.
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Figure 3.13: Histograms of estimated H values for the exact self-similar FGN

process obtained from the wavelet-based H estimator and Whittle’s MLE for

H = 0.7. These are based on 100 replications. n = 32,768 (215).
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Figure 3.14: Histograms of estimated H values for the exact self-similar FGN

process obtained from the wavelet-based H estimator and Whittle’s MLE for

H = 0.8. These are based on 100 replications. n = 32,768 (215).
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Our results have shown that the wavelet-based H estimator and Whittle’s MLE

are the least biased of the H estimation techniques. While the wavelet-based

H estimator has a lower bias when H = 0.6, and is computationally simpler

and faster than Whittle’s MLE, a superiority of Whittle’s MLE is statisti-

cally closer to the required H value when samples are reasonably large. Thus,

the wavelet-based H estimator may still be preferred in practical applications

despite its relatively poorer accuracy than Whittle’s MLE.
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Figure 3.15: Histograms of estimated H values for the exact self-similar FGN

process obtained from the wavelet-based H estimator and Whittle’s MLE for

H = 0.9. These are based on 100 replications. n = 32,768 (215).

Table 3.11: Sum of the closest estimate of H to the required value obtained

from the exact self-similar FGN process using the wavelet-based H estimator

and Whittle’s MLE for H = 0.6, 0.7, 0.8 and 0.9. P-values are given at p = 1
2

in parentheses. n = 32,768 (215).

Estimators Sum of the closest estimate of H

0.6 0.7 0.8 0.9

Wavelet-Based H 14 9 14 11

(1.0) (1.0) (1.0) (1.0)

Whittle’s MLE 86 91 86 89

(4.1422e-14) (1.6610e-18) (4.1422e-14) (1.2704e-16)

Total 100 100 100 100
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Therefore, we use both the wavelet-based H estimator and Whittle’s MLE

in a comparative analysis of sequences generated by self-similar generators.
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Chapter 4

ALGORITHMIC

GENERATORS OF

SELF-SIMILAR

TELETRAFFIC

4.1 Introduction

Generators of synthetic self-similar sequences can be divided into two practical

classes: sequential generators and fixed-length sequence generators.

4.1.1 Sequential Generators: An Overview

It is possible to construct a sequential Markovian model that mimics a self-

similar sequence [137], [138]. However, a disadvantage of this method is that

the connection between the model’s parameters and its self-similar properties

is difficult to understand. Markovian models for self-similar traffic are forced

to include several control parameters with a wide range of input values, and

it is more complicated to control these values in sequential generators than

in generators of fixed-length sequences of self-similar processes with a given

Hurst parameter. For example, a method based on superposition of two state

Markovian processes was proposed by Andersen and Nielsen [7]. They showed
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that it can be used to imitate a self-similar process with a certain Hurst pa-

rameter, over three to five time scales. However, five control parameters are

needed, and the resulted self-similarity can gradually disappear as the time

scale increases. Thus, in this respect, their method is unable to adequately

model the self-similar counting processes.

Lowen and Teich [99], and Ryu and Lowen [148], [149] proposed four

generators (i.e., fractal-binomial-noise-driven Poisson process [FBNDP], frac-

tal renewal process [FRP], superposition of fractal renewal processes [SFRP],

and fractal-short-noise-driven Poisson process [FSNDP]). We considered only

SFRP and FBNDP because they are more flexible, more accurate and faster

at generating self-similar processes than FRP and FSNDP, see [146], [149].

A sequential generator based on the renewal reward processes, has been

proposed by Mandelbrot [103] and Taqqu and Levy [156], [173]. However, we

excluded that generator because it requires O(nM) computations to generate

n numbers, where M is an aggregation level. Further, the generator behaves

as a fractional Brownian motion when n�M , for M ≥ 16, 000; see [156] and

[173], for detailed discussions.

We considered and investigated the following efficient candidate sequential

generators:

• A generator based on the fractal-binomial-noise-driven Poisson processes

(FBNDP), proposed by Lowen and Teich [99], and Ryu and Lowen [148],

[149];

• A generator based on the superposition of fractal renewal processes (SFRP),

proposed by Lowen and Teich [99], and Ryu and Lowen [148], [149];

• A generator based on the M/G/∞ processes (MGIP), proposed by Cox

and Isham [18], and Cox [17];

• A generator based on the Pareto-modulated Poisson processes (PMPP),

proposed by Le-Ngoc and Subramanian [86];

• A generator based on the spatial renewal processes and fractional Gaus-

sian noise (SRP-FGN), proposed by Taralp et al. [160]; and

• A generator based on the superposition of autoregressive processes (SAP),

proposed by Granger [48].
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4.1.2 Fixed-Length Sequence Generators: An Overview

The most frequently studied models of self-similar traffic in the discrete-time

case belong to the class of fractional autoregressive integrated moving-average

(F-ARIMA) processes and the class of fractional Gaussian noise (FGN) pro-

cesses because they require the Hurst parameter and variance; see [89], [98],

[124]. F-ARIMA (p, d, q) processes were introduced by Hosking [63], where p

is the order of autoregression in the ARIMA process, d is the degree of dif-

ferencing, and q is the order of the moving average. Hosking showed that the

F-ARIMA processes are asymptotically self-similar with the Hurst parameter

H = d+ 1
2
, as long as 0 < d < 1

2
.

To describe the FGN process, we first introduce the fractional Brownian

motion (FBM) process BH(t), t ≥ 0, which has a Hurst parameter H , 0 <

H < 1. The FBM process is a Gaussian process with zero-mean, stationary

increments and the autocovariance function

Cov(BH(t1), BH(t2)) =
1

2
[t2H

1 + t2H
2 − (t1 − t2)2H ]V ar[BH(1)],

where t1 and t2 are time. This is statistically self-similar in the sense that

BH(at), t ≥ 0, has the same finite dimensional distributions as aHBH(t), t ≥ 0,

for all a > 0. The FGN process Y is the incremental process of the FBM

process. It is defined by Yi = BH(i + 1) − BH(i), i ≥ 1, and its properties of

stationarity, zero mean and variance E[Y 2
i ] = E[B2

H(1)] = σ2
0 are derived from

the FBM process. The ACF of the FGN process is given by Equation (2.7).

A different approach to generating synthetic self-similar sequences for packet

traffic was proposed by Erramilli et al. [30], [31], [90], based on deterministic

chaotic maps [16]. Chaos is present in a dynamic system if simple, low order,

nonlinear deterministic equations can produce behaviour that mimics random

processes. In particular, Erramilli and Singh have shown that a simple, two

parameter nonlinear chaotic map, referred to as an intermittent map, can

capture many of the fractal properties in actual packet traffic measurements.

Clearly, the generation of synthetic traffic via nonlinear chaotic maps makes

the dynamic system’s approach to packet traffic modelling particularly appeal-

ing. After an appropriate chaotic map has been derived from a set of traffic

measurements, generating a packet stream for an individual source is gener-

ally quick and easy. Deriving an appropriate nonlinear chaotic map based on
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a set of actual traffic measurements, however, currently requires considerable

guessing and experimenting.

We considered the following fully synthesised fixed-length sequence gener-

ators:

• A generator based on the fractional-autoregressive integrated moving av-

erage (F-ARIMA) process, proposed by Hosking [63];

• A generator based on the fast Fourier transform (FFT) algorithm, pro-

posed by Paxson [124];

• A generator based on fractional Gaussian noise and Daubechies wavelets

(FGN-DW), proposed by Jeong, McNickle and Pawlikowski [73];

• A generator based on the random midpoint displacement (RMD) algo-

rithm and implemented by Lau, Erramilli, Wang and Willinger [84]; and

• A generator based on the successive random addition (SRA) algorithm,

proposed by Saupe [20], in the version implemented by Jeong, McNickle

and Pawlikowski [70].

Our comparative evaluation of self-similar pseudo-random teletraffic gen-

erators concentrates on two aspects:

(i) how accurately self-similar processes can be generated, and

(ii) how quickly the methods generate long self-similar sequences.

We describe six sequential generators, based on FBNDP, SFRP, MGIP,

PMPP, SRP-FGN and SAP in Section 4.2, and five fixed-length generators

of self-similar sequences, based on the F-ARIMA, FFT, FGN-DW, RMD and

SRA methods, in Section 4.4. Then, in Section 4.3 and 4.5 we concentrate

on the least biased estimators, the wavelet-based H estimator and Whittle’s

MLE, as discussed in Chapter 3, when presenting the numerical results of a

comparative analysis of the generated sequences. In Section 4.6, the fastest

and most accurate sequential generator is compared with the most accurate

fixed-length sequence generator; finally, conclusions are presented.
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4.2 Sequential Generators

4.2.1 Method Based on Fractal-Binomial-Noise-Driven

Poisson Process

For the standard fractal renewal process (FRP), inter-event times are indepen-

dent random variables. The marginal probability density function (PDF) of

such a fractal renewal process assumes the form

f(t) =

{
0, t ≤ A,

δAδt−(δ+1), t > A,
(4.1)

where 0 < δ < 2 [146].

However, the resulting IDC(t) (see Section 3.4.6) has a dip near t = t0,

caused by the abrupt cutoff in the inter-event time PDF. The time instant t0,

which marks the lower limit for significant scaling behaviour in the IDC(t) and

ACF, is also known as the fractal onset time. Furthermore, the power spectral

density exhibits excessive oscillations for the same reason.

Selecting δ in the range 1 < δ < 2 proves far superior to 0 < δ < 1 for the

same required value of α, but the form of the inter-event time PDF in Equation

(4.1) can be further improved. The improved PDF of the FRP decays as a

power law given by

f(t) =

{
δA−1e−δt/A, 0 < t ≤ A,

δe−δAt−(δ+1), t > A,
(4.2)

which is continuous for all t and it produces smoother spectral density function

than Equation (4.1).

The FRP is recast as a process with real-values that alternates between two

values, zero and R,R > 0 [149]. This alternating FRP starts at a value of zero

(“OFF”), and then switches to a value of R (“ON”) at a time corresponding

to the first event in the FRP. At the second such event, the alternating FRP

switches back to zero, and proceeds to switch back and forth at every successive

event in the FRP. Thus, all ON/OFF periods are IID with the same heavy-

tailed distribution as in the FRP.

A method based on the fractal-binomial-noise-driven Poisson process (FB-

NDP) adds M IID alternating FRPs to generate a fractal binomial noise pro-
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cess that serves as the rate function for a Poisson process. The FBNDP requires

five input parameters to generate self-similar sequences: A, δ, R, ∆t and M .

The resulted Hurst parameter H assumes the value (α+ 1)/2. The algorithm

advances by the intervals ∆t.

If S is a simulation clock, which advances in time and S(j) is the elapsed

time of the j-th FRP sequence, then S(j) = τ
(j)
0 + τ

(j)
1 + · · · + τ

(j)
k for some

k and j = 1, 2, . . . ,M , where τ
(j)
k is the inter-arrival time. The sequence of

self-similar pseudo-random numbers X0, X1, . . . is generated by the following

steps:

Step 1. For each j = 1, 2, . . . ,M , generate τ
(j)
0 from

τ
(j)
0 =

{
−δ−1Alog[U(δ(V −1))(δ(V −U))−1], V ≥ 1,

AV 1/(1−δ), V < 1,
(4.3)

where

V ≡ 1 + (δ − 1)eδ

δ
U, (4.4)

and U is an IID uniformly distributed random variable over the unit

interval [0,1); set S(j) = τ
(j)
0 .

Step 2. Find j∗ and S(j∗) such that j∗ = argminj{S(j)}.

Step 3. Calculate

x =

{
0, if S(j∗) < A,

1, if S(j∗) ≥ A.
(4.5)

Step 4. If x = 1, thenX0 should be drawn from a Poisson probability distribution

with λ = 1. If x = 0, then X0 = 0.

Step 5. Set i = 1, and y = 0. Advance the simulation clock, i.e., S ←− S(j∗).

Step 6. Construct a new inter-event time τ
(j)
i from

τ
(j)
i =

{
−δ−1Alog[U ], U ≥ e−δ,

e−1AU−1/δ, U < e−δ,
(4.6)

and set S(j∗) ←− S(j∗) + τ
(j)
i .
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Step 7. Find a new j∗ such that j∗ = argminj{S(j)}, and compute S(j∗) − S.

Step 8. Repeat Step 6 through Step 8 to obtain x as in Step 3.

Step 9. Advance the simulation clock, i.e., S ←− S(j∗), and set y = y + x.

Step 10. Repeat Step 6 through Step 10 within time slot of length ∆t.

Step 11. Compute Xi = POISS(y), set y = 0, and i = i+ 1.

Step 12. Repeat Step 6 through Step 11 until i = n, where n is the number of

sample points.

An approximate self-similar sequence {X0, X1, X2, . . .} is obtained from

these steps. Tables 4.1 and 4.2 show mean values of the estimated H ob-

tained using the wavelet-based H estimator and Whittle’s MLE for the FB-

NDP method with four input values: A = 9.92, R = 200, M = 4 to 14, and

H = 0.6 to 0.9. Our results show that the appropriate aggregate level M

is between 4 and 10. These results show that no aggregation level in this

range of M is consistently better than others. Without studying whether the

marginal probability distributions of these mixtures of Poisson processes are

close enough to normal distributions, we chose the aggregate level of M = 10,

when comparing this generator with others in Section 4.3. Thus, the problem

of selection of M for securing normality of marginal distributions of the output

processes from such a generator remains an open problem.

Note that, for small input values of λ of Poisson processes, only the Poisson

approximation can be used, but for large input values of λ we can use either

the normal or the Poisson approximation. This implies that for large values of

λ it must be possible to approximate the Poisson distribution by the normal

distribution; see [38] (p.190) for details.

Generation of a sample sequence of 1,048,576 numbers (so, about 524 ∗ 106

inter-event times) took 9 minutes 38 seconds on a Pentium II (233 MHz, 512

MB). The FBNDP method requires O(n) computations to generate n numbers.

For a more detailed discussion, see [146].
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Table 4.1: Mean values of estimated H obtained using the wavelet-based H

estimator for the FBNDP method. We give 95% confidence intervals for the

means in parentheses.

Aggregation Mean Values of Estimated H

Level M .6 .7 .8 .9

4 .6023 .6864 .7817 .8469

(.575, .630) (.659, .714) (.754, .809) (.819, .874)

6 .6085 .6871 .7804 .8496

(.581, .636) (.660, .715) (.753, .808) (.822, .877)

8 .6080 .6870 .7803 .8489

(.581, .636) (.660, .715) (.753, .808) (.821, .876)

10 .6086 .6875 .7827 .8502

(.581, .636) (.660, .715) (.755, .810) (.823, .878)

12 .6053 .6903 .7832 .8501

(.578, .633) (.663, .718) (.756, .811) (.823, .878)

14 .6049 .6895 .7842 .8497

(.577, .632) (.662, .717) (.757, .812) (.822, .877)

Table 4.2: Mean values of estimated H obtained using Whittle’s MLE for the

FBNDP method. We give 95% confidence intervals for the means in parenthe-

ses.

Aggregation Mean Values of Estimated H

Level M .6 .7 .8 .9

4 .6122 .6828 .7557 .8164

(.603, .622) (.674, .692) (.747, .765) (.807, .826)

6 .6131 .6823 .7547 .8163

(.604, .623) (.673, .692) (.746, .764) (.807, .825)

8 .6140 .6823 .7547 .8145

(.605, .623) (.673, .692) (.745, .764) (.805, .824)

10 .6145 .6829 .7553 .8142

(.605, .624) (.674, .692) (.746, .764) (.805, .823)

12 .6137 .6830 .7554 .8132

(.604, .623) (.674, .692) (.746, .765) (.804, .822)

14 .6145 .6836 .7555 .8123

(.605, .624) (.674, .693) (.746, .765) (.803, .821)
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4.2.2 Method Based on Superposition of Fractal Re-

newal Processes

The fractal renewal process (FRP) was described in Section 4.2.1. This self-

similar process results from the superposition of a number of independent

and identical FRPs. We now consider a method based on the superposition

of fractal renewal processes (SFRP), proposed by Lowen and Teich [99] and

Ryu and Lowen [148], [149]. This method is defined as the superposition of

M independent and identical FRPs. The method is characterised by M and

the common inter-event PDF in Equation (4.2). This method requires three

parameters, i.e., α and A from the individual FRPs, and M , the number of

FRPs superposed. The resulted Hurst parameter H , and mean µ and variance

σ2 of the marginal output distribution of a related count process in the unit

time interval, are given by

H = (α + 1)/2, (4.7)

µ = E[Xn] = λ,

σ2 = V ar[Xn] = (1 + (1/t0))
αλ,

where

λ = Mδ[1 + (δ − 1)−1e−δ]−1A−1

is the aggregated arrival rate of events in the unit time interval, and

t0 = (2−1δ−2(δ − 1)−1(2− δ)(3− δ)e−δ[1 + (δ − 1)eδ]2Aα)1/α,

that is the value of time at which the resulting IDC(t) has a dip; see also page

71.

If S is a simulation clock, which advances in time and S(j) is the elapsed

time of the j-th FRP sequence, then S(j) = τ
(j)
0 + τ

(j)
1 + · · ·+ τ

(j)
k for some k

and j = 1, 2, . . . ,M . The inter-event times Xi are generated by the following

steps:

Step 1. For each j = 1, 2, . . . ,M , and i = 0, generate τ
(j)
0 from Equation (4.3)

and Equation (4.4) in the FBNDP; set S(j) = τ
(j)
0 .

Step 2. Find j∗ such that j∗ = argminj{S(j)}, and set X0 = S(j∗).
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Step 3. Advance the simulation clock, i.e., S ←− S(j∗).

Step 4. Set i = i+ 1. Construct a new inter-event time τ
(j)
i from Equation (4.6)

in the FBNDP and set S(j∗) ←− S(j∗) + τ
(j)
i .

Step 5. Find a new j∗ such that j∗ = argminj{S(j)}, and compute Xi = S(j∗)−S.

Step 6. Advance the simulation clock, i.e., S ←− S(j∗).

Step 7. Repeat Step 4 through Step 6 until a given i = n is reached, where n is

the number of sample points.

Using the previous steps, this method generates an approximate self-similar

sequence {X1, X2, . . .}. Tables 4.3 and 4.4 show that this method produces the

most accurate result when the aggregation level M is between 4 and 10. It took

22 minutes, 44 seconds to generate a sequence of 1,048,576 numbers (so, about

1, 362∗106 inter-event times) on a Pentium II (233 MHz, 512 MB). The results

were obtained assuming M = 10 and A = 3.8. The SFRP method requires

O(n) computations to generate n numbers. For a more detailed discussion, see

[146].

4.2.3 Method Based on M/G/∞ Processes

An M/G/∞ is a queueing system in which a server is available immediately for

every arriving customer, regardless of how many customers are already being

served. Applying this process to generate LRD count sequences, we assume

that new arrivals can enter M/G/∞ only at the beginning of time slot of length

∆t. Let us call this method as MGIP. The method is based on simulation of

customers that arrive at an infinite-server queueing system according to a

Poisson process with an arrival rate λ. This method generates asymptotically

self-similar sequences obtained from counting the number of customers from

unlimited servers in the system, where the service time distribution G satisfies

the heavy-tailed condition [17], [30], [121], [126]. Cox [17] showed that an

infinite variance service time distribution results in an asymptotically self-

similar process. Likhanov et al. [95] proposed a model for aggregate packet

streams, based on combining sequences generated by several ON/OFF sources

with a Pareto-distributed ON period. They showed that increasing the number
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Table 4.3: Mean values of estimated H obtained using the wavelet-based H

estimator for the SFRP method. We give 95% confidence intervals for the

means in parentheses.

Aggregation Mean Values of Estimated H

Level M .6 .7 .8 .9

4 .6076 .6986 .7929 .8603

(.580, .635) (.671, .726) (.765, .820) (.833, .888)

6 .6076 .6986 .7929 .8603

(.580, .635) (.671, .726) (.765, .820) (.833, .888)

8 .6192 .7084 .7997 .8655

(.592, .647) (.681, .736) (.772, .827) (.838, .893)

10 .6166 .7091 .7986 .8686

(.589, .644) (.682, .737) (.771, .826) (.841, .896)

12 .6134 .7085 .7978 .8718

(.586, .641) (.681, .736) (.770, .825) (.844, .899)

14 .6143 .7063 .7983 .8708

(.587, .642) (.679, .734) (.771, .826) (.843, .898)

Table 4.4: Mean values of estimated H obtained using Whittle’s MLE for the

SFRP method. We give 95% confidence intervals for the means in parentheses.

Aggregation Mean Values of Estimated H

Level M .6 .7 .8 .9

4 .6372 .7124 .7886 .8517

(.628, .647) (.703, .722) (.779, .798) (.843, .861)

6 .6377 .7132 .7895 .8501

(.628, .647) (.704, .722) (.780, .799) (.841, .859)

8 .6382 .7136 .7889 .8505

(.629, .648) (.704, .723) (.780, .798) (.841, .860)

10 .6383 .7132 .7886 .8495

(.629, .648) (.704, .722) (.779, .798) (.840, .859)

12 .6380 .7128 .7885 .8497

(.629, .647) (.704, .722) (.779, .798) (.841, .859)

14 .6372 .7127 .7891 .8485

(.628, .647) (.703, .722) (.780, .798) (.839, .858)
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of sources yields a limiting behaviour identical to the M/G/∞ input sequence

with a Pareto distribution. To implement their findings we need to assume a

given coefficient utilisation of the queueing system ρ, 0 < ρ < 1, and a Pareto

distribution of service times with finite mean service times and infinite variance

of service times, i.e., with the shape parameter α, 1 < α < 2. The simulation

will be advanced each time by ∆t seconds. Then, the MGIP method consists

of the following steps:

Step 1. Given ρ, α, ∆t, i = 1.

Step 2. Simulate performance of an M/G/∞ queueing system over ∆t seconds.

This means, generate pseudo-random numbers representing the number

of Poisson arrivals to the M/G/∞ queueing system within ∆t seconds,

and pseudo-random numbers from the Pareto distribution representing

service times of these customers. Assume arrival rate λ = ρ(α − 1)/α,

where ρ is traffic intensity and α is the shape parameter of the Pareto

distribution, and service rate (α− 1)/α.

Step 3. Count the number of customers in the simulated M/G/∞ queueing sys-

tem at the end of this time slot of length ∆t. This is Xi, the ith number

of the output LRD self-similar sequence in the scale ∆t. LRD sequences

in larger time scales, say s, can be obtained by counting number of cus-

tomers in the system at the end of each s time slots, i.e., by assuming a

time lag equal to ∆t.

Step 4. Set i = i + 1. Repeat Step 2 to Step 4, advancing the simulated time

by the next ∆t seconds, until i ≤ n, where n is the number of sample

points. Otherwise, stop.

A self-similar sequence {X1, X2, . . .} is obtained from these steps. Tables

4.5 and 4.6 show mean values of estimated H obtained using the wavelet-

based H estimator and Whittle’s MLE for the MGIP method with input traffic

intensity ρ = 0.9 and service rate µ = (α − 1)/α, where α = 3 − 2H , for H

= 0.6, 0.7, 0.8 and 0.9, and time lag s = 4 to 14. Our results show that this

method is most efficient at time lag s between 4 and 8. Generation of an

asymptotic self-similar sequence with 1,048,576 numbers with these time lags

took 27 seconds on a Pentium II (233 MHz, 512 MB). O(n) computations are

required to generate a self-similar sequence.
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Table 4.5: Mean values of estimated H obtained using the wavelet-based H

estimator for the MGIP method. We give 95% confidence intervals for the

means in parentheses.

Time Lag s Mean Values of Estimated H

.6 .7 .8 .9

4 .5754 .6717 .8453 1.1180

(.548, .603) (.644, .699) (.818, .873) (1.091, 1.146)

6 .5538 .6451 .8267 1.1150

(.526, .581) (.618, .673) (.799, .854) (1.087, 1.142)

8 .5445 .6241 .8194 1.1120

(.517, .572) (.597, .652) (.792, .847) (1.084, 1.139)

10 .5351 .6155 .8168 1.1130

(.508, .563) (.588, .643) (.789, .844) (1.086, 1.141)

12 .5307 .6073 .8098 1.1100

(.503, .558) (.580, .635) (.782, .837) (1.083, 1.138)

14 .5323 .6024 .8045 1.1080

(.505, .560) (.575, .630) (.777, .832) (1.081, 1.136)

Table 4.6: Mean values of estimated H obtained using Whittle’s MLE for the

MGIP method. We give 95% confidence intervals for the means in parentheses.

Time Lag s Mean Values of Estimated H

.6 .7 .8 .9

4 .5520 .6325 .7742 .9499

(.542, .562) (.623, .642) (.765, .783) (.941, .959)

6 .5426 .6102 .7463 .9499

(.533, .552) (.601, .620) (.737, .756) (.941, .959)

8 .5373 .5948 .7300 .9499

(.528, .547) (.585, .604) (.721, .739) (.941, .959)

10 .5318 .5862 .7191 .9500

(.522, .541) (.577, .596) (.710, .728) (.941, .959)

12 .5282 .5780 .7110 .9499

(.519, .538) (.568, .588) (.702, .720) (.941, .959)

14 .5255 .5720 .7033 .9499

(.516, .535) (.562, .582) (.694, .713) (.941, .959)
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4.2.4 Method Based on Pareto-Modulated Poisson Pro-

cesses

This method is based on the fact that a Pareto-modulated Poisson process

(PMPP), based on a switched Poisson process with two states, with sojourn

times governed by an independent and identical Pareto distribution, asymptot-

ically generates a self-similar sequence [86]. Figure 4.1 shows a state diagram

of the PMPP. The two states of the switched Poisson process can be viewed

as intervals with the long and short burst rates of events. This process goes

through consecutive cycles of being in State 1 and State 2. The time spent in

each cycle is governed by a Pareto distribution characterised by α, 1 < α < 2.

These cycles have the mean length (ML) equal

ML =
α

α− 1
+

α

α− 1
=

2α

α− 1
time units. (4.8)

Mean numbers of Poisson events (MNPE) generated in state S1 and state S2

are:

MNPE in stateS1 = λ1
α

α− 1
, and (4.9)

MNPE in stateS2 = λ2
α

α− 1
.

Thus, mean number of Poisson events per cycle is given by

λ1
α

α− 1
+ λ2

α

α− 1
= (λ1 + λ2)

α

α− 1
, (4.10)

and using Equations (4.8) and (4.10), we get the mean number of Poisson

events per time unit as

Ē =
(λ1 + λ2)

2
. (4.11)

As mentioned the PMPP can be used to generate asymptotically self-similar

sequences. The quality generated sequences, in the sense of the closeness to

exactly self-similar processes, depends on the size of frames within which one

counts numbers of Poisson events occurring in underlining PMPP, see Figure

4.2. If frames have length T seconds, then the mean number of Poisson events

occurring in a frame can be called the aggregation level of that method, given

as

N̄ = Ē ∗ T, (4.12)
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λλλλλ11111 λλλλλ22222

State 1 State 2

Figure 4.1: State diagram of the Pareto-modulated Poisson process [86]. It

is a two-state switched Poisson process with the sojourn time in each state

following an independent and identical Pareto distribution.

Time

State 1 State 2 State 1 State 2 State 1

X1 events (in Frame 1) X2 events (in Frame 2)

*  *      * *  *     *  *   *

A cycle

Figure 4.2: Graphical explanation of the concept of data aggregation in the

generator based on PMPP. Note that • is an event in Poisson process with

rate λ1, and ∗ is an event in Poisson process with rate λ2. Xi is the number

of Poisson events occurring in Frame i.

where Ē is the number of events per second. There should exist the minimum

acceptable aggregation level N̄min below which this method would not generate

satisfactory self-similar sequences, but we leave this issue for further research.

In our investigations we assume λ1 = 100, λ2 = 120, and T ≥ 100. Thus, we

assume N̄min ≥ 11,000.

The PMPP generator follows of the following steps: For a given λ1, λ2, α, T

and n, let S be the time advance.

Step 1. Set i = 1, k = 1, S = 0, X
(0)
i = 0.

Step 2. Generate the sojourn times τk and τk+1 for state Sk mod 2 and S(k+1) mod 2

of PMPP using the Pareto distribution with shape parameter α, 1 < α <

2, see Equation (2.21).

Produce a sequence of Poisson arrivals within each state Sj with rate λj ,

j = 1, or 2.
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4.2 Sequential Generators

Calculate S = S + τk + τk+1 if S ≥ iT then go to Step 3, otherwise

assume k = k + 1 and repeat Step 2.

Step 3. Count X
(1)
i , the number of events that occur in the last frame of the

length of T seconds.

Xi = X
(0)
i +X

(1)
i . (4.13)

Count the number of events that occur in the remaining time interval

(iT, S). This is X
(0)
i+1, the initial component of Xi+1. If i < n then assume

i = i+1, go to Step 2. Otherwise if i = n, then stop (the required number

of pseudo-random self-similar numbers has been generated).

Tables 4.7 and 4.8 show mean values of estimated H obtained using the

wavelet-based H estimator and Whittle’s MLE in sequences generated by using

the PMPP method. Our results were obtained for frames between 100 and

600. We compare this generator with others in Section 4.3, assuming T =

300. Generating a sample sequence of 1,048,576 numbers took 7 minutes, 11

seconds on a Pentium II (233 MHz, 512 MB). The PMPP method requires

O(n) computations to generate n numbers. For a more detailed discussion, see

[86].

4.2.5 Method Based on Spatial Renewal Processes and

Fractional Gaussian Noise

The SRP-FGN generator is a hybrid method that uses a fractional Gaussian

noise (FGN) generator based on the spatial renewal process (SRP) developed

by Taralp et al. [160]. Before discussing SRP, we first introduce the concept

of sub-exponentiality. It means that the ACF of a stationary process decays

not exponentially, but hyperbolically, for large lags [41], [80]. For example,

Jelenković [67] observed distinctive sub-exponential characteristics of MPEG

video traffic in the functional behaviour of its scene length distributions.

The SRP belongs to a class of sub-exponentially time-dependent stochastic

processes. The SRP Z is composed of a chain of mutually independent renewal

periods. For practical reasons, it is assumed that the SRP is a discrete time

process and its ith period Ti has length ki, where ki is an integer, and the
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Table 4.7: Mean values of estimated H obtained using the wavelet-based H

estimator for the PMPP method. We give 95% confidence intervals for the

means in parentheses.

Frame Mean Values of Estimated H

Length T .6 .7 .8 .9

100 .6180 .7007 .7864 .8486

(.590, .645) (.673, .728) (.759, .814) (.821, .876)

200 .6138 .6960 .7834 .8603

(.586, .641) (.669, .724) (.756, .811) (.833, .888)

300 .6126 .6931 .7865 .8617

(.585, .640) (.666, .721) (.759, .814) (.834, .889)

400 .5972 .6970 .7867 .8633

(.570, .625) (.669, .724) (.759, .814) (.836, .891)

500 .5924 .6845 .7902 .8661

(.565, .620) (.657, .712) (.763, .818) (.839, .894)

600 .5947 .6868 .7817 .8638

(.567, .622) (.659, .714) (.754, .809) (.836, .891)

Table 4.8: Mean values of estimated H obtained using Whittle’s MLE for the

PMPP method. We give 95% confidence intervals for the means in parentheses.

Frame Mean Values of Estimated H

Length T .6 .7 .8 .9

100 .6702 .7310 .7901 .8381

(.661, .680) (.722, .740) (.781, .799) (.829, .847)

200 .6587 .7244 .7891 .8421

(.649, .668) (.715, .734) (.780, .798) (.833, .851)

300 .6541 .7195 .7904 .8450

(.645, .664) (.710, .729) (.781, .800) (.836, .854)

400 .6462 .7185 .7886 .8470

(.637, .656) (.709, .728) (.779, .798) (.838, .856)

500 .6431 .7157 .7898 .8497

(.634, .652) (.706, .725) (.781, .799) (.841, .859)

600 .6437 .7146 .7896 .8505

(.634, .653) (.705, .724) (.780, .799) (.841, .860)
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sample of Z during the period is represented by a sequence of ki numbers

Y1, Y2, . . . , Yki
, governed by the normal distribution. The consecutive number

of the output self-similar time series Xi

∑ki

j=1 Yj.

To improve statistical properties of the output sequence (it fit to normal

distribution and the required correlation function), it has been proposed to

aggregate a number of such sequences [160]. We investigated this suggestion

experimentally by considering various levels of aggregation. Tables 4.9 and

4.10 show the mean values of estimated H obtained using the wavelet-based

H estimator and Whittle’s MLE for the SRP-FGN method. Our results also

show that the SRP-FGN method is most accurate if the level of aggregation

M = 10, supporting the advice of Taralp et al. [160], who wrote that the

aggregation level needs not be high (i.e., ≈ 10) to obtain accurate results.

The aggregate output sequence {X1, X2, . . .} is computed by after having

summed the sequences and normalisation of the sample variance to one. The

SRP-FGN model has a normal marginal distribution, and is characterised by

a sub-exponential ACF. Figure 4.3 shows a block diagram of the SRP-FGN

generator, which consists of the following steps:

Step 1. Given H , n, M , i = 0, m = 0, s = 0, l = 1, X0 = 0.

Step 2. Generate a random length ki of the renewal cycle Ti governed by the

following a cumulative probability distribution function FT (k).

FT (k) =

{
0, 0 ≤ k < 1,

1− H{(k+1)2H−1−2k2H−1+(k−1)2H−1}
(22H−1−2)

, 1 ≤ k.
(4.14)

Step 3. The SRP Z is composed of a chain of renewal periods where the ith

period Ti is ki in length. Generate ki random numbers Y1, Y2, . . . , Yki

governed by the normal distribution. Set m = m+ ki.

If m < M , then Xi = Xi +
∑ki

j=1 Yj, set s = s +m, and go to Step 2.

If m ≥M , then set m = m−M , and go to Step 4.

Step 4. The output value Xi is computed as follows:

If s = 0, then Xi =
∑lM

j=lM−M+1 Yj, and set s = 0.

If s > 0, then Xi = Xi +
∑M−s

j=1 Yj, and set s = 0.

Step 5. Set i = i + 1, and Xi = 0. If i < n and if m = 0, then go to Step 2.

Otherwise,
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Table 4.9: Mean values of estimated H obtained using the wavelet-based H

estimator for the SRP-FGN method. We give 95% confidence intervals for the

means in parentheses.

Aggregation Mean Values of Estimated H

Level M .6 .7 .8 .9

4 .6024 .7106 .8111 .9162

(.575, .630) (.683, .738) (.784, .839) (.889, .944)

6 .5881 .7074 .8103 .9062

(.561, .616) (.680, .735) (.783, .838) (.879, .934)

8 .5935 .6972 .8148 .9036

(.566, .621) (.700, .725) (.787, .842) (.876, .931)

10 .5942 .6960 .8056 .9031

(.567, .622) (.669, .724) (.778, .833) (.876, .931)

12 .5925 .6976 .8037 .9051

(.565, .620) (.670, .725) (.776, .831) (.878, .933)

14 .5947 .6966 .7956 .9079

(.567, .622) (.669, .724) (.768, .823) (.880, .935)

Table 4.10: Mean values of estimated H obtained using Whittle’s MLE for

the SRP-FGN method. We give 95% confidence intervals for the means in

parentheses.

Aggregation Mean Values of Estimated H

Level M .6 .7 .8 .9

4 .5949 .7058 .8165 .9228

(.585, .604) (.697, .715) (.807, .826) (.914, .932)

6 .5967 .7105 .8223 .9249

(.587, .606) (.701, .720) (.813, .831) (.916, .934)

8 .5990 .7129 .8215 .9240

(.589, .608) (.704, .722) (.812, .831) (.915, .933)

10 .6007 .7133 .8203 .9227

(.591, .610) (.704, .723) (.811, .829) (.914, .932)

12 .6016 .7159 .8197 .9225

(.592, .611) (.707, .725) (.811, .829) (.913, .932)

14 .6031 .7152 .8203 .9199

(.594, .613) (.706, .724) (.811, .829) (.911, .929)
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Figure 4.3: Block diagram of the SRP-FGN method [160].

- if m < M , then Xi =
∑ki

j=ki−m+1 Yj, set s = m, l = 1, and go to Step

2.

- if m ≥M , then set m = m−M , s = 0, l = l + 1, and go to Step 4.

If i = n, where n is the number of sample points, then stop.

This generator produces approximately self-similar sequences {X0, X1, X2, . . .}.
We obtained the points of the inverse renewal CDF using Equation(4.14). In

order to obtain more accurate results of the tail behaviour, we chose a num-

ber of intervals, T = 10, 000, for the renewal CDF. The SRP-FGN renewal

CDF FT (i) and complementary CDF are plotted in Figures 4.4 and 4.5. FT (i)

gradually has longer tails as the H value increases. The SRP-FGN method

generates sample sequences {X1, X2, . . . , Xn} with O(n). It took 26 seconds

to generate a sequence of 1,048,576 numbers on a Pentium II (233 MHz, 512

MB).

4.2.6 Method Based on Superposition of Autoregressive

Processes

The method based on the superposition of autoregressive processes (SAP)

proposed by Granger [48] generates asymptotically self-similar sequences when

aggregating several independent autoregressive processes. In the simplest case
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Figure 4.4: Cumulative distribution function FT (i) of the SRP-FGN method

for H = 0.6, 0.7, 0.8 and 0.9.
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Figure 4.5: Complementary cumulative distribution function of the SRP-FGN

method for H = 0.6, 0.7, 0.8 and 0.9.

87



4.2 Sequential Generators

this can be the sum of two autoregressive processes of the first order:

z1i = A1iz1,i−1 + y1i,

z2i = A2iz2,i−1 + y2i, i = 1, 2, . . . (4.15)

where A1i and A2i are randomly chosen from a beta distribution B(α1, α2) on

[0, 1] with shape parameters α1 and α2, where α1 > 0, α2 > 0. y1i and y2i are

a pair of IID sequences of random variables with a mean of zero and variance

σ2 = 1.

As shown in [48], using the least-square fitting it can be found that α2 =

7.7929 ∗ log(H) + 4.9513. Thus, the Hurst parameter H is linearly dependent

on the shape parameter α2 of the beta-distribution, while α1 can be selected

arbitrary, for example, α1 = 1 in all cases that we investigated.

The PDF f(x) of the beta distribution is given by

f(x) =

{
xα1−1(1−x)α2−1

β(α1,α2)
, 0 < x < 1,

0, otherwise,
(4.16)

where β(α1, α2) is defined by

β(α1, α2) =
∫ 1

0
xα1−1(1− x)α2−1dx =

Γ(α1)Γ(α2)

Γ(α1 + α2)
.

This method, as based on the superposition of the autoregressive processes,

consists of the following steps:

Given: α1, α2, i = 0.

Step 1. Set i = i+ 1. Determine z1i and z2i using Equation (4.15).

Step 2. Calculate the sum,

Xi = z1i + z2i, i = 1, 2, . . . .

Step 3. Repeat Step 1 and Step 2 until i = n, where n is the number of sample

points.

Using the previous steps, the method based on the superposition of the au-

toregressive process generates an asymptotically self-similar sequence {X1, X2,

. . .}. The CPU time required to generate 1,048,576 numbers was 35 seconds
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on a Pentium II (233 MHz, 512 MB). Unlike the other sequential generators,

the SAP generator does not require an aggregation level to be assumed as

an input parameter, but such input parameters as the shape parameter α1,

instead.

4.3 Comparison of Sequential Generators

All six sequential generators based on FBNDP, SFRP, MGIP, PMPP, SRP-

FGN and SAP, generate approximately self-similar sequences. We investigate

their properties in greater detail in this section. All have been implemented in

C on a Pentium II (233 MHz, 512 MB) computer. The mean times required

for generating sequences of a given length were obtained using the SunOS 5.7

time command and were averaged over 30 replications, each with sequences

of 32,768 (215), 65,536 (216), 131,072 (217), 262,144 (218), 524,288 (219) and

1,048,576 (220) numbers.

We have analysed the accuracy of the six methods. For each of H = 0.5,

0.6, 0.7, 0.8 and 0.9, sample sequences generated were analysed as follows. The

FBNDP process was analysed with input M = 10, R = 200, and cutoff param-

eter A = 9.92; the SFRP method required the following three parameters: M

= 10, H = 0.6, 0.7, 0.8 and 0.9, and cutoff parameter A = 3.8; the M/G/∞
process (MGIP) with input traffic intensity ρ = 0.9, service rate µ = α/(α−1),

where α = 3− 2H , and time lag s = 8; the Pareto-modulated Poisson process

(PMPP) with input T = 300, λ1 = 100 and λ2 = 120; the SRP-FGN meth-

ods with input M = 10, and the interval number of the renewal CDF (T ) =

10,000. The input of the superposition of the autoregressive process (SAP)

with a beta-distribution (B(α1, α2)) on [0, 1] was B(1, 2.9), B(1, 8.1), B(1,

21.3), and B(1, 71.5).

4.3.1 Accuracy of Generated Sequences

For each of H = 0.6, 0.7, 0.8 and 0.9, and for each of α2 = 2.9, 8.1, 21.3 and

71.5, all results are averaged over 30 sequences.

(a) Tables 4.11 and 4.12 show the results of the six sequential methods using

the wavelet-based H estimator with the corresponding 95% confidence
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Table 4.11: Mean values of estimated H using the wavelet-based H estimator

for the six sequential generators for H = 0.6 and 0.7. We give 95% confidence

intervals for the means in parentheses.

Mean Values of Estimated H and ∆H

Methods .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

FBNDP .6086 +1.440 .6875 -1.789

(.581, .636) (.660, .715)

SFRP .6166 +2.759 .7091 +1.296

(.589, .644) (.682, .737)

MGIP .5445 -9.252 .6241 -10.84

(.517, .572) (.597, .652)

PMPP .5924 -1.266 .6845 -2.221

(.565, .620) (.657, .712)

SRP-FGN .5942 -0.968 .6960 -0.569

(.567, .622) (.669, .724)

SAP .5989 -0.182 .6852 -2.112

(.595, .603) (.680, .690)

intervals Ĥ ± 1.96σ̂Ĥ . For all input H and α2 values, the SRP-FGN

method produced sequences with the least biased H values compared

with the other six methods.

For H = 0.6, 0.7 and 0.8, the absolute relative error for the FBNDP

method was less than 5%, but for H = 0.9, it was greater than 5%

(i.e., -5.5%). For H = 0.6, the estimated H value for the method was

positively biased, but for H = 0.7, 0.8 and 0.9, were gradually more

negatively biased as the H value increased.

For H = 0.6, 0.7, 0.8 and 0.9, each relative error for the SFRP method

was +2.76%, +1.29%, -0.17% and -3.49%, respectively. As in the FB-

NDP method, estimated H values for the method ranged from positively

biased to negatively biased as the H value increased.

A shortcoming of the MGIP method was that it generated approximately

self-similar sequences with strongly biased H values. ForH = 0.6, 0.7, 0.8
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and 0.9, each relative error was -9.25%, -10.84%, +2.42% and +23.5%,

respectively. Although these inter-event processes can be used to produce

synthetic teletraffic with bursts appearing over a wider range of time

scales than Poisson processes, the associated arrival processes do not

appear to be self-similar when the aggregation level is low [93], [126].

For H = 0.6, 0.7, 0.8 and 0.9, the values of the Hurst parameter from

the sample sequences of the PMPP method were lower than the desired

values. Each relative error was -1.27%, -2.22%, -1.23% and -3.77%, re-

spectively. Furthermore, this method required four control parameters

(i.e., two Poisson arrival rates λ1 and λ2, an aggregation number M ,

and the shape parameter α), and generated a self-similar sequence that

was positively biased to negatively biased as the shape parameter α ap-

proached one.

For H = 0.6, 0.7, 0.8 and 0.9, the values of the Hurst parameter from

Table 4.12: Mean values of estimated H using the wavelet-based H estimator

for the six sequential generators for H = 0.8 and 0.9. We give 95% confidence

intervals for the means in parentheses.

Mean Values of Estimated H and ∆H

Methods .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

FBNDP .7827 -2.157 .8502 -5.538

(.755, .810) (.823, .878)

SFRP .7986 -0.174 .8686 -3.491

(.771, .826) (.841, .896)

MGIP .8194 +2.424 1.1120 +23.50

(.792, .847) (1.084, 1.139)

PMPP .7902 -1.229 .8661 -3.766

(.763, .818) (.839, .894)

SRP-FGN .8056 +0.700 .9031 +0.344

(.778, .833) (.876, .931)

SAP .7845 -1.937 .8971 -0.325

(.781, .788) (.894, .900)
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the sample sequences of the SRP-FGN method match the required values

well. ForH = 0.6, 0.7, 0.8 and 0.9, each relative error was -0.97%, -0.57%,

+0.70% and +0.34%, respectively.

For α2 = 2.9, 8.1, 21.3 and 71.5, all values of the Hurst parameter from

the sample sequences of the SAP method were lower than the required

values. Each relative error was -0.18%, -2.11%, -1.94% and -0.33%, re-

spectively.

(b) Tables 4.13 and 4.14 show the results of the six sequential methods using

Whittle’s MLE with the corresponding 95% confidence intervals Ĥ ±
1.96σ̂Ĥ . As for the results obtained from the wavelet-based H estimator,

the SRP-FGN method produced sequences with the least biased H values

compared with the other six methods.

For H = 0.6 and 0.7, the absolute relative error for the FBNDP method

was less than 3%, while for H = 0.8 and 0.9, it was greater than 5% (i.e.,

-5.53% and -9.29%). For H = 0.6, the estimated H value for the method

was positively biased; and for H = 0.7, 0.8 and 0.9, they gradually

became more negatively biased as the H value increased.

For H = 0.6, 0.7, 0.8 and 0.9, relative error for the SFRP method was

+6.21%, +1.78%, -1.43% and -5.37%, respectively. As in the FBNDP

method, estimated H values ranged from positively biased to negatively

biased as the H value increased.

A shortcoming of the MGIP method was that it generated approximately

self-similar sequences with biased H values for H = 0.7, similar to results

obtained from the wavelet-based H estimator. For H = 0.6, 0.7, 0.8 and

0.9, relative error was -8.0%, -9.6%, -3.2% and +5.5%, respectively.

For H = 0.8 and 0.9, the values of the Hurst parameter from the sample

sequences of the PMPP method were lower than the required values, but

for H = 0.6 and 0.7, they were higher. Relative error for H = 0.6, 0.7,

0.8 and 0.9 was +7.18%, +2.24%, -1.28% and -5.59%, respectively. This

method generated a self-similar sequence that ranged from negatively

biased to positively biased as the shape parameter α approached one.

ForH = 0.6, 0.7, 0.8 and 0.9, the Hurst parameter values from the sample

sequences of the SRP-FGN method match the required values well. For
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H = 0.6, 0.7, 0.8 and 0.9, relative error was +0.11%, +1.91%, +2.54%

and +2.53%, respectively. The results were consistently overestimated.

For α2 = 2.9 and 8.1, all values of the Hurst parameter from the sample

sequences of the SAP method were higher than the required values. Rel-

ative error was +24.14% and +10.45%, respectively; thus, these results

were overestimated. For α2 = 21.3 and 71.5, relative errors was -0.01%

and -8.45%.

(c) Sequence plots show higher levels of data correlation of data, and thus

evidence of LRD properties, as the H value increased; see Figure 4.6 for

results of the SRP-FGN method.

Our results show that all six sequential generators produced approximately

self-similar sequences, but that relative inaccuracy (|∆H|) increased as H in-

creased.

Table 4.13: Mean values of estimated H using Whittle’s MLE for the six

sequential generators for H = 0.6 and 0.7. We give 95% confidence intervals

for the means in parentheses.

Mean Values of Estimated H and ∆H

Methods .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

FBNDP .6122 +2.028 .6828 -2.452

(.603, .622) (.674, .692)

SFRP .6372 +6.205 .7124 +1.777

(.628, .647) (.703, .722)

MGIP .5520 -7.995 .6325 -9.641

(.542, .562) (.623, .642)

PMPP .6431 +7.176 .7157 +2.236

(.634, .652) (.706, .725)

SRP-FGN .6007 +0.110 .7133 +1.905

(.591, .610) (.704, .723)

SAP .7448 +24.14 .7731 +10.45

(.736, .754) (.764, .782)
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4.3.2 Complexity and Speed of Generation

The computational complexities of all six sequential generators of pseudo-

random self-similar sequences of a given length n are O(n). However, the

number of arithmetic operations per number required by each of them are dif-

ferent, as shown in Table 4.15. The MGIP, SAP and SRP-FGN methods are

the fastest of the six sequential generators requiring 4,976, 4,481 and 4,173

operations per number, respectively. While the SFRP method was the slow-

est (85,199 operations per number), the FBNDP and PMPP methods require

similar amounts of time to generate the same number of self-similar sequences,

requiring 11,028 and 19,507 arithmetic operations per number, respectively.

Figure 4.7 shows the experimental mean running times of the six sequential

generators. All require O(n) computations to generate n numbers.

In summary, our results show that the generator based on the SRP-FGN al-

Table 4.14: Mean values of estimated H using Whittle’s MLE for the six

sequential generators for H = 0.8 and 0.9. We give 95% confidence intervals

for the means in parentheses.

Mean Values of Estimated H and ∆H

Methods .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

FBNDP .7557 -5.531 .8164 -9.291

(.747, .765) (.807, .826)

SFRP .7886 -1.426 .8517 -5.366

(.779, .798) (.843, .861)

MGIP .7742 -3.225 .9499 +5.549

(.765, .783) (.941, .959)

PMPP .7898 -1.281 .8497 -5.586

(.781, .799) (.841, .859)

SRP-FGN .8203 +2.539 .9227 +2.526

(.811, .829) (.914, .932)

SAP .7999 -0.009 .8239 -8.451

(.791, .809) (.815, .833)
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gorithm is the fastest if long sequences of self-similar pseudo-random numbers

are required. The MGIP and SAP methods are nearly as fast. The SRP-FGN

generator is also the most efficient when evaluated by Whittle’s MLE. There-

fore, the SRP-FGN generator was compared with the most efficient fixed-length

sequence generator, which we discuss in Section 4.6. However, as pointed out

in [144] there are general pitfalls in using generators of LRD processes based

on FRPs, since the generated processes fail to capture fully the required auto-

correlation structure. For a more detailed discussion, see [144].
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Figure 4.6: Sequence plots for the SRP-FGN method (H = 0.6, 0.7, 0.8, 0.9).
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Table 4.15: Computational complexities and arithmetic mean operations re-

quired for each of the six sequential generators (s: the time lag in the M/G/∞
queueing system, M : aggregation level, T : the number of intervals in the re-

newal CDF).

Mean operations

Method Complexity Operations per number per number when

assuming optimum values

FBNDP O(n) 161M + 9,418 11,028

SFRP O(n) 1378M + 71,419 85,199

MGIP O(n) 130s + 3,936 4,976

PMPP O(n) 130M + 4,037 19,507

SRP-FGN O(n) 14T + 4,159 4,173

SAP O(n) 4,481 4,481
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Figure 4.7: Mean running times of the six sequential generators. Running

times were obtained using the SunOS 5.7 time command on a Pentium II (233

MHz, 512 MB); each mean is averaged over 30 iterations.
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4.4 Fixed-Length Sequence Generators

The numerical results for the following fixed-length sequence generators are

given in Section 4.5.

4.4.1 Fast Fourier Transform Method

The fast Fourier transform method generates approximately self-similar se-

quences based on the fast Fourier transform (FFT) and the fractional Gaus-

sian noise (FGN) process. Its main weakness is in the accuracy of the power

spectrum calculation, which involves an infinite summation. Paxson [124] has

proposed a solution to this problem by applying a finite approximation. An-

other possible method to generate self-similar sequences is to run the FFT of

white noise through the power spectrum, and then apply the inverse FFT. An

overview of the FFT method is given as follows. For a more detailed discussion,

see [70], [87], [124].

Step 1. Given: H . Start for i = 1 and continue until i = n/2. Calculate a

sequence of values {f1, . . . , fn
2
}, where fi = f̂(2πi

n
, H), corresponding to

the power spectrum of an FGN process for frequencies from 2π
n

to π,

1/2 < H < 1, and the total length of the sequence generated, n. For an

FGN process, the power spectrum f(λ,H) is defined by Equations (2.16)

and (2.17). As mentioned, the infinite summation in Equation (2.16) for

B(λ,H) poses the main difficulty in computing the power spectrum ex-

actly. Paxson [124] proposed to use the approximation given by Equation

(4.17):

B(λ,H) ≈ ad
1 + bd1 + ad

2 + bd2 + ad
3 + bd3 +

ad
′

3 + bd
′

3 + ad
′

4 + bd
′

4

8Hπ
, (4.17)

where d = −2H − 1, d
′
= −2H, ai = 2iπ + λ, bi = 2iπ − λ.

Step 2. Multiply the sequence of values {f1, . . . , fn
2
} by an exponential random

variable with a mean of one. Paxson [124] used this step since, when

estimating the power spectrum of a process using the periodogram, the

power spectrum estimated for a given frequency is distributed asymptot-

ically as an exponential random variable with a mean equal to the actual

power (see also Beran [8] (p.409)).

97



4.4 Fixed-Length Sequence Generators

Step 3. Generate {Z1, . . . , Zn
2
}, a sequence of complex values such that |Zi| =√

f̂i and the phase of Zi is uniformly distributed between 0 and 2π. This

random phase technique, taken from Schiff [152], preserves the spectral

density corresponding to {f̂i}. It also makes the marginal distribution

of the final sequence normal, as proved by Lindeberg ([37], p. 256), and

defines the requirements for FGN.

Step 4. Start for i = 0 and continue until i < n. Construct {Z ′
0, . . . , Z

′
n−1}, an

expanded version of {Z1, . . . , Zn
2
}:

Z
′
i =




0, if i = 0,

Zi, if 0 < i ≤ n
2
, and

Zn−i, if n
2
< i < n.

(4.18)

where Zn−i denotes the complex conjugate of Zn−i. {Z ′
i} retains prop-

erties of the power spectrum used to construct {Zi}, but because {Z ′
i}

is symmetric about Z
′
n
2
, it now corresponds to the FFT of a real-valued

signal.

Step 5. Calculate the inverse FFT {Z ′
i} to obtain the approximate FGN sequence

{Xi} with a mean of zero and variance of one. Then form the final

sequence X1, X2, . . . , Xn by assigning Xi ←− Z
′
i , i = 1, 2, . . . , n.

This method generates an approximately self-similar sequence {X1, X2, . . . ,

Xn} with the exact values. Generating a sample sequence of 1,048,576 num-

bers took 33 seconds on a Pentium II (233 MHz, 512 MB). The FFT method

requires O(nlogn) computations to generate n numbers because of the Fourier

transform algorithm [124], [130]. The Danielson-Lanczos’ FFT1 algorithm was

used [131]. For a more detailed discussion, see [124].

1Available at http://ita.ee.lbl.gov/.
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4.4.2 Fractional-Autoregressive Integrated Moving Av-

erage Method

Hosking ([62], [63]) states that the F-ARIMA method2 is used to generate an

approximately self-similar process with a Hurst parameter of H = d + 1
2
. We

used the F-ARIMA(0,d,0) method for generating self-similar sequences, where

d is the fractional differencing parameter, 0 < d < 1
2
. Hosking’s algorithm

is used to generate the process X = {Xi : i = 0, 1, 2, . . . , n} with a normal

marginal distribution, a mean of zero and variance σ2
0, and an autocorrelation

function (ACF), {ρk}(k = 0,±1, . . .) defined as

ρk = γk/γ0 =
Γ(1− d)Γ(k + d)

Γ(d)Γ(k + 1− d) , (4.19)

where

γk = σ2
0

(−1)kΓ(1− 2d)

Γ(k − d+ 1)Γ(1− k − d) ;

see [62] and page 63 on [9].

Step 0. Set N0 = 0 and D0 = 1. X0, the first pseudo-random element in the

output self-similar sequence, is generated from the normal distribution

N(0, σ2
0), where σ2

0 is the required variance of the Xi.

Step i (i = 1, . . . , n− 1.) Compute meani and vari of Xi recursively, using the

following equations:

Ni = ρi −
i−1∑
j=1

φi−1,jρi−j ,

Di = Di−1 −N2
i−1/Di−1,

φii = Ni/Di,

φij = φi−1,j − φiiφi−1,i−j, j = 1, . . . , i− 1,

where φij , i = 0, j = 0, . . . , n− 1, is given by

φij = −
(
i

j

)
(j − d− 1)!(i− d− j)!

(−d− 1)!(i− d)! ,

2The autocorrelation functions of two other simple processes, F-ARIMA(1,d,0) and F-
ARIMA(0,d,1), behave similarly at high lags, but the F-ARIMA(0,d,1) autocorrelation func-
tion drops more sharply between lags 1 and 2. For a more detailed discussion, see [62].
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meani =
i∑

j=1

φijXi−j , (4.20)

vari = (1− φ2
ii)vari−1. (4.21)

Generate Xi from N(meani, vari). Increase i by 1. If i = n, then stop.

A self-similar sequence {X1, X2, . . . , Xn} is obtained in n steps. The F-

ARIMA method is too computationally intensive to generate long sample se-

quences. Generation of an F-ARIMA traffic sample sequence with 1,048,576

numbers took 41 hours, 0 minutes and 22 seconds on a Pentium II (233 MHz,

512 MB). This method requires O(n2) computation time.

4.4.3 Random Midpoint Displacement Method

The random midpoint displacement (RMD) method generates an approxi-

mately self-similar sequence in the time interval [0, T ]. The RMD algorithm is

an approximate fractional Brownian motion (FBM) generation method. The

basic concept of the RMD algorithm is to interpolate the interval [0, T ] recur-

sively and calculate the values of the process at the midpoints from the values

at the endpoints.

Figure 4.8 illustrates the first three steps of the process. This method leads

to the generation of the sequence (d3,1, d3,2, d3,3, d3,4). The interval between 0

and 1 is subdivided to construct the increments governed by a normal distri-

bution. Adding offsets to the midpoints makes the marginal distribution of

the final result normal. For more detailed discussions of the RMD method, see

[70], [84], [127].

Step 1. If the process Y is to be computed for any time instance t between

0 and 1, then begin by setting Y0 = 0 and selecting Y1 as a pseudo-

random number from a normal distribution with mean 0 and variance

V ar[Y1] = σ2
0 . Then V ar[Y1 − Y0] = σ2

0.

Step 2. Next, Y 1
2

is constructed as the average of Y0 and Y1, that is,

Y 1
2

=
1

2
(Y0 + Y1) + d1.
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The offset d1 is a normal random number (NRN), which is multiplied

by a scaling factor 1
2
, with mean 0 and variance S2

1 of d1. Compare the

visualisation of this step and the next one in Figure 4.8. For V ar[Yt2 −
Yt1] = |t2 − t1|2Hσ2

0 to be true for 0 ≤ t1 ≤ t2 ≤ 1, then

V ar[Y 1
2
− Y0] =

1

4
V ar[Y1 − Y0] + S2

1

(
1

2
)2Hσ2

0 =
1

4
σ2

0 + S2
1 .

Thus S2
1 = ( 1

21 )
2H(1− 22H−2)σ2

0 .

Step 3. Reduce the scaling factor by
√

2; that is, now assume 1√
8
, and divide the

two intervals from 0 and 1
2

and from 1
2

to 1 again. Y 1
4

is set as the average
1
2
(Y0 +Y 1

2
) plus an offset d2,1, which is an NRN multiplied by the current

scaling factor 1√
8
. The corresponding formula holds for Y 3

4
, that is,

Y 3
4

=
1

2
(Y 1

2
+ Y1) + d2,2,

where d2,2 is a random offset computed as before. Therefore, the variance

S2
2 of d2,∗ must be chosen such that

V ar[Y 1
4
− Y0] =

1

4
V ar[Y 1

2
− Y0] + S2

2

(
1

22
)2Hσ2

0 =
1

4
(
1

2
)2Hσ2

0 + S2
2 .

Thus S2
2 = ( 1

22 )
2H(1− 22H−2)σ2

0 .

Y

t

d1

d2,1 d2,2

0.25              0.50              0.75               1.00

d3,1 d3,2

d3,3

d3,4

Figure 4.8: The first three stages in the RMD method.
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Step 4. Proceed in the same manner: reduce the scaling factor by
√

2, that is,

scale by 1√
16

. Then set

Y 1
8

=
1

2
(Y0 + Y 1

4
) + d3,1,

Y 3
8

=
1

2
(Y 1

4
+ Y 1

2
) + d3,2,

Y 5
8

=
1

2
(Y 1

2
+ Y 3

4
) + d3,3,

Y 7
8

=
1

2
(Y 3

4
+ Y1) + d3,4.

In each formula, d3,∗ is computed as a different NRN multiplied by

the current scaling factor 1√
16

. The following step computes Y at t =
1
16
, 3

16
, . . . , 15

16
using a scaling factor again reduced by

√
2, and continues

as indicated above. The variance S2
3 of d3,∗ is chosen such that

V ar[Y 1
8
− Y0] =

1

4
V ar[Y 1

4
− Y0] + S2

3

(
1

23
)2Hσ2

0 =
1

4
(

1

22
)2Hσ2

0 + S2
3 ,

that is, S2
3 = ( 1

23 )
2H(1 − 22H−2)σ2

0. The variance S2
n of dn,∗, therefore,

yields ( 1
2n )2H(1− 22H−2)σ2

0.

Step 5. Calculate the values at the midpoints in the previous same manner un-

til the given n is equal to 2NoOfSteps. Then form the final sequence

X0, X1, X2, . . . by assigning Xi ←− Yi/2NoOfSteps, i = 0, 1, 2, . . ..

A self-similar sequence {X0, X1, . . . , Xn} is obtained from the previous

steps. Generation of an approximately self-similar sequence with 1,048,576

numbers took 17 seconds on a Pentium II (233 MHz, 512 MB). The theoreti-

cal algorithmic complexity is O(n) [128].

4.4.4 Successive Random Addition Method

An alternative method for the direct generation of an FBM process is based on

the successive random addition (SRA) algorithm [20], [68], [69], [70]. The SRA

method uses the midpoints as the RMD method does, but adds a displacement

of a suitable variance to all the points [128]. Adding offsets to all points should

make the resultant sequence self-similar and of normal distribution [128]. The

SRA method consists of the following steps:
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Step 1. If the process Y is to be computed for time instances t between 0 and 1,

then begin by setting Y0 = 0 and selecting Y1 as a pseudo-random number

from a normal distribution with mean 0 and variance V ar[Y1] = σ2
0. Then

V ar[Y1 − Y0] = σ2
0 .

Step 2. Next, Y 1
2

is constructed by the interpolation of the midpoint, that is,

Y 1
2

= 1
2
(Y0 + Y1).

Step 3. Add a displacement of a suitable variance to all points, i.e.,

Y0 = Y0 + d1,1,

Y 1
2

= Y 1
2

+ d1,2,

Y1 = Y1 + d1,3.

The offsets d1,∗ are governed by a normal random number. For V ar[Yt2−
Yt1] = |t2−t1|2Hσ2

0 to be true, for any t1, t2, 0 ≤ t1 ≤ t2 ≤ 1, it is required

that

V ar[Y 1
2
− Y0] =

1

4
V ar[Y1 − Y0] + 2S2

1

(
1

2
)2Hσ2

0 =
1

4
σ2

0 + 2S2
1 ,

that is, S2
1 = 1

2
( 1

21 )
2H(1− 22H−2)σ2

0.

Step 4. Step 2 and Step 3 are repeated. Therefore,

S2
n =

1

2
(

1

2n
)2H(1− 22H−2)σ2

0 ,

where σ2
0 is the initial variance and 0 < H < 1.

Step 5. Calculate the values at the midpoints as noted previously until the given

n is equal to 2NoOfSteps. Then form the final sequence X0, X1, X2, . . . by

assigning Xi ←− Yi/2NoOfSteps, i = 0, 1, 2, . . ..

Using these steps, the SRA method generates an approximately self-similar

sequence {X0, X1, . . . , Xn}. It took 15 seconds to generate a sequence of

1,048,576 numbers on a Pentium II (233 MHz, 512 MB). The theoretical algo-

rithmic complexity is O(n) [128].
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4.4.5 Fractional Gaussian Noise and Daubechies Wavelets

Method

We present a new generator of pseudo-random self-similar sequences based on

fractional Gaussian noise (FGN) and Daubechies wavelets (DW), called the

FGN-DW method [72], [73]. A pseudo-random generator of self-similar tele-

traffic based on Haar wavelet transforms has been proposed in [135], [136]

and [168]. We used Daubechies wavelets because the generator based on

Daubechies wavelets produces more accurate self-similar sequences than one

based on Haar wavelets. In other words, not only estimates of H obtained

from the Daubechies wavelets are closer to the true values than those from the

Haar wavelets, but also variances obtained from the Daubechies wavelets are

lower. The reason behind is that the Daubechies wavelets produce smoother

coefficients of wavelets that are used in the discrete wavelet transform than

the Haar wavelets [26], [143], [170]. Haar wavelets are discontinuous, and they

do not have good time-frequency localisation properties, since their Fourier

transforms decay as |λ|−1, for λ→∞, meaning that the resulting decomposi-

tion has a poor scale. Therefore, Daubechies wavelets produce more accurate

coefficients than Haar wavelets; for a more detailed discussion, see [26], [170].

Our method for generating synthetic self-similar FGN sequences in a time

domain is based on a discrete wavelet transform (DWT). Wavelets can provide

compact representations for a class of FGN processes [40], [78], [143], because

the structure of wavelets naturally matches the self-similar structure of long-

range dependent processes [2], [26], [170].

We claim that the FGN-DW method is sufficiently fast for the practical

generation of synthetic self-similar sequences that can be used as simulation

input data. The general strategy behind our method is similar to Paxson’s,

who used the Fourier transform [124].

Figure 4.9 graphically illustrates a discrete Fourier and a discrete wavelet

transform (see also Appendix E). Wavelet analysis transforms a sequence onto

a time-scale grid, where the term scale is used instead of frequency, because the

mapping is not directly related to frequency as in the Fourier transform. The

wavelet transform delivers good resolution in both time and scale, as compared

to the Fourier transform, which provides only good frequency resolution. The

algorithm consists of the following steps:
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Step 1. Given: H . Start for i = 1 and continue until i = n. Calculate a sequence

of values {f1, f2, · · · , fn} using Equation (4.22) (following), where fi =

f̂(πi
n

;H), corresponding to the spectral density of an FGN process for

frequencies fi ranging between π
n

and π.

The main difficulty with using Equation (2.16) when computing the spec-

tral density is that it requires to execute the infinite summation. The

approximation of f(λ,H) is given in [9] as

f(λ,H) = cf |λ|1−2H +O(|λ|min(3−2H,2)), (4.22)

where cf is Equation (2.17) and O(·) represents the residual error.

This formula was used in the generation of self-similar sequences pro-

posed in this thesis. Another generator of self-similar sequences based

on FGN was also proposed by Paxson [124], but his method was based

on a more complicated approximation of f(λ,H) as shown in Equation

(4.17). Equation (4.22) can be used to determine f(λ,H) for λ→∞, or

for n → ∞ at λ = π
n
. For a large value of λ, f(λ,H) can be calculated

by Equation (2.16).

Frequency

Time

f 0

t 0

(a) A discrete Fourier transform.

S cale

Time

f 0

t 0

(b) A discrete wavelet transform.

Figure 4.9: A graphical representation of a discrete Fourier transform and a

discrete wavelet transform.

105



4.4 Fixed-Length Sequence Generators

Step 2. Multiply {fi} by realisations of an independent exponential random vari-

able with a mean of one to obtain {f̂i}, because the spectral density

estimated for a given frequency is distributed asymptotically as an inde-

pendent exponential random variable with mean f(λ,H) [8].

Step 3. Generate a sequence {Y1, Y2, · · · , Yp} of complex numbers such that |Yi|=√
f̂i and the phase of Yi is uniformly distributed between 0 and 2π. This

random phase technique, taken from Schiff [152], preserves the spectral

density corresponding to {f̂i}. It also makes the marginal distribution

of the final sequence normal and produces the requirements for FGN.

Step 4. Calculate the two synthetic coefficients of orthonormal Daubechies wavelets

that are used in the inverse DWT (IDWT) [46]. The output sequence

{X1, X2, . . . , Xn} representing approximately self-similar FGN process

(in time domain) is obtained by applying the IDWT operation to the

sequence {Y1, Y2, · · · , Yn}.

Using the previous steps, the proposed FGN-DW method generates a fast

and sufficiently accurate self-similar FGN process {X1, X2, . . . , Xn}. (Ap-

pendix D provides a program written in C and Matlab for implementing this

method using the pyramidal algorithm of IDWT.) It took 16 seconds to gener-

ate a sequence of 1,048,576 numbers on a Pentium II (233 MHz, 512 MB).

Its theoretical algorithmic complexity is O(n). Moreover, the accuracy of

Daubechies wavelets is slightly better than Haar wavelets, but there is no

difference in the time taken to obtain the same number of coefficients. For

more detailed discussion, see also Section 4.4.5 and Appendix E.

Autocorrelation Test for the FGN-DW Method

ACFs characterise the correlation structure and are used to investigate the

behaviour of self-similar sequences. For H = 0.6, 0.7, 0.8 and 0.9, Figure

4.10 shows the ACF of sequences obtained by the FGN-DW method and the

theoretical ACFs from Equation (2.6) and Equation (2.9). As the H value

increased, the ACF curves decayed hyperbolically and LRD was observed. For

H = 0.6, 0.7, 0.8 and 0.9, relative inaccuracy ∆ACF estimated from the ACF

was -0.0208%, -0.0061%, -0.0076% and -0.0218%, respectively.
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4.4 Fixed-Length Sequence Generators

Comparison of Daubechies Wavelets and Haar Wavelets for Gener-

ation of LRD Sequences

Comparison results of sequences produced by generators based on Haar and

Daubechies wavelets with several coefficients are shown in Tables 4.16 – 4.19.

The relative error associated with each wavelet were also compared. The re-

sults indicate that Daubechies wavelets with sixteen coefficients produce the

most accurate results and are slightly more accurate than Haar wavelets. In ad-

dition, Tables 4.20 and 4.21 show that the variances obtained from Daubechies

wavelets are smaller than those obtained from Haar wavelets. However, the
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Figure 4.10: Autocorrelation function plots for the FGN-DW method (H =

0.6, 0.7, 0.8, 0.9).
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4.5 Comparison of Fixed-Length Generators

two wavelets theoretically require the same O(n) operations to transform n

coefficients of their wavelets, and there is no difference in the time required to

obtain a given number of their coefficients.

4.5 Comparison of Fixed-Length Generators

Paxson [124] and Lau et al. [84] suggest that the FFT- and RMD-based meth-

ods are sufficiently fast in the generation of simulation input data for practical

applications. In this thesis, we report on the properties of these two methods

and the F-ARIMA-based method, and compare them with SRA and FGN-

DW, two recently proposed alternative methods for the generation of pseudo-

random self-similar sequences [70], [73]. These five fixed-length sequence gen-

erators are comparable because all of them have the same statistical properties,

such as normal marginal distributions, means and variances. They were imple-

mented in C on a Pentium II (233 MHz, 512 MB) computer. The mean times

required for generating sequences of a given length were obtained using the

SunOS 5.7 time command and were averaged over 30 replications, each with

sequences of 32,768 (215), 65,536 (216), 131,072 (217), 262,144 (218), 524,288

(219) and 1,048,576 (220) numbers.

We have analysed the accuracy with which five considered generators gen-

erate normal pseudo-random sequences with the required value of H . For H =

0.6, 0.7, 0.8 and 0.9, each method was used to generate 30 sample sequences of

32,768 (215) numbers starting from different random seeds. Self-similarity and

marginal distributions of the sequences generated were assessed by the same

techniques as those used in Section 4.3.

4.5.1 Accuracy of Generated Sequences

A summary of the results of our analysis follows:

The estimates of the Hurst parameter for the wavelet-based H estimator

and Whittle’s MLE are shown in Tables 4.22 – 4.25. The relative inaccuracy
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4.5 Comparison of Fixed-Length Generators

Table 4.16: Comparison of Daubechies wavelets and Haar wavelets: mean

values of estimated H obtained using the wavelet-based H estimator for H =

0.6 and 0.7. Daub(#) stands for the Daubechies wavelets with # coefficients.

Mean Values of Estimated H and ∆H

Methods .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

Haar .6073 +1.220 .7141 +2.018

(.580, .635) (.687, .742)

Daub(2) .6019 +0.323 .6984 -0.229

(.574, .630) (.671, .726)

Daub(4) .6026 +0.433 .7039 +0.554

(.575, .630) (.676, .731)

Daub(8) .6026 +0.430 .7031 +0.445

(.575, .630) (.676, .731)

Daub(16) .6013 +0.214 .6987 -0.185

(.574, .629) (.671, .726)

Table 4.17: Comparison of Daubechies wavelets and Haar wavelets: mean

values of estimated H obtained using the wavelet-based H estimator for H =

0.8 and 0.9. Daub(#) stands for the Daubechies wavelets with # coefficients.

Mean Values of Estimated H and ∆H

Methods .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

Haar .8217 +2.712 .9299 +3.327

(.794, .849) (.902, .958)

Daub(2) .7943 -0.709 .8898 -1.137

(.767, .822) (.862, .917)

Daub(4) .8055 +0.684 .9074 +0.821

(.778, .833) (.880, .935)

Daub(8) .8039 +0.486 .9049 +0.545

(.776, .831) (.877, .932)

Daub(16) .7962 -0.474 .8938 -0.694

(.769, .824) (.866, .921)
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4.5 Comparison of Fixed-Length Generators

Table 4.18: Comparison of Daubechies wavelets and Haar wavelets: mean

values of estimated H obtained using Whittle’s MLE for H = 0.6 and 0.7.

Daub(#) stands for the Daubechies wavelets with # coefficients.

Mean Values of Estimated H and ∆H

Methods .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

Haar .5766 -3.905 .6567 -6.188

(.567, .586) (.647, .666)

Daub(2) .5814 -3.106 .6662 -4.829

(.572, .591) (.657, .676)

Daub(4) .5836 -2.736 .6702 -4.254

(.574, .593) (.661, .680)

Daub(8) .5845 -2.578 .6719 -4.017

(.575, .594) (.663, .681)

Daub(16) .5849 -2.521 .6725 -3.924

(.575, .594) (.663, .682)

Table 4.19: Comparison of Daubechies wavelets and Haar wavelets: mean

values of estimated H obtained using Whittle’s MLE for H = 0.8 and 0.9.

Daub(#) stands for the Daubechies wavelets with # coefficients.

Mean Values of Estimated H and ∆H

Methods .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

Haar .7399 -7.508 .8256 -8.263

(.731, .749) (.817, .835)

Daub(2) .7535 -5.813 .8428 -6.357

(.744, .763) (.834, .852)

Daub(4) .759 -5.127 .8494 -5.620

(.750, .768) (.840, .859)

Daub(8) .7612 -4.854 .852 -5.336

(.752, .770) (.843, .861)

Daub(16) .762 -4.745 .853 -5.223

(.753, .771) (.844, .862)
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4.5 Comparison of Fixed-Length Generators

∆H was calculated using Equation (3.3). All results were averaged over 30

sequences.

(a) The results for the wavelet-based H estimator with the corresponding

95% confidence intervals Ĥ ± 1.96σ̂Ĥ , (see Tables 4.22 and 4.23), show

that for all input H values, the F-ARIMA, the FFT and the FGN-DW

methods produced sequences with less biased H values than other meth-

ods.

Using the FFT method, for H = 0.6, 0.7 and 0.8, the values of the Hurst

parameter from the sample sequences match the required values well,

Table 4.20: Variances of estimated H obtained using the wavelet-based H

estimator for Daubechies wavelets and Haar wavelets for H = 0.6, 0.7, 0.8 and

0.9. Daub(#) stands for the Daubechies wavelets with # coefficients.

Methods Variances of Estimated H

.6 .7 .8 .9

Haar 2.070e-04 2.263e-04 2.534e-04 2.923e-04

Daub(2) 1.949e-04 2.154e-04 2.393e-04 2.670e-04

Daub(4) 2.508e-04 2.540e-04 2.586e-04 2.645e-04

Daub(8) 2.440e-04 2.432e-04 2.438e-04 2.456e-04

Daub(16) 2.116e-04 2.055e-04 2.007e-04 1.973e-04

Table 4.21: Variances of estimated H obtained using Whittle’s MLE for

Daubechies wavelets and Haar wavelets for H = 0.6, 0.7, 0.8 and 0.9. Daub(#)

stands for the Daubechies wavelets with # coefficients.

Methods Variances of Estimated H

.6 .7 .8 .9

Haar 1.3111e-05 1.4501e-05 1.7235e-05 2.1660e-05

Daub(2) 1.1914e-05 1.2353e-05 1.3133e-05 1.4408e-05

Daub(4) 1.1653e-05 1.2084e-05 1.2638e-05 1.3323e-05

Daub(8) 1.1201e-05 1.1720e-05 1.2344e-05 1.3030e-05

Daub(16) 1.0946e-05 1.1519e-05 1.2156e-05 1.2812e-05
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4.5 Comparison of Fixed-Length Generators

Table 4.22: Mean values of estimated H using the wavelet-based H estimator

for the five fixed-length sequence generators for H = 0.6 and 0.7. We give 95%

confidence intervals for the means in parentheses.

Mean Values of Estimated H and ∆H

Methods .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

F-ARIMA .5974 -0.427 .6990 -0.142

(.593, .601) (.693, .704)

FFT .6005 +0.083 .6967 -0.469

(.596, .604) (.692, .700)

FGN-DW .6013 +0.214 .6987 -0.185

(.574, .629) (.671, .726)

RMD .5963 -0.613 .6907 -1.332

(.591, .601) (.684, .696)

SRA .5848 -2.528 .6797 -2.899

(.579, .589) (.674, .685)

Table 4.23: Mean values of estimated H using the wavelet-based H estimator

for the five fixed-length sequence generators for H = 0.8 and 0.9. We give 95%

confidence intervals for the means in parentheses.

Mean Values of Estimated H and ∆H

Methods .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

F-ARIMA .7947 -0.663 .8900 -1.115

(.787, .801) (.880, .899)

FFT .7862 -1.719 .8639 -4.012

(.782, .790) (.859, .867)

FGN-DW .7962 -0.474 .8938 -0.694

(.769, .824) (.866, .921)

RMD .7805 -2.443 .859 2 -4.536

(.773, .787) (.852, .866)

SRA .7700 -3.744 .8499 -5.568

(.763, .776) (.842, .856)
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4.5 Comparison of Fixed-Length Generators

but for H = 0.9, the accuracy of the match is lower. Relative error was

+0.08%, -0.47%, -1.75% and -4.11%, respectively.

The estimated values of the F-ARIMA method were similar to the FFT

method. For H = 0.6, 0.7, 0.8 and 0.9, all values of the Hurst parameter

from the sample sequences were lower than the required values. Relative

error was -0.43%, -0.14%, -0.66% and -1.12%, respectively.

The FGN-DW method demonstrated a high level of accuracy and was

fast. ForH = 0.6, 0.7, 0.8 and 0.9, the relative error was +0.21%, -0.19%,

-0.47% and -0.69%, respectively.

The RMD method generated approximately self-similar sequences [84],

[71]. For H = 0.6, 0.7, 0.8 and 0.9, the Hurst parameter tended to be

lower than the required value. Relative error was -0.61%, -1.33%, -2.44%

and -4.54%, respectively.

The SRA method results were similar to the RMD results. SRA gener-

ated self-similar sequences with the most biased H values. For a more

detailed discussion, see [68], [71].

(b) The results for Whittle’s MLE with the corresponding 95% confidence

intervals Ĥ ± 1.96σ̂Ĥ , (see Tables 4.24 and 4.25), show that for all input

H values, the FFT and the FGN-DW methods produced sequences with

less biased H values than other methods.

The FFT method demonstrated a high level of accuracy. For H = 0.6,

0.7, 0.8 and 0.9, the values of the Hurst parameter from the sample se-

quences match the required values very well. Relative error was +0.03%,

+0.03%, +0.03% and +0.02%, respectively.

Using the F-ARIMA method, for H = 0.6, 0.7, 0.8 and 0.9, all values

of the Hurst parameter from the sample sequences were lower than the

required values. Relative error was -3.28%, -5.31%, -6.64% and -7.51%,

respectively.

The FGN-DW method is more accurate than the F-ARIMA, RMD and

SRA methods, but not the FFT method. For H = 0.6, 0.7, 0.8 and 0.9,

the relative error was -2.52%, -3.92%, -4.75% and -5.22%, respectively.

The RMD method generated approximately self-similar sequences [84],

[71]. For H = 0.6, 0.7, 0.8 and 0.9, the Hurst parameter tended to be

113



4.5 Comparison of Fixed-Length Generators

Table 4.24: Mean values of estimated H using Whittle’s MLE for the five

fixed-length sequence generators for H = 0.6 and 0.7. We give 95% confidence

intervals for the means in parentheses.

Mean Values of Estimated H and ∆H

Methods .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

F-ARIMA .5803 -3.281 .6628 -5.308

(.571, .590) (.654, .672)

FFT .6002 +0.027 .7002 +0.033

(.591, .610) (.691, .710)

FGN-DW .5849 -2.521 .6725 -3.924

(.575, .594) (.663, .682)

RMD .5765 -3.910 .6567 -6.180

(.567, .586) (.647, .666)

SRA .5762 -3.965 .6563 -6.249

(.567, .586) (.647, .666)

Table 4.25: Mean values of estimated H using Whittle’s MLE for the five

fixed-length sequence generators for H = 0.8 and 0.9. We give 95% confidence

intervals for the means in parentheses.

Mean Values of Estimated H and ∆H

Methods .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

F-ARIMA .7469 -6.642 .8324 -7.507

(.738, .756) (.823, .842)

FFT .8003 +0.033 .9002 +0.024

(.791, .809) (.891, .909)

FGN-DW .762 -4.745 .853 -5.223

(.753, .771) (.844, .862)

RMD .7401 -7.482 .8261 -8.214

(.731, .749) (.817, .835)

SRA .7395 -7.567 .8252 -8.311

(.730, .749) (.816, .834)
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4.5 Comparison of Fixed-Length Generators

lower than the required value. Relative error was -3.91%, -6.18%, -7.48%

and -8.21%, respectively.

The SRA method results were similar to the RMD results. It generated

self-similar sequences with the most biased H values. For a more detailed

discussion, see [68], [71].

(c) Sequence plots show stronger data correlation as the H value increased;

see Figure 4.11 for the FGN-DW method. In other words, generated

sequences demonstrated evidence of LRD properties.

Our results show that all five generators produced approximately self-

similar sequences, with the relative inaccuracy ∆H increasing with H , but
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Figure 4.11: Sequence plots for the FGN-DW method (H = 0.6, 0.7, 0.8, 0.9).
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4.5 Comparison of Fixed-Length Generators

always remaining below 9%.

4.5.2 Complexity and Speed of Generation

The computational complexities of the five fixed-length sequence generators for

generating pseudo-random self-similar sequences of a given length n are shown

in Table 4.26. The number of arithmetic operations per number required by

each of them are also shown in Table 4.26. The F-ARIMA method was the

slowest, requiring 178n2 + 3,936 time operations per number. FFT was also

slower than the FGN-DW, RMD and SRA methods.

The results of our experimental analysis of the mean times required by each

generator are shown in Figure 4.12. Our main conclusions are:

(a) The F-ARIMA method was the slowest of the five methods, as expected.

(b) On average, the FFT method was faster than F-ARIMA, but slower

than the other three. This was caused by the relatively high complexity

of the inverse FFT algorithm. FFT requires O(nlogn) computations

to generate n numbers [130] and 49logn + 4,175 time operations per

number.

(c) The FGN-DW, RMD and SRA methods were equally fast. The theoret-

ical complexity of forming a spectral density, and constructing normally

distributed complex numbers, is O(1), while the inverse DWT is O(n)

Table 4.26: Computational complexities and arithmetic operations required

by each of the five fixed-length sequence generators.

Method Complexity Operations per Number

F-ARIMA O(n2) 178n2 + 3,936

FFT O(nlogn) 49logn + 4,175

FGN-DW O(n) 4,091

RMD O(n) 4,103

SRA O(n) 4,167
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4.6 Sequential Generators versus Fixed-Length Sequence Generators

[124], [170]. Thus, the time complexity of FGN-DW is also O(n) and

this method requires 4,091 operations per number. The theoretical al-

gorithmic complexity of the RMD and SRA methods is also O(n) [128]

and they require 4,103 and 4,167 operations per number, respectively.

Overall, our results showed that the generator based on FGN-DW is the

fastest of the five generators if long sequences of self-similar pseudo-random

numbers are required.

4.6 Sequential Generators versus Fixed-Length

Sequence Generators

We have presented the results of a comparative analysis of six sequential gen-

erators of (long) pseudo-random self-similar sequences. All six sequential gen-

erators, based on the FBNDP, SFRP, MGIP, PMPP, SRP-FGN and SAP

methods, generated approximately self-similar sequences; SRP-FGN was the

most accurate. However, our results show that for most input H values, the
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Figure 4.12: Mean running times of the five fixed-length sequence genera-

tors. Running times were obtained using the SunOS 5.7 time command on a

Pentium II (233 MHz, 512 MB); each mean is averaged over 30 iterations.
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4.6 Sequential Generators versus Fixed-Length Sequence Generators

MGIP and SAP-based generators were strongly biased. The FBNDP method

was biased for H = 0.9.

The analysis of mean times required to generate sequences of a given length

demonstrates that all six sequential generators are more attractive than the

F-ARIMA-based generator for practical simulation studies of computer net-

works because they are much faster. However, these generators require more

input parameters, and selecting appropriate values is a problem that remains.

Furthermore, in the case of SAP, the question of how to define the relationship

between the Hurst parameter and the two shape parameters (i.e., α1 > 0 and

α2 > 0) of a beta-distribution remains.

We have also presented the results of a comparative analysis of five fixed-

length generators of self-similar sequences. All five, based on the F-ARIMA,

FFT, FGN-DW, RMD and SRA methods, generated approximately self-similar

sequences, with the relative inaccuracy of the resultant Ĥ below 9% if 0.6 ≤
H ≤ 0.9. However, the analysis of mean times required to generate sequences of

a given length shows that the FFT, FGN-DW, RMD, and SRA generators are

more attractive for practical simulation studies of computer networks because

they generate sequences much faster. When the wavelet-based H estimator

and Whittle’s MLE (the least biased of the H estimation techniques), are

applied (see Chapter 3), FFT produces the most accurate results, with the

FGN-DW results almost as accurate. Thus, FFT and FGN-DW are the most

practical in both accuracy and speed for simulation studies with self-similar

input.

Table 4.27 and Figure 4.13 show a comparison of the three fastest and

most accurate generators of the six sequential and five fixed-length sequence

generators: the SRP-FGN, FFT and FGN-DW generators. While estimated H

values for the FGN-DW method obtained using the wavelet-based H estimator

were more accurate than those for the SRP-FGN and FFT methods, those for

the FFT method obtained using Whittle’s MLE were the most accurate.

Even though the SRP-FGN and FGN-DW methods have the same com-

putational complexity, O(n), the FGN-DW method was faster than the SRP-

FGN and FFT methods, as shown in Figure 4.13. Furthermore, while the

SRP-FGN method required three input parameters (i.e., H,M and T ), the

FFT and FGN-DW methods required only the Hurst parameter H . Thus, the
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4.6 Sequential Generators versus Fixed-Length Sequence Generators

FFT method was more accurate than the SRP-FGN and FGN-DW methods,

and the FGN-DW method was faster than the other two. Overall, all three

methods are more attractive for practical simulation studies of telecommuni-

cation networks than the other nine generators.
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Figure 4.13: Mean running times of the SRP-FGN, FFT and FGN-DW gen-

erators. Running times were obtained using the SunOS 5.7 time command on

a Pentium II (233 MHz, 512 MB); each mean is averaged over 30 iterations.

Table 4.27: Comparison of the most efficient SRP-FGN, FFT and FGN-DW

methods. Relative inaccuracies of mean values of estimated H obtained using

the wavelet-based H estimator and Whittle’s MLE.

Estimator Method ∆H

.6 .7 .8 .9

SRP-FGN −0.968 −0.569 +0.700 +0.344

Wavelet-Based FFT +0.083 −0.469 −1.719 −4.012

FGN-DW +0.214 −0.185 −0.474 −0.694

SRP-FGN +0.110 +1.905 +2.539 +2.526

Whittle’s MLE FFT +0.027 +0.033 +0.033 +0.024

FGN-DW −2.521 −3.924 −4.745 −5.223

119



4.7 Conclusions

4.7 Conclusions

One of the problems that computer network researchers face when conduct-

ing simulation studies is how to generate long synthetic sequential self-similar

sequences. Three aspects must be considered: (i) how accurately self-similar

processes can be generated, (ii) how quickly the methods generate long self-

similar sequences, and (iii) how appropriately self-similar processes can be used

in sequential simulations.

Most of the existing synthetic methods for generating self-similar sequences

require large amounts of CPU time. Some current methods must store either

part, or all, of the sequence in memory before generating numbers of a se-

quence. In addition, they are often inaccurate or inappropriate in simulation

studies of computer networks. Sequential generators of self-similar sequences

depend on the level of approximation, and need several input parameters to

be assumed, while fixed-length sequence generators need only to assume the

Hurst parameter to generate self-similar sequences.

Certainly, more efficient and accurate generators of self-similar sequences

of pseudo-random numbers are needed. A comparative study of self-similar

pseudo-random teletraffic generators was undertaken. Overall, our results, ob-

tained using the wavelet-based H estimator and Whittle’s MLE, which are the

least biased of the H estimation techniques considered in Chapter 3, have re-

vealed that the fastest and most accurate generators of the six sequential and

five fixed-length sequence generators considered are the SRP-FGN, FFT and

FGN-DW methods. However, these methods have both strengths and weak-

nesses. The FFT and FGN-DW methods are more attractive for non-sequential

simulations, because they can generate the required number of sequences more

accurately and quickly than the SRP-FGN method. If the FFT and FGN-DW

methods are used for sequential simulations, sufficient numbers of sequences

must be generated before the simulation begins. However, the required number

of sequences is not easy to predict in practical simulations. On the other hand,

the SRP-FGN method is more attractive for sequential simulations, because it

does not need to “know” the required number of sequences beforehand. Unfor-

tunately, this method is less accurate and requires more generating time than

the FFT method.

The FGN-DW method was used to synthesise VBR video traffic, as dis-
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cussed in Chapter 6, and the SRP-FGN method was used to investigate the

queueing behaviour in steady-state simulation studies of self-similar and non-

self-similar queueing systems, as outlined in Chapter 7.

For simulation studies of computer networks, self-similar processes with

arbitrary marginal distributions are needed. In order to obtain these, it is

needed to transform a given sequence from the exactly self-similar FGN process

into a sequence that represents a realisation of a specific process. In the next

chapter, we will investigate such a transformation for five different marginal

distributions by studying their impact on the H values and ACFs of input

processes.
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Chapter 5

GENERATION OF A

SELF-SIMILAR PROCESS

WITH AN ARBITRARY

MARGINAL DISTRIBUTION

5.1 Introduction

Simulation studies of telecommunication networks often require generation of

random variables, or stochastic processes, characterised by different probability

distributions. Thus far we have discussed generation of self-similar sequences

with a normal marginal distribution. We can obtain sequences of numbers from

normal distributions with different mean values and variances by applying such

standard transformations as shifting and rescaling/normalisation. In practical

simulation studies, however, generation of self-similar processes of several dif-

ferent non-normal marginal probability distributions might be required. The

most common method of transforming realisations of one random variable into

realisations of another random variable is based on the inverse of cumulative

distribution functions. This method and its application in transformations of

self-similar processes are discussed in Section 5.2.2 in detail.

The theory of transformations of strictly and second-order self-similar pro-

cesses has not been fully developed. In this chapter, we look at applica-
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tions of the inverse cumulative distribution function (ICDF) transformation1

to the generation of long-range dependent sequences governed by non-normal

marginal distributions from long-range dependent sequences of normal marginal

distributions.

For studying the properties of the ICDF transformation in the context of

self-similar process we investigate its properties when it is applied to the exact

self-similar process, taking the self-similar FGN process as the reference [74],

[76], [124]. This FGN process was generated by the Durbin-Levinson algorithm,

described in Section 3.2. We consider output processes with different marginal

probability distributions (exponential, gamma, Pareto, uniform and Weibull),

with finite and infinite variances, and compare H parameters and ACFs of

output processes with those characterising input self-similar FGN processes.

Our findings are summarised in Section 5.4.

5.2 Generation of LRD Self-Similar Processes

with an Arbitrary Marginal Distribution

Simulation studies of telecommunication networks require a mechanism to

transform self-similar processes into processes with arbitrary marginal distri-

butions [92], [94], [124]. In this chapter, we investigate preservation of the LRD

self-similarity and ACFs in output processes with different marginal distribu-

tions when transforming exact self-similar FGN processes into processes with

five different marginal distributions (exponential, gamma, Pareto, uniform and

Weibull), with finite and infinite variances, using the ICDF transformation.

5.2.1 The Method of the Inverse Cumulative Distribu-

tion Function

The ICDF transformation is based on the observation that given any random

variable Xi with a CDF F (x), the random variable u = F (x) is independent

1The TES (Transform-Expand-Sample) process [107], [108] and the ARTA
(Autoregressive-to-Anything) process [14], [15] could be used the generation of correlated
sequences.
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and uniformly distributed between 0 and 1. Therefore, x can be obtained by

generating uniform realisations and calculating x = F−1(u).

We assume that a process X is a Gaussian process with zero mean, variance

of one and a given ACF {ρk}. Let FX(x) be its marginal CDF and FY (y) be

a marginal CDF of the process Y. The process Y with the desired marginal

CDF FY (y) can be generated by the ICDF transformation from the process

X. Following the ICDF transformation, when transforming a random variable

Xi into a random variable Yi, we use the formula:

FX(x) = FY (y), (5.1)

Thus:

y = F−1
Y (FX(x)) (5.2)

hence the method is called the ICDF transformation.

Here we consider five marginal distributions of output processes: exponen-

tial, gamma, Pareto, uniform and Weibull distributions that are frequently

used in simulation practice.

Exponential Marginal Probability Distribution

The exponential distribution has the CDF

FY (y) =

{
0, for y ≤ 0,

1− e−λy, for y > 0,
(5.3)

where λ is the mean of a random variable Y .

To generate a random variable Y with an exponentially distribution from

a random variable X of normal distribution, one applies the transformation:

yi = −(
1

λ
) ∗ log(FX(xi)), (5.4)

where FX(·) is the CDF of the normal distribution.

Gamma Marginal Probability Distribution

The gamma distribution has the CDF

FY (y) =

{
0, for y ≤ 0,

1− e−y/βΓ
∑αΓ−1

j=0
(y/βΓ)j

j!
, for y > 0,

(5.5)

125



5.2 Generation of LRD Self-Similar Processes with an Arbitrary Marginal
Distribution

if αΓ (the shape parameter) is a natural number, and βΓ is the scale parame-

ter, βΓ > 0. If αΓ is not integer, then there is no closed form of the CDF for

the gamma distribution. A few methods for generating pseudo-random num-

bers governed by such a gamma probability distribution have been proposed

[85] (pp. 487-490). We chose the Newton-Raphson technique, and used an

implementation of this technique given in [131].

Pareto Marginal Probability Distribution

The Pareto distribution has the CDF

FY (y) =

{
0, for y < 1,

1−
(

b
y

)α

, for 1 ≤ y ≤ ∞, (5.6)

where α is a shape parameter and b is the minimum allowed value of y, 0 < b ≤
y. We assume b = 1 [also see Equation (2.21)]. To generate random variables

with a Pareto distribution Y from random variables of normal distribution X,

one applies the transformation:

yi = 1/(FX(xi))
1/α. (5.7)

Uniform Marginal Probability Distribution

The uniform distribution has the CDF

FY (y) =

{
0, for y < a, and b < y
y−a
b−a

, for a ≤ y ≤ b,
(5.8)

where a is a lower limit and b is an upper limit, a < b. To generate pseudo-

random numbers with a uniform distribution Y from random variables of nor-

mal distribution X, one applies the transformation:

yi = a + (b− a)FX(xi). (5.9)

Weibull Marginal Probability Distribution

The Weibull distribution has the CDF

FY (y) =

{
0, for y ≤ 0,

1− e−(y/β)α
, for 0 < y,

(5.10)
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where α is a shape parameter and β is a scale parameter. To generate a

random variable with a Weibull distribution Y from a random variable of

normal distribution X, one applies the transformation:

yi = β (−log(FX(xi)))
1/α . (5.11)

5.2.2 Effects of Transformation

In simulation studies of such stochastic dynamic processes as those that occur

in telecommunication networks one needs to decide both about their marginal

probability distributions and autocorrelation structures. The problem of gen-

erating a strictly and/or second-order self-similar process of a given marginal

distribution and an autocorrelation structure is difficult and has not been fully

solved. No existing procedure is entirely satisfactory in terms of mathematical

rigour, computational efficiency, accuracy of approximation, and precise and

concise parameterisation [43].

Applications of the transformation in Equation (5.2) to transformations of

correlated processes have been studied by several researchers [64], [76], [107].

In general, as proved by Beran (see [9], pp. 67-73), a transformation y =

G(x) applied to a strictly and/or second-order self-similar LRD sequence of

numbers {x1, x2, . . .} does not preserve LRD properties in the output sequence

{y1, y2, . . .}. However, as proved in [64], if in Equation (5.2):

1. FX(·) represents normal distribution,

2. {x1, x2, . . .} is a self-similar LRD sequence,

3. the transformation G2(x) is integrable, i.e.,∫ +∞

−∞
G2(x)dFX(x) < ∞, and (5.12)

4. E(XY ) 6= 0,

then the output sequence {y1, y2, . . .} is asymptotically self-similar, with the

same coefficient H as the sequence {x1, x2, . . .}.
Related issues have been investigated. Wise et al. [174] and Liu and Munson

[96] showed that, following the transformation of marginal distribution, the
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transformation of ordinary ACF can be characterised when the input process

is normal. They also indicated other processes for which this could be applied.

Huang et al. [64] demonstrated that, if the process X is self-similar and has

a normal marginal distribution, under general conditions, the output process

Y is an asymptotically self-similar process with the same Hurst parameter

(1
2
< H < 1); for proof of the invariance of the Hurst parameter H , see [64].

Geist and Westall [44] demonstrated that arrival processes, obtained by the

FFT method proposed by Paxson [124] (see Section 4.4.1), have ACFs that

are consistent with LRD. However, it has not been fully developed to generate

self-similar processes with arbitrary marginal distributions from self-similar

processes with (normal) marginal distributions and autocorrelation structures

[43], [44].

5.3 Numerical Results

The numerical results of this section are used to investigate how well the LRD

self-similarity and ACFs of the original Gaussian processes are preserved when

they are converted into processes with non-normal marginal distributions. For

each of H = 0.6, 0.7, 0.8 and 0.9, 100 exact self-similar sample sequences of

32,768 (215) numbers starting from different random seeds are used.

The following five different marginal distributions are investigated: the

exponential distribution with λ = 9; the uniform distribution with a = 0 and

b = 1; the gamma distribution with α = 2 and β = 1; the Pareto distributions

with α = 1.2, 1.4, 1.6, 1.8 and 20.0; and the Weibull distribution with α = 2

and β = 1.

5.3.1 Analysis of H Parameters

Figure 5.1 shows an exact self-similar sequence taken from the exact self-similar

FGN process, with mean = 0, variance = 1 and H = 0.9. Figures 5.2 – 5.10

show realisations of processes obtained by applying transformation (5.2) to

the process depicted in Figure 5.1, for five different output marginal distribu-

tions described in Section 5.2.1: exponential, gamma, Pareto with α = 20.0,

uniform and Weibull, respectively. The estimates of H and the 95% confi-
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dence intervals for these estimates (shown in parentheses), obtained using the

wavelet-based H estimator, are 0.8940 (.8819, .9062), 0.9015 (.8894, .9137),

0.8929 (.8807, .9050), 0.9052 (.8930, .9173) and 0.9094 (.8972, .9215). Simi-

larly, using Whittle’s MLE of H , those are obtained: 0.8855 (.8810, .8901),

0.8938 (.8892, .8983), 0.8795 (.8750, .8841), 0.8922 (.8877, .8967) and 0.8997

(.8952, .9042). The LRD properties of the output process are preserved well.

However, the estimates of H depicted in Figures 5.7 – 5.10, for processes

with Pareto marginal distributions with α = 1.2, 1.4, 1.6 and 1.8, obtained

using the wavelet-based H estimator, are 0.4285 (.4010, .4560), 0.5316 (.5041,

.5591), 0.6098 (.5823, .6373) and 0.6667 (.63916, .6942), for H = 0.9, 0.8,

0.7 and 0.6 in the input processes, respectively. Using Whittle’s MLE, those

are also obtained: 0.6465 (.6371, .6559), 0.6868 (.6775, .6962), 0.7223 (.7130,

.7316) and 0.7511 (.7419, .7603), for H = 0.9, 0.8, 0.7 and 0.6 in the input

processes, respectively. As we see, the LRD properties in the output processes

are not preserved. Note that all the output distributions considered have finite

means and infinite variances.

For more rigorous proof, we analyse the self-similar sequences with five

different marginal distributions generated by the exact self-similar FGN pro-

cess using the wavelet-based H estimator and Whittle’s MLE. Tables 5.1 – 5.4

show the estimated mean Ĥ values of the resulting process; see also Figure

5.11. For H = 0.6, 0.7, 0.8 and 0.9, each mean Ĥ value is obtained from 100

replications. We give 95% confidence intervals for the means in parentheses.

All results in Tables 5.1 – 5.4 are presented together with their relative errors,

defined in Equation (3.3). These results in Tables 5.1 – 5.2 show that all con-

fidence intervals are within the required values, except for those with Pareto

distribution is α = 1.2, 1.4, 1.6 and 1.8. Values in Tables 5.3 – 5.4 show that,

for gamma (H = 0.6), uniform (H = 0.6 and 0.7) and Weibull (H = 0.6, 0.7,

0.8 and 0.9), confidence intervals are within the required values, but others are

slightly underestimated (i.e., |∆H| < 4% ).

If one considers output marginal distributions with infinite variances, then

as it was proved in [64], the H values of the input process are not preserved.

This fact is illustrated by results presented in Tables 5.1 – 5.4, where Pareto

distributions with infinite variances (α = 1.2, 1.4, 1.6 and 1.8) have been added

to the previously considered five output distributions with finite variances for

H = 0.6, 0.7, 0.8 and 0.9.

129



5.3 Numerical Results

200 400 600 800 1000
−4

−3

−2

−1

0

1

2

3

4

Sequence

Va
lue

s

Exact Self−Similar FGN (Mean = 0, Var. = 1)

Figure 5.1: A realisation of the exact self-similar FGN process used as the

input process for ICDF transformation, with H = 0.9.
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Figure 5.2: A realisation of the self-similar process with the exponential

marginal distribution, with H = 0.8855 (on the basis of Whittle’s MLE),

using the exact self-similar FGN process with H = 0.9 as the input process.
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Figure 5.3: A realisation of the self-similar process with the gamma marginal

distribution, withH = 0.8938 (on the basis of Whittle’s MLE), using the exact

self-similar FGN process with H = 0.9 as the input process.
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Figure 5.4: A realisation of the self-similar process with the Pareto marginal

distribution, with α = 20.0 and H = 0.8795 (on the basis of Whittle’s MLE),

using the exact self-similar FGN process with H = 0.9 as the input process.
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Figure 5.5: A realisation of the self-similar process with the uniform marginal

distribution, withH = 0.8922 (on the basis of Whittle’s MLE), using the exact

self-similar FGN process with H = 0.9 as the input process.
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Figure 5.6: A realisation of the self-similar process with the Weibull marginal

distribution, withH = 0.8997 (on the basis of Whittle’s MLE), using the exact

self-similar FGN process with H = 0.9 as the input process.
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Figure 5.7: A realisation of the self-similar process with the Pareto marginal

distribution, with α = 1.2 and H = 0.6465 (on the basis of Whittle’s MLE),

using the exact self-similar FGN process with H = 0.9 as the input process.
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Figure 5.8: A realisation of the self-similar process with the Pareto marginal

distribution, with α = 1.4 and H = 0.6868 (on the basis of Whittle’s MLE),

using the exact self-similar FGN process with H = 0.9 as the input process.
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Figure 5.9: A realisation of the self-similar process with the Pareto marginal

distribution, with α = 1.6 and H = 0.7223 (on the basis of Whittle’s MLE),

using the exact self-similar FGN process with H = 0.9 as the input process.
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Figure 5.10: A realisation of the self-similar process with the Pareto marginal

distribution, with α = 1.8 and H = 0.7511 (on the basis of Whittle’s MLE),

using the exact self-similar FGN process with H = 0.9 as the input process.
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Figure 5.11: Wavelet-based H plots for the exact self-similar FGN process,

five self-similar exponential, gamma, Pareto (α = 20.0), uniform and Weibull

marginal distributions for H = 0.9.
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On the basis of our results we formulate the following hypothesis:

Hypothesis: If transformation (5.2) is applied to self-similar LRD pro-

cesses with normal marginal distributions, then it preserves H parameter

if the output marginal distribution has a finite variance.

We think that this hypothesis could be analytically proved by showing that

in the case of an infinite variance, the transformation in Equation (5.2) does

Table 5.1: Relative inaccuracy, ∆H , of mean values of estimated H obtained

using the wavelet-based H estimator for the exact self-similar FGN process

with different marginal distributions for H = 0.6 and 0.7. We give 95% confi-

dence intervals for the mean values in parentheses.

Mean Values of Estimated H and ∆H

Distribution .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

Exponential .5879 -2.039 .6830 -2.521

(.560,.615) (.656,.711)

Gamma .5945 -0.949 .6922 -1.198

(.567,.622) (.665,.720)

Uniform .5971 -0.514 .6964 -0.604

(.570,.625) (.669,.724)

Weibull .5981 -0.348 .6979 -0.394

(.571,.626) (.670,.725)

Pareto .5857 -2.378 .6800 -2.862

(α = 20.0) (.558,.613) (.653,.708)

Pareto .5014 -16.43 .5027 -28.19

(α = 1.2) (.474,.529) (.475,.530)

Pareto .5098 -15.03 .5237 -25.18

(α = 1.4) (.482,.537) (.496,.551)

Pareto .5189 -13.52 .5468 -21.89

(α = 1.6) (.491,.546) (.519,.574)

Pareto .5281 -11.99 .5690 -18.71

(α = 1.8) (.501,.556) (.542,.597)
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not satisfy the assumption that its squared form in Equation (5.12) must be

integrable [64].

Variances for Estimated H

Tables 5.5 – 5.6 show variances for estimated H obtained using the wavelet-

based H estimator and Whittle’s MLE for the exact self-similar FGN process

Table 5.2: Relative inaccuracy, ∆H , of mean values of estimated H obtained

using the wavelet-based H estimator for the exact self-similar FGN process

with different marginal distributions for H = 0.8 and 0.9. We give 95% confi-

dence intervals for the means in parentheses.

Mean Values of Estimated H and ∆H

Distribution .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

Exponential .7800 -2.604 .8797 -2.356

(.753,.808) (.852,.907)

Gamma .7909 -1.243 .8912 -1.079

(.763,.818) (.864,.919)

Uniform .7953 -0.700 .8929 -0.892

(.768,.823) (.865,.920)

Weibull .7976 -0.410 .8975 -0.387

(.770,.825) (.870,.925)

Pareto .7765 -2.940 .8764 -2.626

(α = 20.0) (.749,.804) (.849,.904)

Pareto .5333 -33.34 .6300 -30.00

(α = 1.2) (.506,.561) (.603,.658)

Pareto .5690 -28.87 .6778 -24.69

(α = 1.4) (.542,.597) (.650,.705)

Pareto .6047 -24.42 .7177 -20.25

(α = 1.6) (.577,.632) (.690,.745)

Pareto .6362 -20.47 .7495 -16.73

(α = 1.8) (.609,.664) (.722,.777)
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with different marginal distributions for H = 0.6, 0.7, 0.8 and 0.9. Estimated

variances for the output processes with five different marginal distributions

were slightly higher than the original, but those with the Pareto marginal

distribution with α = 1.2, 1.4, 1.6 and 1.8 had the highest variances. All

variances gradually increased as the H value increased.

Table 5.3: Relative inaccuracy, ∆H , of mean values of estimated H obtained

using Whittle’s MLE for the exact self-similar FGN process with different

marginal distributions for H = 0.6 and 0.7. We give 95% confidence intervals

for the mean values in parentheses.

Mean Values of Estimated H and ∆H

Distribution .6 .7

Ĥ ∆H(%) Ĥ ∆H(%)

Exponential .5856 -2.394 .6774 -3.230

(.576,.595) (.668,.687)

Gamma .5923 -1.290 .6878 -1.748

(.583,.602) (.678,.697)

Uniform .5962 -0.628 .6928 -1.034

(.587,.606) (.683,.702)

Weibull .5981 -0.313 .6969 -0.445

(.589,.608) (.688,.706)

Pareto .5833 -2.780 .6737 -3.760

(α = 20.0) (.574,.593) (.664,.683)

Pareto .5050 -15.84 .5155 -26.35

(α = 1.2) (.495,.515) (.506,.525)

Pareto .5091 -15.15 .5277 -24.61

(α = 1.4) (.499,.519) (.518,.537)

Pareto .5152 -14.13 .5426 -22.49

(α = 1.6) (.506,.525) (.533,.552)

Pareto .5224 -12.93 .5584 -20.23

(α = 1.8) (.513,.532) (.549,.568)
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Consistency Test

A consistency test is used to check for any trends of estimated Ĥ values being

greater, or less, than the required value of H more often than it should occur

by chance. Having applied this test to 400 estimates of H obtained from

the wavelet-based H estimator and Whittle’s MLE, we obtained the results

produced in Table 5.7.

Table 5.4: Relative inaccuracy, ∆H , of mean values of estimated H obtained

using Whittle’s MLE for the exact self-similar FGN process with different

marginal distributions for H = 0.8 and 0.9. We give 95% confidence intervals

for the means in parentheses.

Mean Values of Estimated H and ∆H

Distribution .8 .9

Ĥ ∆H(%) Ĥ ∆H(%)

Exponential .7749 -3.134 .8797 -2.258

(.766,.784) (.871,.889)

Gamma .7864 -1.701 .8892 -1.202

(.777,.796) (.880,.898)

Uniform .7897 -1.285 .8889 -1.235

(.781,.799) (.880,.898)

Weibull .7964 -0.451 .897 -0.335

(.787,.806) (.888,.906)

Pareto .7706 -3.678 .8759 -2.674

(α = 20.0) (.761,.780) (.867,.885)

Pareto .5438 -32.03 .6393 -28.96

(α = 1.2) (.534,.554) (.630,.649)

Pareto .5666 -29.18 .6774 -24.73

(α = 1.4) (.557,.576) (.668,.687)

Pareto .5919 -26.01 .7112 -20.97

(α = 1.6) (.582,.602) (.702,.721)

Pareto .6169 -22.89 .7399 -17.79

(α = 1.8) (.607,.626) (.731,.749)
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5.3 Numerical Results

Table 5.5: Variances for estimated H obtained using the wavelet-based H

estimator for self-similar processes with different marginal distributions for H

= 0.6, 0.7, 0.8 and 0.9.

Distribution Variances of Estimated H

.6 .7 .8 .9

Original 1.8920e-04 1.9220e-04 1.9510e-04 1.9850e-04

Exponential 1.6620e-04 2.0330e-04 2.8780e-04 4.5280e-04

Gamma 1.9940e-04 2.0250e-04 2.1560e-04 2.6410e-04

Uniform 1.9930e-04 1.9920e-04 1.9620e-04 2.1290e-04

Weibull 1.8120e-04 1.9100e-04 2.0760e-04 2.3660e-04

Pareto (α = 20.0) 1.6890e-04 2.0980e-04 3.0880e-04 4.9820e-04

Pareto (α = 1.2) 5.0160e-03 1.0020e-02 9.7020e-03 9.1550e-03

Pareto (α = 1.4) 3.5150e-03 6.6330e-03 7.1350e-03 7.3760e-03

Pareto (α = 1.6) 2.4050e-03 4.4900e-03 5.5260e-03 5.7900e-03

Pareto (α = 1.8) 1.6220e-03 3.0460e-03 4.2630e-03 4.3950e-03

Table 5.6: Variances for estimated H obtained using Whittle’s MLE for self-

similar processes with different marginal distributions for H = 0.6, 0.7, 0.8

and 0.9.

Distribution Variances of Estimated H

.6 .7 .8 .9

Original 1.0930e-05 1.1447e-05 1.1789e-05 1.2172e-05

Exponential 1.2697e-05 1.5443e-05 2.0052e-05 3.0836e-05

Gamma 1.1583e-05 1.2920e-05 1.4497e-05 1.6641e-05

Uniform 1.1518e-05 1.2855e-05 1.4325e-05 1.7971e-05

Weibull 1.1581e-05 1.2447e-05 1.3394e-05 1.5497e-05

Pareto (α = 20.0) 1.3430e-05 1.7630e-05 2.3820e-05 4.0410e-05

Pareto (α = 1.2) 1.0190e-04 2.5820e-04 1.0370e-03 5.0670e-03

Pareto (α = 1.4) 9.6520e-05 3.6780e-04 1.3100e-03 4.9850e-03

Pareto (α = 1.6) 1.0100e-04 4.6260e-04 1.5050e-03 4.4040e-03

Pareto (α = 1.8) 1.0280e-04 5.0840e-04 1.5720e-03 3.6650e-03
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5.3 Numerical Results

Table 5.7: A consistency test: number of sample sequences with H > Ĥ ,

for estimated Ĥ obtained using the wavelet-based H estimator and Whittle’s

MLE, for self-similar process with different marginal distributions, for H =

0.6, 0.7, 0.8 and 0.9.

Estimator Distribution Number of H > Ĥ of 100 Samples

.6 .7 .8 .9 Total out of 400

Exponential 97 100 98 93 388

Gamma 88 97 94 85 364

Wavelet-based Pareto 96 100 100 100 396

Uniform 86 94 98 95 373

Weibull 79 88 85 78 330

Exponential 100 100 100 100 400

Gamma 99 100 100 99 398

Whittle’s MLE Pareto 100 100 100 99 399

Uniform 89 97 99 99 384

Weibull 71 79 83 77 310

Table 5.7 shows that for the wavelet-based H estimator, in the case of the

exponential marginal distribution, 388 of 400 sample sequences had H > Ĥ

and 12 had H < Ĥ . In the gamma, Pareto and uniform marginal distributions,

we obtained H > Ĥ in 364, 396 and 373 of 400 cases, respectively. 330 of 400

samples in the case of Weibull marginal distribution had H > Ĥ , while 1 of

400 cases had H = Ĥ, and 69 of 400 cases had H < Ĥ . The results obtained

using Whittle’s MLE, see Table 5.7, are similar to the previous results. For

the exponential, gamma, Pareto, uniform and Weibull marginal distributions,

400, 398, 399, 384 and 310 of 400 had H > Ĥ, respectively. Therefore, most

of the estimated Ĥ values obtained using the wavelet-based H estimator and

Whittle’s MLE for the output processes with the considered five marginal

distributions were slightly lower than the required value.

On the basis of these results, one can see a clear trend that estimates of

H obtained from the wavelet-based H estimator and Whittle’s MLE for the

output processes with five marginal distributions were smaller than the real

value of H .
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5.3 Numerical Results

5.3.2 Analysis of Autocorrelation Functions

Preservation of H in output processes with marginal probability distributions

and finite variances, which we showed in the previous section, is acompanied

by preservation of ACFs in all these cases as well; for H = 0.9, see Figures

5.12 – 5.16. The output ACFs that significantly differ from the input ACFs of

the exact FGN process are associated with Pareto distributions with infinite

variances.

ACFs curves of self-similar LRD processes decay more slowly and hyper-

bolically rather than exponentially as H values increase. For example, Figure

5.8 shows ACFs for the exact self-similar FGN process, and five approximately

self-similar processes with exponential, gamma, Pareto (α = 1.2), uniform and

Weibull marginal distributions for two different ranges of lags. The ACF curve

obtained from the Pareto marginal distribution with α = 1.2 and H = 0.6393

lies lower than other ACF curves with H > 0.88. In contrast, the ACF curve

of a Poisson process assumes value one at lag equal 0, and zero otherwise. We

considered here a Poisson process with λ = 0.9.

Note that all ACFs of marginal probability distributions with finite vari-

ances differ from the input ACFs by no more than 4% (Lower and upper dotted

lines in Figures 5.12 – 5.16 are ± 4% apart from the input ACFs.). In all cases

of output processes with Pareto distributions with infinite variances, the differ-

ences between their ACFs and the ACF of input FGN process are substantial.

Thus, there is clear experimental evidence that the LRD self-similarity of the

input process is not preserved in the output process generated by transforma-

tion (5.2), if the output process has an infinite variance. For H = 0.6, 0.7

and 0.8, Figures 5.17 – 5.19 show the effects of transforming ACFs from the

original exact FGN process using the ICDF transformation.

The results of the mean values of the difference, ∆ACF, between the ACF

of the exact self-similar FGN process and the ACFs characterising output pro-

cesses with five different marginal distributions are summarised quantitatively

in Tables 5.8 – 5.17. The difference, ∆ACF, is calculated by

∆ACF = ACF − ÂCF ,

where ACF is the mean value of the ACF obtained from the original pro-

cess and ÂCF is the empirical mean value over a number of independently
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Figure 5.12: Autocorrelation functions for the exact self-similar FGN process,

five exponential, gamma, Pareto (α = 1.2), uniform and Weibull marginal

distributions in two different scales for H = 0.9. The output processes preserve

LRD properties, except the Pareto marginal distribution with α = 1.2.
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(b) Autocorrelation lags between 1 and 500.

Figure 5.13: Autocorrelation functions for the exact self-similar FGN process,

five exponential, gamma, Pareto (α = 1.4), uniform and Weibull marginal

distributions in two different scales for H = 0.9. The output processes preserve

LRD properties, except the Pareto marginal distribution with α = 1.4.
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Figure 5.14: Autocorrelation functions for the exact self-similar FGN process,

five exponential, gamma, Pareto (α = 1.6), uniform and Weibull marginal

distributions in two different scales for H = 0.9. The output processes preserve

LRD properties, except the Pareto marginal distribution with α = 1.6.
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(b) Autocorrelation lags between 1 and 500.

Figure 5.15: Autocorrelation functions for the exact self-similar FGN process,

five exponential, gamma, Pareto (α = 1.8), uniform and Weibull marginal

distributions in two different scales for H = 0.9. The output processes preserve

LRD properties, except the Pareto marginal distribution with α = 1.8.
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(b) Autocorrelation lags between 1 and 500.

Figure 5.16: Autocorrelation functions for the exact self-similar FGN process,

five exponential, gamma, Pareto (α = 20.0), uniform and Weibull marginal

distributions in two different scales for H = 0.9. The output processes preserve

LRD properties.
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(b) Autocorrelation lags between 1 and 500.

Figure 5.17: Autocorrelation functions for the exact self-similar FGN process,

five exponential, gamma, Pareto (α = 20.0), uniform and Weibull marginal

distributions in two different scales for H = 0.6. The output processes preserve

LRD properties.
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(a) Autocorrelation lags between 1 and 50.
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(b) Autocorrelation lags between 1 and 500.

Figure 5.18: Autocorrelation functions for the exact self-similar FGN process,

five exponential, gamma, Pareto (α = 20.0), uniform and Weibull marginal

distributions in two different scales for H = 0.7. The output processes preserve

LRD properties.
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(b) Autocorrelation lags between 1 and 500.

Figure 5.19: Autocorrelation functions for the exact self-similar FGN process,

five exponential, gamma, Pareto (α = 20.0), uniform and Weibull marginal

distributions in two different scales for H = 0.8. The output processes preserve

LRD properties.
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generated sequences obtained using the ICDF transformation. We give 95%

confidence intervals for the means in parentheses.

Exponential Marginal Distribution

For H = 0.6 and 0.7, and all lags, mean values of the difference, ∆ACF, be-

tween the ACF of the original exact self-similar FGN process and the ACF

transformed using the exponential marginal distribution are below 1%, as

shown Tables 5.8 – 5.9. For H = 0.8 and low lags between 50 and 150, those

are less than 2%, but for high lags, those are below 1%. For H = 0.9 and all

lags, those are less than 4%.

Gamma Marginal Distribution

Tables 5.10 – 5.11 show that, for H = 0.6, 0.7 and 0.8, and all lags, all differ-

ences are below 1%, except for H = 0.9 and lags between 50 and 300, those

are below 2%.

Pareto Marginal Distribution

These results obtained for the Pareto marginal distribution with α = 20.0 in

Tables 5.12 – 5.13 show the same trend as the exponential marginal distribu-

tion.

Uniform and Weibull Marginal Distributions

Tables 5.14 – 5.17 show that, for H = 0.6, 0.7, 0.8 and 0.9, and all lags, those

obtained for the uniform and Weibull marginal distributions are below 1%.

Thus, for H = 0.6, 0.7, 0.8 and 0.9, and autocorrelation lags between 50

and 500, this is evidence of the preservation of the original ACF after the ICDF

transformation is applied, except the Pareto marginal distribution with α =

1.2, 1.4, 1.6 and 1.8.
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5.4 Conclusions

5.4 Conclusions

We investigated how well the LRD self-similarity and ACFs of the original

processes were preserved when the self-similar processes were converted into

suitable self-similar processes with five exponential, gamma, Pareto, uniform

and Weibull marginal distributions. We used the ICDF transformation to

Table 5.8: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

exponential marginal distribution forH = 0.6 and 0.7. We give 95% confidence

intervals for the means in parentheses.

∆ACF

Lag 0.6 0.7

50 +1.302e-03 +4.958e-03

(+6.533e-04, +1.951e-03) (+4.212e-03, +5.705e-03)

100 +1.088e-03 +3.611e-03

(+4.376e-04, +1.738e-03) (+2.885e-03, +4.337e-03)

150 +4.605e-04 +2.193e-03

(-2.524e-04, +1.173e-03) (+1.480e-03, +2.905e-03)

200 +6.947e-04 +2.334e-03

(+1.102e-05, +1.378e-03) (+1.580e-03, +3.088e-03)

250 +3.128e-04 +1.651e-03

(-3.849e-04, +1.011e-03) (+8.872e-04, +2.416e-03)

300 +2.245e-04 +1.358e-03

(-4.650e-04, +9.141e-04) (+6.380e-04, +2.078e-03)

350 -2.937e-05 +9.952e-04

(-7.232e-04, +6.645e-04) (+2.810e-04, +1.709e-03)

400 -8.934e-06 +9.604e-04

(-6.750e-04, +6.571e-04) (+2.300e-04, +1.691e-03)

450 +4.430e-04 +1.116e-03

(-2.672e-04, +1.153e-03) (+3.553e-04, +1.877e-03)

500 +2.085e-04 +8.998e-04

(-4.879e-04, +9.048e-04) (+1.765e-04, +1.623e-03)
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produce self-similar processes with five different marginal distributions for the

stochastic simulation of telecommunication networks with self-similar teletraf-

fic. Our results presented in this chapter provide clear experimental evidence

that the LRD self-similarity of the input process is not preserved in the output

process generated by transformation (5.2), if the output process has an infinite

variance. On the basis of our results we formulate the following hypothesis:

Table 5.9: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

exponential marginal distribution forH = 0.8 and 0.9. We give 95% confidence

intervals for the means in parentheses.

∆ACF

Lag 0.8 0.9

50 +1.516e-02 +3.226e-02

(+1.388e-02, +1.643e-02) (+2.901e-02, +3.550e-02)

100 +1.153e-02 +2.769e-02

(+1.034e-02, +1.272e-02) (+2.465e-02, +3.073e-02)

150 +8.489e-03 +2.329e-02

(+7.341e-03, +9.637e-03) (+2.026e-02, +2.632e-02)

200 +7.910e-03 +2.194e-02

(+6.793e-03, +9.027e-03) (+1.910e-02, +2.477e-02)

250 +6.955e-03 +2.097e-02

(+5.731e-03, +8.179e-03) (+1.794e-02, +2.401e-02)

300 +6.158e-03 +1.945e-02

(+5.067e-03, +7.249e-03) (+1.658e-02, +2.231e-02)

350 +5.396e-03 +1.801e-02

(+4.379e-03, +6.412e-03) (+1.536e-02, +2.067e-02)

400 +5.182e-03 +1.737e-02

(+4.031e-03, +6.332e-03) (+1.439e-02, +2.036e-02)

450 +5.030e-03 +1.653e-02

(+3.943e-03, +6.118e-03) (+1.382e-02, +1.923e-02)

500 +4.376e-03 +1.541e-02

(+3.200e-03, +5.553e-03) (+1.241e-02, +1.840e-02)
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Hypothesis: If transformation (5.2) is applied to self-similar LRD pro-

cesses with normal marginal distributions, then it preserves H parameter

and ACF of the input process if the output marginal distribution has a

finite variance.

Table 5.10: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

gamma marginal distribution for H = 0.6 and 0.7. We give 95% confidence

intervals for the means in parentheses.

∆ACF

Lag 0.6 0.7

50 +8.361e-04 +2.873e-03

(+3.519e-04, +1.320e-03) (+2.329e-03, +3.418e-03)

100 +7.161e-04 +2.125e-03

(+2.411e-04, +1.191e-03) (+1.607e-03, +2.643e-03)

150 +2.736e-04 +1.217e-03

(-2.570e-04, +8.042e-04) (+6.898e-04, +1.744e-03)

200 +4.759e-04 +1.387e-03

(-2.985e-05, +9.817e-04) (+8.331e-04, +1.940e-03)

250 +2.467e-04 +9.800e-04

(-2.710e-04, +7.644e-04) (+4.116e-04, +1.548e-03)

300 +1.547e-04 +7.784e-04

(-3.606e-04, +6.701e-04) (+2.446e-04, +1.312e-03)

350 -9.028e-06 +5.453e-04

(-5.193e-04, +5.013e-04) (+2.730e-05, +1.063e-03)

400 -7.247e-05 +4.767e-04

(-5.678e-04, +4.229e-04) (-6.574e-05, +1.019e-03)

450 +3.181e-04 +6.613e-04

(-2.034e-04, +8.397e-04) (+1.140e-04, +1.209e-03)

500 +1.271e-04 +4.644e-04

(-4.023e-04, +6.566e-04) (-7.901e-05, +1.008e-03)
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Further research work is needed to investigate exact values of preservation

of the second-order LRD self-similarity when transforming second-order self-

similar processes into processes with arbitrary marginal distributions.

Table 5.11: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

gamma marginal distribution for H = 0.8 and 0.9. We give 95% confidence

intervals for the means in parentheses.

∆ACF

Lag 0.8 0.9

50 +8.390e-03 +1.752e-02

(+7.471e-03, +9.309e-03) (+1.527e-02, +1.976e-02)

100 +6.485e-03 +1.514e-02

(+5.655e-03, +7.315e-03) (+1.301e-02, +1.727e-02)

150 +4.559e-03 +1.243e-02

(+3.742e-03, +5.377e-03) (+1.028e-02, +1.458e-02)

200 +4.398e-03 +1.177e-02

(+3.605e-03, +5.191e-03) (+9.762e-03, +1.377e-02)

250 +3.860e-03 +1.149e-02

(+2.977e-03, +4.743e-03) (+9.350e-03, +1.362e-02)

300 +3.400e-03 +1.051e-02

(+2.629e-03, +4.171e-03) (+8.511e-03, +1.251e-02)

350 +2.964e-03 +9.788e-03

(+2.267e-03, +3.662e-03) (+7.939e-03, +1.164e-02)

400 +2.794e-03 +9.428e-03

(+1.972e-03, +3.615e-03) (+7.341e-03, +1.152e-02)

450 +2.790e-03 +9.066e-03

(+2.030e-03, +3.550e-03) (+7.183e-03, +1.095e-02)

500 +2.304e-03 +8.319e-03

(+1.479e-03, +3.129e-03) (+6.238e-03, +1.040e-02)
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Table 5.12: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

Pareto marginal distribution with α = 20.0 for H = 0.6 and 0.7. We give 95%

confidence intervals for the means in parentheses.

∆ACF

Lag 0.6 0.7

50 +5.772e-04 +4.687e-03

(-1.494e-04, +1.304e-03) (+3.912e-03, +5.461e-03)

100 +2.738e-04 +2.878e-03

(-3.514e-04, +8.990e-04) (+2.202e-03, +3.554e-03)

150 +4.438e-04 +2.525e-03

(-2.304e-04, +1.118e-03) (+1.790e-03, +3.260e-03)

200 +7.167e-05 +1.981e-03

(-6.693e-04, +8.126e-04) (+1.129e-03, +2.834e-03)

250 -4.079e-04 +1.163e-03

(-1.146e-03, +3.298e-04) (+3.492e-04, +1.976e-03)

300 +2.909e-05 +1.348e-03

(-7.067e-04, +7.649e-04) (+5.725e-04, +2.124e-03)

350 -1.519e-04 +1.032e-03

(-8.799e-04, +5.761e-04) (+2.501e-04, +1.815e-03)

400 +7.255e-04 +1.719e-03

(-5.164e-06, +1.456e-03) (+8.941e-04, +2.544e-03)

450 -8.491e-05 +8.165e-04

(-7.577e-04, +5.879e-04) (+8.781e-05, +1.545e-03)

500 +9.047e-05 +1.140e-03

(-6.734e-04, +8.543e-04) (+2.972e-04, +1.982e-03)
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Table 5.13: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

Pareto marginal distribution with α = 20.0 for H = 0.8 and 0.9. We give 95%

confidence intervals for the means in parentheses.

∆ACF

Lag 0.8 0.9

50 +1.622e-02 +3.648e-02

(+1.502e-02, +1.743e-02) (+3.306e-02, +3.991e-02)

100 +1.169e-02 +3.063e-02

(+1.053e-02, +1.285e-02) (+2.720e-02, +3.407e-02)

150 +1.040e-02 +2.912e-02

(+9.151e-03, +1.164e-02) (+2.559e-02, +3.264e-02)

200 +9.090e-03 +2.683e-02

(+7.770e-03, +1.041e-02) (+2.335e-02, +3.031e-02)

250 +7.337e-03 +2.380e-02

(+6.036e-03, +8.638e-03) (+2.034e-02, +2.725e-02)

300 +6.968e-03 +2.274e-02

(+5.765e-03, +8.170e-03) (+1.943e-02, +2.606e-02)

350 +6.168e-03 +2.118e-02

(+4.945e-03, +7.391e-03) (+1.784e-02, +2.453e-02)

400 +6.404e-03 +2.070e-02

(+5.136e-03, +7.672e-03) (+1.736e-02, +2.404e-02)

450 +5.105e-03 +1.862e-02

(+4.000e-03, +6.210e-03) (+1.548e-02, +2.175e-02)

500 +5.446e-03 +1.867e-02

(+4.173e-03, +6.718e-03) (+1.529e-02, +2.205e-02)
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Table 5.14: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

uniform marginal distribution for H = 0.6 and 0.7. We give 95% confidence

intervals for the means in parentheses.

∆ACF

Lag 0.6 0.7

50 +8.645e-05 +9.570e-04

(-2.202e-04, +3.931e-04) (+6.415e-04, +1.273e-03)

100 -1.389e-04 +3.895e-04

(-4.349e-04, +1.570e-04) (+7.050e-05, +7.086e-04)

150 +2.516e-04 +8.735e-04

(-6.356e-05, +5.667e-04) (+5.556e-04, +1.192e-03)

200 +2.339e-04 +6.848e-04

(-4.758e-05, +5.154e-04) (+3.827e-04, +9.870e-04)

250 +3.628e-04 +6.785e-04

(+4.610e-06, +7.209e-04) (+3.217e-04, +1.035e-03)

300 -7.109e-05 +2.690e-04

(-4.009e-04, +2.587e-04) (-5.927e-05, +5.973e-04)

350 +3.580e-04 +5.128e-04

(+7.363e-05, +6.424e-04) (+2.167e-04, +8.089e-04)

400 +3.474e-06 +3.751e-04

(-3.268e-04, +3.337e-04) (+4.710e-05, +7.031e-04)

450 +1.056e-04 +3.138e-04

(-2.433e-04, +4.546e-04) (-2.996e-05, +6.575e-04)

500 -6.386e-05 +6.514e-05

(-4.233e-04, +2.956e-04) (-2.892e-04, +4.195e-04)
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Table 5.15: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

uniform marginal distribution for H = 0.8 and 0.9. We give 95% confidence

intervals for the means in parentheses.

∆ACF

Lag 0.8 0.9

50 +3.761e-03 +9.843e-03

(+3.378e-03, +4.145e-03) (+8.740e-03, +1.095e-02)

100 +2.443e-03 +7.592e-03

(+2.033e-03, +2.852e-03) (+6.453e-03, +8.730e-03)

150 +2.601e-03 +6.947e-03

(+2.242e-03, +2.961e-03) (+5.852e-03, +8.042e-03)

200 +2.048e-03 +5.884e-03

(+1.641e-03, +2.456e-03) (+4.763e-03, +7.005e-03)

250 +1.885e-03 +5.509e-03

(+1.477e-03, +2.294e-03) (+4.393e-03, +6.625e-03)

300 +1.442e-03 +4.591e-03

(+1.041e-03, +1.844e-03) (+3.470e-03, +5.712e-03)

350 +1.488e-03 +4.441e-03

(+1.113e-03, +1.863e-03) (+3.346e-03, +5.536e-03)

400 +1.344e-03 +4.422e-03

(+9.432e-04, +1.744e-03) (+3.239e-03, +5.606e-03)

450 +1.297e-03 +4.273e-03

(+9.223e-04, +1.672e-03) (+3.172e-03, +5.373e-03)

500 +9.019e-04 +3.918e-03

(+4.688e-04, +1.335e-03) (+2.643e-03, +5.193e-03)
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Table 5.16: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

Weibull marginal distribution for H = 0.6 and 0.7. We give 95% confidence

intervals for the means in parentheses.

∆ACF

Lag 0.6 0.7

50 -1.073e-04 +3.811e-04

(-3.573e-04, +1.427e-04) (+1.155e-04, +6.466e-04)

100 -2.009e-04 +1.149e-04

(-4.358e-04, +3.398e-05) (-1.266e-04, +3.564e-04)

150 +4.847e-05 +3.632e-04

(-2.069e-04, +3.038e-04) (+1.056e-04, +6.208e-04)

200 -8.680e-05 +1.614e-04

(-3.651e-04, +1.915e-04) (-1.454e-04, +4.681e-04)

250 -8.478e-05 +1.366e-04

(-3.452e-04, +1.757e-04) (-1.539e-04, +4.271e-04)

300 -6.725e-05 +1.189e-04

(-3.386e-04, +2.041e-04) (-1.614e-04, +3.992e-04)

350 +4.888e-05 +1.839e-04

(-2.158e-04, +3.136e-04) (-8.609e-05, +4.540e-04)

400 +1.576e-04 +3.006e-04

(-1.059e-04, +4.212e-04) (+9.089e-06, +5.921e-04)

450 -7.474e-05 +5.913e-05

(-3.321e-04, +1.827e-04) (-2.060e-04, +3.242e-04)

500 -1.222e-05 +1.543e-04

(-2.902e-04, +2.657e-04) (-1.377e-04, +4.464e-04)
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Table 5.17: Mean values of the difference, ∆ACF, between the ACF of the

original exact self-similar FGN process and the ACF transformed using the

Weibull marginal distribution for H = 0.8 and 0.9. We give 95% confidence

intervals for the means in parentheses.

∆ACF

Lag 0.8 0.9

50 +1.853e-03 +4.327e-03

(+1.441e-03, +2.265e-03) (+3.234e-03, +5.421e-03)

100 +1.205e-03 +3.445e-03

(+8.247e-04, +1.585e-03) (+2.370e-03, +4.520e-03)

150 +1.450e-03 +3.752e-03

(+1.057e-03, +1.843e-03) (+2.643e-03, +4.862e-03)

200 +1.088e-03 +3.283e-03

(+6.629e-04, +1.512e-03) (+2.178e-03, +4.388e-03)

250 +8.725e-04 +2.691e-03

(+4.367e-04, +1.308e-03) (+1.602e-03, +3.780e-03)

300 +8.366e-04 +2.641e-03

(+4.505e-04, +1.223e-03) (+1.626e-03, +3.656e-03)

350 +8.010e-04 +2.474e-03

(+4.554e-04, +1.147e-03) (+1.530e-03, +3.418e-03)

400 +8.707e-04 +2.511e-03

(+4.568e-04, +1.285e-03) (+1.510e-03, +3.512e-03)

450 +6.112e-04 +2.210e-03

(+2.588e-04, +9.637e-04) (+1.309e-03, +3.111e-03)

500 +7.417e-04 +2.385e-03

(+3.488e-04, +1.135e-03) (+1.446e-03, +3.324e-03)
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Chapter 6

MODELLING AND

GENERATION OF

SELF-SIMILAR VBR VIDEO

TRAFFIC

6.1 Introduction

Teletraffic in the Internet is rapidly growing and diversifying, and there is a

strong need for QoS support in high-speed communication networks [34], [66].

The introduction of many new multimedia services requires a high bandwidth

to transport data such as real-time digital video. Modern computer networks

can no longer cope with uncompressed multimedia traffic, resulting in the

development of several image and video compression standards such as the

Joint Bilevel Imaging Group (JBIG), the Joint Photographic Experts Group

(JPEG) and the Moving Picture Experts Group (MPEG). In this chapter we

focus on VBR JPEG/MPEG video, i.e., on video streams compressed accord-

ing to JPEG and MPEG standards and transmitted as VBR (Variable Bit

Rate) components of an ATM network.

There are a number of research issues concerning the transmission of JPEG/

MPEG video over modern high speed computer networks, such as the dimen-

sioning of multiplexer buffers and monitoring of video cell streams. These
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problems have been studied intensively over the last ten years in order to pro-

vide a consistent and desirable QoS for JPEG/MPEG video traffic, construct

accurate models for JPEG/MPEG video traffic and utilise efficient resource

allocation techniques. We look at the influence of compression algorithms on

correlation structure of compressed teletraffic, see Section 6.4, where results of

compression of Star Wars video under JPEG and MPEG-1 are discussed.

A number of researchers tried to fit a specific mathematical model to traces

of real VBR video traffic. For example, several models (based on gamma

[60], lognormal [83], and combined gamma/Pareto [42], [81]) have been sug-

gested for VBR video traffic. Heyman et al. [60] used a 30-minute compressed

video-teleconferencing sequence for simulation studies using the gamma model.

Krunz et al. [83] used a 23-minute movie, The Wizard of Oz, to study statistical

characteristics of VBR MPEG-coded video streams using the lognormal model.

The gamma model for video traffic became inaccurate in the tail of distribu-

tion, and the lognormal model was too heavy-tailed at first and then fell off too

rapidly. Garrett and Willinger [42] used a two-hour VBR video, Star Wars,

and proposed a hybrid gamma/Pareto model based on the F-ARIMA process

(see Section 6.3). They found that the tail behaviour of the marginal distribu-

tion can be accurately described using the heavy-tailed Pareto distributions.

They also found that the autocorrelation of the VBR video sequence decays

more hyperbolically than exponentially and can be modelled using self-similar

processes.

Huang et al. [64] presented a unified approach to modelling VBR video

traffic using both SRD and LRD empirical ACFs. The approach consists of

the following four steps: (i) estimation of the Hurst parameter H from a video

trace using variance-time and R/S-statistic estimators; (ii) modelling the ACF

for a video trace; (iii) measurement of the “attenuation” factor using the ACF

of Hosking’s F-ARIMA processes in Equation (4.19); and (iv) generation a pro-

cess with the desired ACF using the ICDF transformation. They applied this

approach to 2 hours’ trace of Last Action Hero video. Their approach is poten-

tially accurate, but establishing an automatic search for the best background

ACF remains an open problem.

Lombardo et al. [97] proposed the generation of pseudo-MPEG video traffic

with a specific correlation structure based on FFT [124] and an ICDF trans-

formation, assuming an arbitrary marginal distribution of the output process.
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The proposed algorithm has been used to generate a sequence with the same

statistical characteristics as those of the movie “The Simpsons”, however, the

robustness of this algorithm remains an issue open to further investigation.

Applicability of gamma/Pareto model as marginal distributions of compressed

video streams is discussed in Section 6.4, where we look at accuracy of this

approximation in relation to data coming from different videos (Star Wars

and Titanic) compressed under three different algorithms (JPEG, MPEG-1

and MPEG-2).

We also show that synthetically generated streams of VBR video, com-

pressed under such standards as JPEG, MPEG-1 and MPEG-2, are statisti-

cally similar to real video traces. We also present the results of a steady-state

simulation of a single buffer fed by these synthetic video streams, in order to

show that simulations based on synthetic streams of teletraffic can give the

same qualitative and quantitative results as simulations based on real traces

of VBR video.

6.2 JPEG/MPEG Video Compression

Several algorithms have been developed to compress video data, in order to

reduce the memory required for their storage, the time or bandwidth necessary

for their transmission, and the effective data access or transfer rate.

A joint committee of the International Telegraph and Telephone Consulta-

tive Committee (CCITT) and the International Organisation for Standardisa-

tion (ISO) formed the JPEG still-image standard in 1986. The goal of JPEG

was to develop a general-purpose compression algorithm for continuous-tone,

still-frame, monochrome and colour images. The JPEG standard comprises

four main components: sequential (baseline) DCT (discrete cosine transform),

hierarchical, progressive DCT and lossless, as shown in Figure 6.1 [132], [161].

A baseline component provides a simple and efficient algorithm that is ade-

quate for most image coding applications. A set of extended system features al-

lows the baseline component to satisfy a broader range of applications. Among

these optional features are 12-bit/pixel input, progressive sequential and hier-

archical build-up, and arithmetic coding. An independent lossless method of

compression is included for applications that require it.
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Sequential
    DCT

Progressive
    DCT

Hierarchical

Baseline

Lossless

Figure 6.1: Four main components of the JPEG standard.

The MPEG coding scheme is widely used for video applications. MPEG

is a group for audio and video compression formed under the auspices of ISO

and the International Electrotechnical Commission (IEC) in 1988 [110]. The

MPEG standard comprises different types, such as MPEG-1, MPEG-2, . . . ,

MPEG-7, which have been designed to work in different situations. MPEG-

1 addresses the compression of video and associated audio for the storage

and retrieval of moving pictures and sound at a combined rate of about 1.5

Mbits/second (Mbps) using digital storage media (DSM).1 MPEG-2 allows an

interlaced format: video data streams consisting of two main layers. One is

a base layer containing the most important video data. The other is used to

improve the quality of video traffic. MPEG-2 is an extension of the MPEG-1

standard designed for broadcast television, including high-definition television

(HDTV). MPEG-2 supports a higher bandwidth of up to 40 Mbits per second,

five audio channels, a wider range of frame sizes, and interlaced video.

We focus on MPEG-1 and MPEG-2 of the MPEG standard family. MPEG-

2 uses encoders from the MPEG-1 scheme, and in the case of multi-layer

encoding, the statistical properties of its base layer are almost identical to

MPEG-1. A video sequence is simply a series of pictures taken at closely

spaced time intervals starting with a sequence header. The sequence header is

1The definition of DSM is broad enough to include CD-ROM, digital audio tape, writable
optical disks, as well as computer and telecommunication networks such as an integrated
services digital network and a local area network.
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I     B     B     P    B     B     P    B     B     P     B     B    I

1     2     3     4     5     6     7     8      9     10   11   12    1

Forward Prediction

Bidirectional Prediction

Figure 6.2: A typical MPEG group of pictures (GOP) in display order.

followed by one or more group(s) of pictures (GOP) and ends with a sequence

end code. Additional sequence headers may appear between any GOP within

the video sequence. This is achieved by using three types of frames [110]:

• Intra-coded picture (I-frame): coded independently from all other frames,

based on DCT and entropy coding.

• Predictive-coded picture (P-frame): coded based on a prediction from a

past I- or P-frame.

• Bi-directionally predictive-coded picture (B-frame): coded based on a

prediction from a past and/or future I- or P-frame.

Only I- and P-frames can be used as a reference for past and/or future

prediction. An ordered collection of I-, P- and B-frames is called a group

of pictures. The proportion of I-, P- and B-frames is application-dependent

and is left to the user. For example, for many scenes, spacing the refer-

ence frames at about one-twelfth of a second interval seems appropriate, i.e.,
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Table 6.1: Parameters for generating the Titanic video sequence.

Parameters Values

Coding algorithm DCT

Duration 3 hours

Video frames 285890 (I-, P- and B-frames only)

Frame dimensions 720 x 576 pixels

Pixel resolution 24 bits/pixel (colour)

Frame rate 29.97/second

Average bandwidth 692150 bytes/second

Average compression rate 53.87

A group of pictures 15 frames (IBBPBBPBBPBBPBB)

IBBPBBPBBPBB. . .. Figure 6.2 shows the MPEG GOP pattern used by

Garrett and Willinger [42] to encode the MPEG-1 version of Star Wars.

The GOP has a picture header followed by one or more slices. In turn, each

slice comprises a slice header and one or more groups of DCT blocks called

macroblocks. The first slice starts in the upper left corner of the picture and

the last slice ends in the lower right corner. The macroblock is a group of

six 8 x 8 DCT blocks: four blocks contain luminance samples and two con-

tain chrominance samples. Each macroblock starts with a macroblock header

containing information on which DCT blocks are actually coded.

We encoded three hours of Titanic video to obtain a realistic full-length

trace of video traffic. This will be used as a control reference self-similar trace

in our investigations. Parameters of the sequence are summarised in Table 6.1.

We chose MPEG-2 to obtain encoded frame sequences of our trace. In this

chapter we will use the following three self-similar sequences:

• Sequence A: two hours of Star Wars video encoded by JPEG [42]

• Sequence B: two hours of Star Wars video encoded by MPEG-1 [42]

• Sequence C: three hours of Titanic video encoded by MPEG-2.
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The last trace was obtained by taking a sample that was approximately

50% longer than Sequence A and B.

6.3 Modelling for Self-Similar VBR Video Traf-

fic

Following the recommendation of Garrett and Willinger [42], we chose to use

the combined gamma/Pareto model for VBR video traffic. They along with

Krunz and Makowski [81], showed that the gamma distribution can be used

to capture the main part of the empirical distribution, but is inappropriate for

the tail. Addition of a heavy-tailed Pareto distribution corrects this, as shown

in Figure 6.3.

Let FΓ and FP be the CDF for the gamma and Pareto distributions, re-

spectively. Note that FΓ has no closed form of the CDF when αΓ, the shape

parameter of the gamma distribution assumes non-integer values. The gamma

distribution has a PDF given by

fΓ(x) =

{
0, for x ≤ 0,
β
−αΓ
Γ e−x/βΓxαΓ−1

Γ(αΓ)
, for x > 0,

(6.1)

where αΓ is the shape parameter, αΓ > 0, βΓ is the scale parameter, βΓ > 0,

and Γ(αΓ) is the gamma function. If αΓ is a positive integer, then the CDF

for the gamma distribution is given by Equation (5.5).

The PDF fP (x) and CDF FP (x) of the Pareto distribution are given as:

fP (x) = αP b
αP
P x−(αP +1), for 1 ≤ x ≤ ∞, (6.2)

and

FP (x) =

{
0, for x < 1,

1− ( bP

x

)αP
, for 1 ≤ x ≤ ∞, (6.3)

where αP is the shape parameter, αP > 0, and bP is the minimum allowed

value of x, 0 < bP ≤ x.

Thus, the combined gamma/Pareto distribution is determined by
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6.3 Modelling for Self-Similar VBR Video Traffic

fΓ/P (x) =

{
fΓ(x), for x ≤ x∗,

fP (x), for x > x∗,
(6.4)

or by

FΓ/P (x) =




0, for x ≤ 0,

FΓ(x), for 0 < x ≤ x∗,

FP (x), for x > x∗.

(6.5)

The complementary CDFs of FΓ(x) and FP (x) can be used to determine

x∗ in Equation (6.5). The parameters of the gamma distribution are obtained

by matching the first and second moments of the empirical sequence to those

of a gamma random variate. x∗ can be obtained graphically by inspecting the

tail behaviour of the empirical distribution, and determining where it starts

to deviate from the tail of the gamma curve. The values of bP and αP for the

estimated Pareto distribution can be obtained by finding x = x∗ for which the

least-square fit of the Pareto tail gives FΓ(x) = FP (x). Figures 6.3 – 6.5 show

log-log plots of gamma and Pareto complementary CDF for real VBR video

traffic. While the gamma curve fits the main part of the empirical video traffic

well, the Pareto curve closely fits its tail part. Applying this method, we have

determined values of x∗ for all three samples; see Table 6.2.

Given a self-similar sequence of the FGN-DW process X, we can transform

the marginal distribution by mapping each point as

Zi = F−1
Γ/P (FN(Xi)), i = 1, 2, . . . , (6.6)

where FN(·) is the CDF of the normal distribution and F−1
Γ/P (·) is the inverse

CDF of the combined gamma/Pareto model given by

F−1
Γ/P (y) =

{
F−1

Γ (y), for y ≤ 1− (bP/x
∗)αP ,

F−1
P (y) = bP/(1− y)1/αP , for y > 1− (bP/x

∗)αP .
(6.7)

Note that for computing F−1
Γ (y), we used the Newton-Raphson technique

mentioned in Section 5.2.1. Both the complete Star Wars video sequence in

Figure 6.6 and the synthetic sequence generated by Equation (6.6), based on

FGN-DW, and shown in Figure 6.7, look like self-similar. Figure 6.8 shows

the procedure for the generation of synthetic self-similar JPEG/MPEG video
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Figure 6.3: Complementary cumulative distributions of real Star Wars JPEG

video traffic, gamma/Pareto model.
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Figure 6.4: Complementary cumulative distributions of real Star Wars

MPEG-1 video traffic, gamma/Pareto model.
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Figure 6.5: Complementary cumulative distributions of real Titanic MPEG-2

video traffic, gamma/Pareto model.
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Figure 6.6: Sequence plot of two hours of real Star Wars JPEG video traffic.
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Figure 6.7: Sequence plot of two hours of synthetic FGN-DW traffic.
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6.3 Modelling for Self-Similar VBR Video Traffic

sequences. The procedure for the MPEG video consists of I-, P- and B-frames

of sequences generated from FGN-DW, which are then combined in I-, B-

and P-frame order (e.g., IBBPBBPBBPBBPBBI . . .) before transforming the

corresponding time series into time series with the gamma/Pareto marginal

distributions defined in Equation (6.6). The procedure for the JPEG synthetic

sequence generated from FGN-DW is simple, as shown in Figure 6.8. We used

the sequences obtained from the previous procedure for simulation studies of

VBR video traffic, which we describe in the next section.

Table 6.2: Estimated parameter values obtained from Star Wars and Titanic

video traffic utilising the combined gamma/Pareto model.

Parameters Estimated values
Star Wars JPEG Star Wars MPEG-1 Titanic MPEG-2

Length (frames) 171,000 174,136 285,890

Duration 2 hours 2 hours 3 hours

Compression Intra-frame MPEG-1 MPEG-2
algorithm
Sample mean 27,791 15,598 26,353

Standard dev. 6,254 18,165 11,600

Maximum 78,459 185,267 146,608

Minimum 8,622 476 12

Gamma αΓ 25.8 0.737 5.16
Gamma βΓ 1,100 21,154 5,106

Pareto αP 12.42 9.19 10.06

Pareto bP 30,000 51,500 37,800

x∗ 39,810 86,003 57,280
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6.4 Numerical Results

6.4.1 Analysis of Hurst Parameter Estimates for VBR

Video Traffic

The Hurst parameter estimates obtained from the wavelet-based H estimator

and Whittle’s MLE, have been used to analyse Star Wars JPEG, Star Wars

Start

Self-similar video sequence

                      
          Compression algorithm
          used to obtain synthetic 
               video sequence

MPEG

JPEG Generate a JPEG sequence
     using the FGN-DW 
              generator

Combine I-, P- and  B-frames

          Transform
a  marginal distribution

Generate an I-frame sequence
     using the FGN-DW 
              generator

Generate a P-frame sequence
     using the FGN-DW 
              generator

Generate a B-frame sequence
     using the FGN-DW 
              generator

Figure 6.8: Flowchart for the generation of synthetic self-similar video se-

quences.
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Table 6.3: Estimates of the Hurst parameter obtained from the wavelet-based

H estimator and Whittle’s MLE for Star Wars JPEG, Star Wars MPEG-1

and Titanic MPEG-2 video traffic. We give 95% confidence intervals for the

means of two estimators in parentheses.

Estimators Star Wars JPEG Star Wars MPEG-1 Titanic MPEG-2

Wavelet-based .8841(.879, .889) .8634(.859, .868) .9034(.895, .911)

Whittle’s MLE .8997(.887, .912) .8680(.855, .880) .8999(.886, .914)

MPEG-1 and Titanic MPEG-2 video sequences. Table 6.3 shows the estimates

of the Hurst parameter for the three video sequences. Comparing Star Wars

after JPEG and MPEG-1, we can formulate hypothesis that JPEG produces

stronger dependent output video sequences. Our results show 2% difference in

H parameter when using the wavelet-based H estimator, and 11% difference

when using Whittle’s MLE, see Table 6.3. On the other hand, two different

videos (Star Wars and Titanic) show that regardless of compression algorithm

resulted processes have the same marginal distribution well approximated by

our gamma/Pareto model. This can be regarded as generalisation of a finding

by Garrett and Willinger [42] who showed that gamma/Pareto model is a

good approximation of marginal distributions for Star Wars compressed under

JPEG.

Figure 6.9 depicts the wavelet-based H estimator curve of three hours of

real Titanic video traffic. The wavelet-based H estimator calculates Ĥ =

0.9034, shown in Table 6.3. Estimate of the Hurst parameter Ĥ obtained from

Whittle’s MLE is 0.8999. Figure 6.10 shows higher levels of data correlation

for I-, P-, B- and all frames. The Hurst parameter estimates for the Star Wars

JPEG and Star Wars MPEG-1 video sequences are also given in Table 6.3

[42].

6.4.2 Simulation Results of the VBR Video Traffic Model

We investigated frame loss probabilities of VBR video traffic obtained from

the gamma/Pareto model using a queueing system with self-similar input.

The frame loss probabilities are defined as the ratio of the number of lost
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frames and total number of transmitted frames in a finite buffer system during

a given period of the time. The queueing system consists of a single-server

FIFO queue with a finite buffer size B and a constant service rate µ, using

estimated parameter values in Table 6.2. We compared the performance of the

original Star Wars JPEG sequence, the Star Wars MPEG-1 sequence and the

Titanic MPEG-2 sequence using our queueing model.

Figures 6.11 – 6.13 show quantile-quantile plots for the distribution of

frame sizes in bytes of real VBR video traffic, (i.e., Star Wars JPEG, Star

Wars MPEG-1, and Titanic MPEG-2), and the combined gamma/Pareto

model based on FGN-DW. We observed that although the compression al-

gorithms used for encoding the various videos were different, the combined

model fits the real traffic statistic well. Note especially that the distribution

of the gamma/Pareto model matches the real Star Wars JPEG video traffic

well.

Figures 6.14 – 6.17 show that the ACF of the combined gamma/Pareto

model also fit the empirical video traffic statistic well. The ACF curve of the
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26

27

28

29

30

31

32

33

34

Wavelet−based Estimator of H for Titanic [ (j
1
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2
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Figure 6.9: Wavelet-based estimator Ĥ of three hours of real Titanic video

traffic.
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Figure 6.10: I-, P-, B- and all-frames plot of three-hours of real Titanic video

traffic.

177



6.4 Numerical Results

gamma/Pareto model at large lags (i.e., lags > 1,800) fit the real Star Wars

JPEG video traffic well, but the model slightly underestimated at small lags.

The ACF curves in Figures 6.15 – 6.16 also oscillated more than the one in Fig-

ure 6.14, due to the MPEG format. Furthermore, the autocorrelation structure

in Figure 6.15 oscillated more than that in Figure 6.16 because they use dif-

ferent frame formats (i.e., while every 12th frame in Figure 6.15 is an I-frame,

every 15th frame in Figure 6.16 is an I-frame). In addition, we found strong

evidence of LRD, as all ACF curves obtained from the real video traffic and

the gamma/Pareto model decayed slowly, while the SRD (i.e., Poisson model)

in Figure 6.14 decayed quickly. The frame loss probability as a measurement

of performance was examined at traffic intensities ρ = 0.6 and 0.8.

Star Wars JPEG Video Traffic

Figures 6.18 and 6.19 show the simulation results of real video traffic, the

combined gamma/Pareto model and the SRD model at traffic intensities ρ =

0.6 and ρ = 0.8, respectively (for distances between the curves, see Tables 6.4

and 6.5). (Note that “Real Traffic - Model” in Tables 6.4 – 6.9 means the mean

value of the difference between the frame loss probability for real video traffic

(“Real Traffic”) and the frame loss probability in the combined gamma/Pareto

model (“Model”). “Real Traffic - SRD” means the mean value of the difference

between the frame loss probability for real video traffic (“Real Traffic”) and

the frame loss probability in the SRD model (“SRD”). “Model - SRD” means

the mean value of the difference between the frame loss probability in the

combined gamma/Pareto model (“Model”) and the frame loss probability in

the SRD model (“SRD”).)

The results of the gamma/Pareto model were averaged over 30 replications.

The frame loss probabilities of the gamma/Pareto model in Figure 6.18 at

ρ = 0.6 matched the real video traffic represented by the real Star Wars trace

well for buffer sizes up to about 1,300 bytes. In the case of larger buffer

sizes, discrepancies between the results for the trace of the real and artificial

traffic has been most likely caused by the finite length of the real traffic trace

we used. Figure 6.19 shows that the gamma/Pareto model based on FGN-

DW matched the real video traffic well for buffer sizes up to about 2,300

bytes. Both the real video traffic and the gamma/Pareto model frame loss
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probabilities tended to decrease much more slowly than those of the SRD model

as buffer sizes increased. In other words, as in Tsybakov and Georganas [166],

our analysis reveals that the frame loss probabilities shown in both figures

decayed hyperbolically with increasing buffer size. Our results also show that

the frame loss probabilities of the real video traffic and the gamma/Pareto

model are much higher than those of the SRD model.

Star Wars MPEG-1 Video Traffic

Figures 6.20 and 6.21 show the simulation results of real Star Wars MPEG-1

video traffic, the gamma/Pareto model and the SRD model at traffic intensities

ρ = 0.6 and 0.8; see also Tables 6.6 and 6.7. For ρ = 0.6, the frame loss proba-

bilities of the gamma/Pareto model matched the real traffic well. However, for

ρ = 0.8, the frame loss probabilities of the gamma/Pareto model were under-

estimated slightly more than those of the real Star Wars MPEG-1 video traffic

when the buffer size was greater than 800. As we expected, curves of the real

Star Wars MPEG-1 video traffic and the gamma/Pareto model decayed much

more slowly than the SRD model and oscillated more with increasing buffer

size than those obtained from the Star Wars JPEG because of the typical

MPEG GOP pattern.

Titanic MPEG-2 Video Traffic

Figures 6.22 and 6.23 show the frame loss probabilities of real Titanic MPEG-

2 video traffic, the combined gamma/Pareto model and the SRD model at

ρ = 0.6 and 0.8 (see also Tables 6.8 and 6.9). Both figures show that the

gamma/Pareto model based on FGN-DW matched the real video traffic well

over all buffer sizes. These results also show that the two curves of real Titanic

MPEG-2 video traffic and the gamma/Pareto model decreased more quickly

than the Star Wars JPEG video traffic, but less quickly than the Star Wars

MPEG-1 video traffic because of the frame format (every 15th frame is an

I-frame). The sudden changes in frame loss probabilities in Figure 6.23 might

have been caused by an insufficient length of data. As with the Star Wars

MPEG-1 video, the decay demonstrated by the graphical curves of the real
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Figure 6.11: Distributions of real Star Wars JPEG video traffic and traffic

from the gamma/Pareto models.
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Figure 6.12: Distributions of real Star Wars MPEG-1 video traffic and traffic

from the gamma/Pareto models.
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Figure 6.13: Distributions of real Titanic MPEG-2 video traffic and traffic

from the gamma/Pareto models.
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Figure 6.14: ACF of real Star Wars JPEG video traffic and traffic from the

gamma/Pareto models.
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Figure 6.15: ACF of real Star Wars MPEG-1 video traffic and traffic from

the gamma/Pareto models.
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Figure 6.16: ACF of real Titanic MPEG-2 video traffic and traffic from the

gamma/Pareto models.
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Figure 6.17: ACFs of I-, B-, and P-frames of real Star Wars MPEG-1, Titanic

MPEG-2 video traffic and traffic estimated by gamma/Pareto models.
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Figure 6.18: Frame loss probabilities of real Star Wars JPEG video traffic

and the combined gamma/Pareto model (ρ = 0.6).
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Figure 6.19: Frame loss probabilities of real Star Wars JPEG video traffic

and the combined gamma/Pareto model (ρ = 0.8).

183



6.4 Numerical Results

20 40 60 80 100
−25

−20

−15

−10

−5

0

Buffer Size

 lo
g1

0(F
ra

m
e 

Lo
ss

 P
ro

ba
bi

lity
)

 Star Wars   
Gamma/Pareto Model
SRD Model         

Figure 6.20: Frame loss probabilities of real Star Wars MPEG-1 video traffic

and the combined gamma/Pareto model (ρ = 0.6).
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Figure 6.21: Frame loss probabilities of real Star Wars MPEG-1 video traffic

and the combined gamma/Pareto model (ρ = 0.8).
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video traffic and the gamma/Pareto model was significantly slower than in the

SRD model.

Table 6.4: Mean values of difference between the curves of frame loss proba-

bilities of real Star Wars JPEG video traffic and the combined gamma/Pareto

model (ρ = 0.6) in Figure 6.18.

Buffer Size Real Traffic - Model Real Traffic - SRD Model - SRD

100 1.9533e-01 3.5933e-01 1.6400e-01

200 8.3619e-02 1.9072e-01 1.0710e-01

300 5.3935e-02 1.3564e-01 8.1700e-02

400 2.3107e-02 8.3117e-02 6.0010e-02

500 1.0624e-02 5.8064e-02 4.7440e-02

600 1.3792e-02 5.4392e-02 4.0600e-02

700 1.7120e-03 3.7538e-02 3.9250e-02

800 1.2780e-03 3.2152e-02 3.3430e-02

900 5.1604e-03 2.3860e-02 2.9020e-02

1000 6.6463e-03 2.1164e-02 2.7810e-02

1100 4.6164e-03 1.8094e-02 2.2710e-02

1200 7.2675e-03 2.0018e-02 1.2750e-02

1300 2.6802e-03 1.2930e-02 1.5610e-02

1400 2.2480e-02 1.3112e-07 2.2480e-02

1500 8.1637e-03 8.8363e-03 1.7000e-02

1600 1.8620e-02 5.1811e-08 1.8620e-02

1700 7.0436e-04 8.3216e-03 9.0260e-03

1800 1.2858e-02 4.1521e-03 1.7010e-02

1900 1.3570e-02 1.7601e-09 1.3570e-02

2000 2.7068e-02 1.9911e-06 2.7070e-02

2100 2.5080e-02 0.0000e+00 2.5080e-02

2200 2.4810e-02 0.0000e+00 2.4810e-02

2300 7.3140e-03 0.0000e+00 7.3140e-03

2400 8.3320e-03 0.0000e+00 8.3320e-03

2500 4.1750e-03 0.0000e+00 4.1750e-03
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Figure 6.22: Frame loss probabilities of real Titanic MPEG-2 video traffic

and the combined gamma/Pareto model (ρ = 0.6).
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Figure 6.23: Frame loss probabilities of real Titanic MPEG-2 video traffic

and the combined gamma/Pareto model (ρ = 0.8).
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6.5 Conclusions

We showed how pseudo-random self-similar sequences can be applied to pro-

duce a model of teletraffic associated with the transmission of VBR JPEG/MPEG

Table 6.5: Mean values of difference between the curves of frame loss proba-

bilities of real Star Wars JPEG video traffic and the combined gamma/Pareto

model (ρ = 0.8) in Figure 6.19.

Buffer Size Real Traffic - Model Real Traffic - SRD Model - SRD

100 4.8845e-02 4.9454e-01 4.4570e-01

200 2.4524e-02 3.5592e-01 3.3140e-01

300 1.4122e-01 4.3252e-01 2.9130e-01

400 7.9468e-02 3.5167e-01 2.7220e-01

500 1.4860e-02 2.6226e-01 2.4740e-01

600 4.8633e-02 2.6343e-01 2.1480e-01

700 6.0480e-03 2.2815e-01 2.3420e-01

800 1.4609e-01 3.2509e-01 1.7900e-01

900 5.2323e-02 1.5988e-01 2.1220e-01

1000 1.7216e-02 1.8522e-01 1.6800e-01

1100 4.7065e-02 1.7886e-01 1.3180e-01

1200 5.1855e-02 1.8765e-01 1.3580e-01

1300 7.5770e-03 1.4202e-01 1.4960e-01

1400 1.7397e-02 1.4350e-01 1.2610e-01

1500 1.1219e-02 1.1018e-01 1.2140e-01

1600 4.6842e-02 7.7158e-02 1.2400e-01

1700 4.8925e-02 6.4175e-02 1.1310e-01

1800 2.5853e-02 6.3047e-02 8.8900e-02

1900 6.8608e-03 6.8339e-02 7.5200e-02

2000 1.0820e-02 5.7550e-02 6.8370e-02

2100 1.5807e-03 9.2719e-02 9.4300e-02

2200 3.1493e-03 6.2281e-02 6.5430e-02

2300 6.7497e-03 5.9550e-02 5.2800e-02

2400 1.0190e-01 4.9264e-07 1.0190e-01

2500 5.0820e-02 1.0620e-07 5.0820e-02
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video. A combined gamma/Pareto model based on the application of the FGN-

DW generator was used to synthesise VBR JPEG/MPEG video traffic.

In the chapter we showed that synthetically generated streams of VBR

video, compressed under such standards as JPEG, MPEG-1 and MPEG-2,

can be statistically equivalent to real video traces. We investigated how com-

pression algorithms on correlation structure of compressed teletraffic influence

real video traffic. Generalisation of findings of Garrett and Willinger, showing

that video compression algorithms (MPEG-1 and MPEG-2) lead to self-similar

processes was studied. We considered outcomes of MPEG-1 and MPEG-2 in

addition to previously studied outcomes of JPEG (Garrett and Willinger [42]),

to show that the results of (Garrett and Willinger [42]) do not depend on the

compression algorithms.

We also presented that results of a steady-state simulation of a single buffer

fed by these synthetic video streams are used to show that simulations based

on synthetic streams of teletraffic can provide the same qualitative and quan-

titative results as simulations based on real traces of VBR video. We showed

that all curves of frame loss probabilities obtained from the gamma/Pareto

model and three real traffic videos decayed much more slowly than the SRD

Table 6.6: Mean values of difference between the curves of frame loss probabil-

ities of real Star Wars MPEG-1 video traffic and the combined gamma/Pareto

model (ρ = 0.6) in Figure 6.20.

Buffer Size Real Traffic - Model Real Traffic - SRD Model - SRD

10 3.7000e-05 9.9751e-01 9.9747e-01

20 4.0061e-02 9.5582e-01 9.9589e-01

30 2.9347e-02 9.7775e-01 9.4840e-01

40 4.8277e-01 3.5773e-01 8.4050e-01

50 1.0969e-01 5.6181e-01 6.7150e-01

60 9.6904e-02 5.6160e-01 6.5850e-01

70 5.9735e-01 2.1453e-03 5.9950e-01

80 3.0063e-01 3.7352e-04 3.0100e-01

90 2.0432e-01 2.0679e-01 2.4720e-03

100 7.7256e-04 2.7026e-03 1.9300e-03
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model over all buffer sizes.

Better GOP and cell-layered modelling is needed for development of inte-

grated MPEG video traffic models. While some general assessment of queueing

Table 6.7: Mean values of difference between the curves of frame loss probabil-

ities of real Star Wars MPEG-1 video traffic and the combined gamma/Pareto

model (ρ = 0.8) in Figure 6.21.

Buffer Size Real Traffic - Model Real Traffic - SRD Model - SRD

100 1.1090e-01 9.7640e-01 8.6550e-01

200 6.9771e-01 2.2890e-03 7.0000e-01

300 1.6064e-01 3.9956e-01 5.6020e-01

400 3.0937e-01 2.2273e-03 3.1160e-01

500 4.0030e-01 1.0429e-04 4.0040e-01

600 1.1660e-01 2.0412e-04 1.1680e-01

700 2.3034e-01 3.0608e-03 2.3340e-01

800 5.7760e-04 5.8221e-04 4.6030e-06

900 1.9297e-03 1.9387e-03 8.9170e-06

1000 1.0817e-01 1.0817e-01 3.2970e-06

1100 1.0697e-01 1.0697e-01 6.0730e-06

1200 1.9873e-03 1.9962e-03 8.9730e-06

1300 9.5353e-02 9.5362e-02 8.8700e-06

1400 3.7845e-03 3.7882e-03 3.7140e-06

1500 3.5627e-03 3.5676e-03 4.8740e-06

1600 8.2918e-05 8.8243e-05 5.3260e-06

1700 8.2120e-02 8.2126e-02 5.9800e-06

1800 3.5222e-03 3.5348e-03 1.2600e-05

1900 3.3017e-04 3.3606e-04 5.8920e-06

2000 2.3930e-03 2.3983e-03 5.3090e-06

2100 1.0678e-03 1.0721e-03 4.3330e-06

2200 7.1066e-02 7.1071e-02 5.3700e-06

2300 2.5466e-03 2.5504e-03 3.7620e-06

2400 3.6267e-03 3.6296e-03 2.9540e-06

2500 2.2401e-03 2.2455e-03 5.4240e-06
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Table 6.8: Mean values of difference between the curves of frame loss proba-

bilities of real Titanic MPEG-2 video traffic and the combined gamma/Pareto

model (ρ = 0.6) in Figure 6.22.

Buffer Size Real Traffic - Model Real Traffic - SRD Model - SRD

100 4.6738e-02 2.8524e-01 2.3850e-01

200 1.9590e-01 1.5095e-02 2.1100e-01

300 1.6347e-02 8.7853e-02 1.0420e-01

400 7.4141e-07 1.8476e-06 2.5890e-06

500 1.0570e-01 6.2734e-07 1.0570e-01

600 6.9094e-02 2.4963e-03 7.1590e-02

700 3.5803e-06 1.7686e-06 5.3490e-06

800 2.1596e-06 2.4339e-07 2.4030e-06

performance can be obtained from single-streams, more universal results could

be obtained from the queueing performance analysis of multiplexed streams of

video traffic. These issues await further investigations.

190



6.5 Conclusions

Table 6.9: Mean values of difference between the curves of frame loss proba-

bilities of real Titanic MPEG-2 video traffic and the combined gamma/Pareto

model (ρ = 0.8) in Figure 6.23.

Buffer Size Real Traffic - Model Real Traffic - SRD Model - SRD

100 1.0800e-01 9.5040e-01 8.4240e-01

200 1.3052e-01 7.6742e-01 6.3690e-01

300 6.2271e-01 9.3441e-01 3.1170e-01

400 4.5359e-01 8.8189e-01 4.2830e-01

500 1.2736e-02 3.6476e-01 3.7750e-01

600 1.2456e-01 1.0411e-03 1.2560e-01

700 3.5738e-01 3.5739e-01 1.6010e-06

800 7.0212e-02 3.3721e-01 2.6700e-01

900 3.3614e-01 3.3615e-01 1.3400e-05

1000 7.7839e-02 1.0726e-06 7.7840e-02

1100 1.4955e-01 2.4345e-01 9.3900e-02

1200 1.0855e-06 1.4485e-08 1.1000e-06

1300 5.8476e-06 2.1234e-06 7.9710e-06

1400 1.0199e-05 1.1085e-07 1.0310e-05

1500 4.9829e-06 1.5102e-08 4.9980e-06

1600 2.8230e-06 1.0002e-07 2.9230e-06

1700 5.8618e-07 2.1258e-06 2.7120e-06

1800 3.3973e-06 4.3517e-06 7.7490e-06

1900 3.0244e-06 9.8364e-07 4.0080e-06

2000 5.3796e-06 1.0938e-07 5.4890e-06

2100 8.7891e-07 4.2141e-06 5.0930e-06

2200 2.4271e-06 1.4529e-06 3.8800e-06

2300 1.0602e-06 5.9548e-06 7.0150e-06

2400 3.7799e-06 2.1306e-09 3.7820e-06

2500 3.1211e-06 7.4387e-07 3.8650e-06
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Chapter 7

STEADY-STATE

SIMULATION OF

SELF-SIMILAR QUEUEING

PROCESSES

There are two issues considered in this chapter. Firstly, we show how self-

similarity of arrival processes influences the run-length of sequential stochastic

simulation of queueing systems. For this purpose, the simulation run-length of

SSM/M/1/∞ queueing systems, conducted for estimating steady-state mean

response times is compared with the results obtained from simulations of

M/M/1/∞ queueing systems. SSM/M/1/∞means a self-similar inter-arrival

process with an exponential marginal distribution, exponentially distributed

service times, single server and infinite buffer capacity. In both cases, simu-

lations were stopped when the final estimates were achieved with the relative

statistical error1 not larger than 10%, for 95% confidence level.

Secondly, we use a sequential steady-state simulation of the SSM/M/1/B

queueing system (B < ∞) (i.e., queueing systems with the finite buffer ca-

pacity) to investigate the influence of self-similarity in arrival processes on the

buffer overflow probability. This problem has been already addressed in a con-

1Having collected n output data (observations), the relative statistical error is defined as
the ratio of the half-width of the confidence interval of a given estimate and that estimate
obtained on the basis of the n observations.
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siderable number of publications. However, claims of different authors can be

regarded as being mutually inconsistent.

Leland et al. [89] claimed that a self-similar process is needed to model

the behaviour of a time series well enough to capture its impact on queueing

performance, while Ryu and Lowen [148] claimed that the self-similarity of the

arrival process needs to be taken into account only when the traffic intensity

and the buffer size are very large. Heyman [57] examined how the Markov-

modulated Poisson process and FBM model proposed in the literature perform

on two data sets of LAN traffic. Both models overestimated loss probabilities

in the area of interest. The effects of a finite buffer of size B could be estimated

by calculating the probability that the infinite buffer has greater than B items

in it. This approximation may be fundamentally inaccurate for calculating

small loss probabilities and modest values of B. Heyman [58] also found that

the approximation is more accurate for heavy-tailed distributions rather than

those without power-law tails. Further investigation of the accuracy of this

approximation is required.

Resnick and Samorodnitsky [134] and Dahl and Willemain [24] found that

LRD arrival processes can significantly affect the performance of queueing

systems. Neidhardt and Wang [113] pointed out that arrival processes with

larger values of H do not always cause longer queues. On the other hand,

the results of Grossglauer and Bolot [53] showed that the behaviour of buffer

can be more sensitive to the marginal distribution of arrival processes than to

the H value of these processes. Further, Boxma and Cohen [12] studied an

approximation for the waiting time distribution for an M/G/1 queueing system

with a heavy-tailed service time distribution by using the heavy traffic limit

theorem. As the resulting approximation shows, there is a need to develop more

accurate models of long-range dependent traffic and studying their impact on

queueing systems and networks. Because of that, more work is needed to fully

understand all the effects of self-similarity on queueing processes.

One of our aims of our investigations of these problems was to make a

quantitative assessment of the influence of H values on buffer overflow proba-

bilities. In Section 7.1 and Appendix F, we assessed the simulation run-lengths

when simulating self-similar processes. We looked at the number of observa-

tions required in a steady-state simulation of queueing models with self-similar

input processes, and compared our results with simulation run-lengths of the
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same queueing models fed by SRD processes, such as the M/M/1/∞ queueing

system. Section 7.2 describes performance measures of queueing systems with

self-similar input and finite buffer sizes (such as buffer overflow probability).

The influence of the self-similarity in arrival processes on the buffer overflow

probability is also analysed before the final conclusions were formulated.

7.1 Influence of Input H Values on the Run-

Length of Sequential Steady-State Simu-

lation of SSM/M/1/∞ Queueing Systems

The number of observations required to estimate this parameter can be ob-

tained theoretically. The derivation of a formula for the theoretically required

run-length for the M/M/1/∞ queueing system was given by Daley [25]. For

more detailed discussions of simulation run-length and defining a way of mea-

suring the relative precision, see Appendix F.

To investigate the influence of self-similarity on inter-arrivals, we need

self-similar processes with an exponentially marginal distribution obtained

from the SRP-FGN method [160] (SSM/M/1/∞). However, the theoretically

required run-length to estimate mean response times in the SSM/M/1/∞
queueing system may not be known. In practice, we compare it with the

simulation run-length of the same queueing models fed by Poisson processes.

We have considered a queueing system with a self-similar arrival process

with an exponential marginal distribution in a steady-state simulation. We

investigated how self-similar input processes influence the required length of

simulation for a given relative precision of results. For this purpose we simu-

lated M/M/1/∞ and SSM/M/1/∞ queueing systems in which analysis was

stopped when the estimates of mean response times reached 10% (or smaller)

relative error, at 95% confidence level. All simulations were executed under

control of Akaroa-2 [33], see Appendix G.

Figures 7.1 (a) and (b) show the expected number of observations, and

the empirical mean number of observations, necessary to achieve the required

relative statistical precision for different values of traffic intensity ρ, when

analysing the steady-state mean response time in an M/M/1/∞ queueing
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(b) BM in M/M/1/∞.

Figure 7.1: Mean numbers of observations needed in the sequential analysis

of a steady-state mean response time in an M/M/1/∞ queueing system with

relative precision ≤ 10%, (at 95% confidence level) using (a) spectral analysis

(SA), and (b) batch means (BM).
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system. Each mean experimental run-length of the simulations was averaged

over 30 replications. Confidence intervals of relative half-widths of 10% or less,

for 95% confidence level in the methods based on spectral analysis (SA) and

batch means (BM)2 when one simulation engine is used, are also shown. For

ρ > 0.7, the empirical mean number of observations in the method based on

SA was slightly lower than the number of theoretically required observations,

while for ρ ≤ 0.8, the empirical mean number of observations in the method

based on BM was slightly higher than the number of theoretically required

observations. The range of the empirical mean numbers of observations for

SA and BM was between 11,099 and 149,091, and between 1,787 and 128,211,

respectively. The results show that the means for both methods gradually

increased as ρ increased. There was no significant difference in the theoretical

and empirical means for both methods.

In contrast, the results in Figures 7.2 (a) and (b) show that analysis of an

SSM/M/1/∞ queueing system with self-similar input processes requires many

more observations than an M/M/1/∞ queueing system. The mean number of

observations, or simulation run-length, significantly increased when H > 0.5.

For ρ = 0.4; and H = 0.6, 0.7 and 0.8, the empirical mean numbers of obser-

vations for the SSM/M/1/∞ queueing system were 34,371 (769.1%), 43,544

(1,001.0%), and 146,801,520 (3,711,695.7%) in the SA method and 124,523

(1,020.0%), 7,503,269 (67,387.6%), and 10,546,564 (94,760.3%) in the BM

method, respectively. In contrast, the M/M/1/∞ queueing system required

only 3,955 observations in the SA method and 11,118 observations in the BM

method, and theoretically required 2,603 observations. (· %) are the rela-

tive increases of the run-length for the SSM/M/1/∞ against the M/M/1/∞
queueing system. In addition, for ρ = 0.8; and H = 0.6, 0.7 and 0.8, the

empirical mean numbers of observations for the SSM/M/1/∞ queueing sys-

tem were 58,197,030 (250,166.7%), 84,540,706 (363,453.4%), and 237,796,806

(1,022,506.0%) in the SA method, and 358,994 (980.8%), 43,363,298 (130,453.4%),

and 59,902,358 (180,247.3%) in the BM method, respectively. For ρ = 0.8, the

M/M/1/∞ queueing system required 23,254 observations in the SA method

2So far no methods of simulation output data analysis for self-similar processes have been
proposed. However, we believe the SA and BM methods can be used for these processes as
long as the analysed phenomena have the first two finite moments. The sequential versions of
SA and BM (in its version proposed by Heidelberger and Welch [56]) have been implemented
in Akaroa-2 [33], [88], [122].
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Figure 7.2: Mean numbers of observations required in the sequential analysis

of a steady-state mean response time in an SSM/M/1/∞ queueing system

with relative precision ≤ 10%, (at 95% confidence level) in the method based

on (a) spectral analysis (SA), and (b) batch means (BM).

198



7.2 Influence of Input H Values on Buffer Overflow in SSM/M/1/B Queueing
Systems

and 33,215 observations in the BM method, and theoretically required 34,190

observations.

Our results show that the length of simulations depends both on the anal-

ysed model and on the method of analysis of output data. We found that the

length of simulations with data analysed under SA can be much longer than

when BM is used. This becomes more evident in simulations with larger H

value assumed in arrival processes. The phenomenon needs further investiga-

tions.

The results demonstrate that the performance of queueing systems under

Poisson arrival processes and self-similar arrival processes are significantly dif-

ferent for both low and high traffic intensity [75]. Since self-similar properties

of packet count processes as well as self-similarity of inter-event processes are

well documented [5], [89], [126], there is the need of running simulations of

computer networks under assumptions that simulation streams of data repre-

sent self-similar processes.

7.2 Influence of InputH Values on Buffer Over-

flow in SSM/M/1/B Queueing Systems

Beginning with the empirical finding of self-similarity in Ethernet LAN traffic

data reported in Leland et al. [89], there has been mounting evidence of the

practical importance of the Hurst parameter H for traffic engineering purposes.

Particularly, Norros [114] demonstrated a significant difference in the queueing

performance between traditional models of teletraffic such as Poisson processes

and Markovian processes, and those exhibiting self-similar behaviour. More

specifically, while tails of queue length distributions in traditional models of

teletraffic decrease exponentially, those of self-similar traffic models decrease

much slower.

In practice, if self-similarity is not accounted for at the modelling stage,

serious overestimations of performance predictions may result, and thus we

establish QoS requirements that are impossible to guarantee in a realistic net-

work scenario [126], [173]. Thus, we investigate the potential impacts of traffic

characteristics, including the effects of self-similar behaviour on queueing and
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network performance, protocol analysis, and network congestion controls [173].

Norros [114] analysed a queueing system fed by fractional Brownian motion

(FBM) as a self-similar input process. The queueing system was modelled as

a storage with an arrival process A(t) and a constant leak rate C (unit per

second). Then the contents of the storage at instant t is given by

V(t) = sup
s≤t

[A(t)−A(s)− (t− s)C], t ∈ (−∞,∞) (7.1)

with A(t) is assumed to be an FBM process. It was found that the buffer

overflow probabilities have a heavy-tailed distribution. The following approx-

imation of probability that the storage contents exceed B unit was proposed:

Pr(V(t) > B) ∼ exp

(
− 1

2aλ(1−H)2

(
(1− λ)(1−H)

H

)2H

B2(1−H)

)
. (7.2)

This result was obtained from the analysis of the storage with infinite capacity.

We considered a queueing system with a buffer of a finite size B. To

show how self-similarity can effect probability of buffer overflow, we simulated

SSM/M/1/B and M/M/1/B queueing systems and compared the steady-

state probabilities of overflow in both systems under the same traffic load.

The theoretical results for steady-state characteristics in M/M/1/B were also

used.

We considered the overflow probability of an SSM/M/1/B queueing sys-

tem with the finite buffer sizes, B = 5, 10, 15, 20, 25 and 30. Figure 7.3 shows

the theoretical buffer overflow probability in an M/M/1/B queueing system

for buffer size B = 5, 10, 15, 20, 25 and 30, as traffic intensity increases. These

probabilities gradually become larger as traffic intensity increases and buffer

size decreases.

For traffic intensity ρ = 0.6 and 0.8 and H = 0.6, 0.7 and 0.8, simulation

results of the overflow probability are shown in Figures 7.4 and 7.5, respec-

tively, which plot log10(Overflow Probability) against Buffer Size. Each ex-

perimental mean overflow probability was obtained over 30 replications. Con-

fidence intervals of half-widths of 10% or less, for 95% confidence level, are

also shown. The numerical results show that the buffer overflow probabilities

of SSM/M/1/B queueing systems were much higher, as H values increased,

than the M/M/1/B queueing systems, because self-similar traffic resulted in a
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Figure 7.3: Theoretical buffer overflow probability in an M/M/1/B queueing

system for buffer size B = 5, 10, 15, 20, 25 and 30.

hyperbolic decrease in buffer overflow probabilities rather than an exponential

decrease. This queueing behaviour of self-similar traffic results in longer delays

through the network and greater packet losses due to buffer overflows in real

computer networks.

7.3 Conclusions

We have examined queueing behaviour in steady-state stochastic simulations

of SSM/M/1/∞ with self-similar inter-event input and M/M/1/∞ queueing

models.

Firstly, we estimated the number of observations required in the sequential

steady-state simulation of a queueing system with self-similar input. As we

have shown, assuming self-similar inter-event processes (i.e., SSM/M/1/∞
queueing systems), many more observations are required to obtain the final

simulation results with a required precision, as H increases, than when as-

suming Poisson models, exhibiting SRD (i.e., M/M/1/∞ queueing systems).
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Figure 7.4: Buffer overflow probabilities of M/M/1/B and SSM/M/1/B

buffers for traffic intensity ρ = 0.6, H = 0.6, 0.7 and 0.8.
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Figure 7.5: Buffer overflow probabilities of M/M/1/B and SSM/M/1/B

buffers for traffic intensity ρ = 0.8, H = 0.6, 0.7 and 0.8.
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7.3 Conclusions

We also found that the SA method required more observations to reach the

required precision than the BM method, because the SA method produced

better analysis of coverage. To secure a predefined statistical precision of final

simulation results, one must generate arbitrary long sequences of inter-event

times, and this must be done sequentially.

Secondly, we investigated the extent to which self-similarity affects the per-

formance of queueing processes in QoS requirements such as buffer overflow

probability. The buffer overflow probability of an SSM/M/1/B queueing sys-

tem was greater than the equivalent queueing system with Poisson or SRD

input, and it increased as the Hurst parameter approached one. Therefore, in-

clusion of self-similarity in arrival processes when studying the performance of

queueing systems seems to be mandatory, at least in the cases we considered.
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Chapter 8

SUMMARY

8.1 Summary and Conclusions

One of the current research issues of modern computer networks is the need of

full understanding of the self-similar nature of teletraffic and its incorporation

in performance models of networks. Many recent, high-quality measurement

studies of real teletraffic data have shown that several types of teletraffic exhibit

self-similarity over a broad range of time scales.

The main contributions of this dissertation have been made in the following

areas: estimation techniques of the Hurst parameter, generation of self-similar

processes with normal marginal distribution and their transformation to pro-

cesses with arbitrary marginal distributions, and in steady-state simulation

studies of self-similar queueing processes.

• Critical review of Hurst parameter estimation techniques:

We evaluated the most commonly used methods to estimate the self-

similarity parameter H using appropriate numbers of long sequences.

The estimators considered include the wavelet-based H estimator and

Whittle’s Maximum Likelihood Estimator (MLE), and estimators ob-

tained from periodogram analysis, R/S-statistic analysis, variance-time

analysis and IDC(t) analysis. Their properties were assessed on the basis

of mean estimates and other statistical tests to statistically prove which

of the estimators should be recommended in practice. The most efficient

estimators were the wavelet-based H estimator and Whittle’s MLE.



8.1 Summary and Conclusions

• Algorithmic generators of self-similar teletraffic:

We proposed two new fixed-length pseudo-random generators of self-

similar teletraffic (SRA and FGN-DW generators). A comparative anal-

ysis of practical pseudo-random generators of self-similar teletraffic was

studied. Both sequential and fixed-length generators were considered.

One of the problems that computer network researchers face is the gener-

ation of long, synthetic sequential and fixed-length self-similar sequences

in order to conduct simulation studies of computer networks. Two as-

pects must be considered: (i) how accurately self-similar processes can

be generated, and (ii) how quickly the methods generate long self-similar

sequences.

The results of a comparative analysis of six sequential generators of (long)

pseudo-random self-similar sequences were presented. All six sequential

generators, based on the FBNDP, MGIP, PMPP, SRP-FGN, SAP and

SFRP methods, generated approximately self-similar sequences, with

SRP-FGN the most accurate. Our results showed, however, that the

MGIP and PMPP-based generators are strongly biased.

The analysis of mean times required to generate sequences of a given

length also showed that sequential generators are more attractive for

practical simulation studies of computer networks because they are much

faster than the F-ARIMA-based generator. However, they require more

input parameters than methods that generate fixed-length self-similar

sequences controlled by the Hurst parameter alone. Hence, for all se-

quential generators the problem of selecting appropriate input parame-

ter values remains, and in the case of SAP, of defining the relationship

between the Hurst parameter and the two shape parameters of a beta-

distribution.

We also presented the results of a comparative analysis of five fixed-length

generators of self-similar sequences. All five generated approximately

self-similar sequences, with the relative inaccuracy of the resultant Ĥ

below 9% if 0.6 ≤ H ≤ 0.9. Again, the analysis of mean times re-

quired to generate sequences of a given length showed that all generators

except F-ARIMA are attractive for practical simulation studies of com-

puter networks because they are much faster. When the wavelet-based

H estimator and Whittle’s MLE (the least biased of the H estimation
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techniques) are applied, FFT and FGN-DW produce the most accurate

results. Therefore, overall, FFT and FGN-DW are the most practical for

simulation studies with self-similar input in both accuracy and speed.

Our results indicated that the fastest and most accurate generators of

the six sequential and five fixed-length sequence generators considered

were the SRP-FGN, FFT and FGN-DW methods, when evaluated by

the wavelet-based H estimator and Whittle’s MLE. These three meth-

ods each have a strength and a weakness. The FFT and FGN-DW meth-

ods are more attractive for non-sequential simulations because they can

generate the required number of sequences more accurately and quickly

than the SRP-FGN method. If the FFT and FGN-DW methods are

used for sequential simulations, sufficient numbers of sequences must be

generated before the simulation begins; however, the required number of

sequences for sequential simulations is not easy to predict in practical

simulations. In contrast, the SRP-FGN method is more attractive for

sequential simulations because one does not need to know the required

number of sequences beforehand. This method, however, is less accurate

and requires more generating time than the FGN-DW method.

Thus, the FGN-DW method was used to synthesise VBR video traffic as

described in Chapter 6, and the SRP-FGN method was used to investi-

gate queueing behaviour in steady-state simulation studies of self-similar

queueing systems, as outlined in Chapter 7.

• Generation of a self-similar process with an arbitrary marginal distribu-

tion:

Before conducting simulation studies of computer networks, self-similar

processes with arbitrary marginal distributions must be obtained from

sequences of the exact self-similar FGN processes. In order to obtain

these results, we transformed given sequences of the exact self-similar

FGN process into suitable self-similar processes with arbitrary marginal

distributions. We examined a method based on the ICDF transforma-

tion, which can produce self-similar processes with arbitrary marginal

distributions for the stochastic simulation studies of telecommunication

networks.

We determined that the self-similarity of original self-similar processes
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can be preserved by the ICDF transformation if the output process has a

finite variance. Then, we tested the resulting processes with the exponen-

tial, gamma, Pareto, uniform and Weibull marginal distributions using

the ICDF transformation. The relative inaccuracy of estimated mean

values of self-similarity obtained using the wavelet-based H estimator

and Whittle’s MLE was less than 4%.

We provided evidence of ACF preservation after the ICDF transforma-

tion was applied. However, for H = 0.6, 0.7, 0.8 and 0.9, the ICDF trans-

formation, if applied to self-similar processes with normal marginal dis-

tributions, preserves ACFs if the output processes with different marginal

probability distributions have a finite variance. In other words, our re-

sults provided clear experimental evidence that input self-similarity and

ACFs are not preserved in the output process generated by the ICDF

transformation if the output process has an infinite variance.

• Modelling and generation of self-similar VBR video traffic:

We investigated how compression algorithms on correlation structure of

compressed teletraffic influences real video traffic. Generalisation of find-

ings of Garrett and Willinger, showing that video compression algorithms

(MPEG-1 and MPEG-2) lead to self-similar processes was studied. We

considered outcomes of MPEG-1 and MPEG-2 in addition to previously

studied outcomes of JPEG (Garrett and Willinger), to show that the

results of (Garrett and Willinger) do not depend on the compression

algorithms.

We used a gamma/Pareto model to show that synthetically generated

streams of VBR video, compressed under such standards as JPEG, MPEG-

1 and MPEG-2, are statistically equivalent to real video traces. We also

presented that results of a steady-state simulation of a single buffer fed

by these synthetic video streams are used to show that simulations based

on synthetic streams of teletraffic can provide the same qualitative and

quantitative results as simulations based on real traces of VBR video.
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• Simulation studies of queueing processes with self-similar arrival pro-

cesses:

We analysed run-lengths of sequential steady-state simulations of queue-

ing models with self-similar arrivals, under two different methods of sim-

ulation output data analysis [spectral analysis (SA) and batch means

(BM)]. Steady-state simulations of queueing processes with self-similar

input processes were conducted to investigate influence of the degree of

self-similarity on run-lengths of sequential simulation and on the overflow

probability of finite buffers.

All simulation studies were conducted under control Akaroa-2. In par-

ticular, it was found that the methods of output data analysis that in

Akaroa-2 were originally intended for non-self-similar processes were ap-

plicable to analysis of self-similar processes as well, as long as the anal-

ysed phenomena has the first two finite moments.

We examined the queueing behaviour in steady-state stochastic simula-

tions of SSM/M/1/∞ with self-similar arrivals and compared it with

M/M/1/∞ queueing models. We obtained mean numbers of observa-

tions required in the sequential analysis of steady-state mean response

times in both an M/M/1/∞ and an SSM/M/1/∞ queueing systems

with a relative precision ≤ 10%, at 95% confidence level in the SA and

BM methods.

We estimated the number of observations required in the sequential

steady-state simulation of a queueing system with self-similar input. We

have shown that for different analytical methods, as we have shown, as-

suming self-similar processes with an exponential marginal distribution

(i.e., SSM/M/1/∞ queueing systems), many additional observations are

required to obtain final simulation results with a required precision, as

H increases, than when assuming Poisson models exhibiting SRD (i.e.,

M/M/1/∞ queueing systems).

We also investigated the degree to which self-similarity affects the per-

formance of queueing processes, in regard to QoS requirements such

as buffer overflow probability. The buffer overflow probability of an

SSM/M/1/B queueing system is greater than the equivalent queue-

ing system with a Poisson or SRD process (i.e., M/M/1/B queueing

system) input, and this overflow probability increases as the Hurst pa-

209



8.2 Future Work

rameter approaches one. Therefore, inclusion of self-similarity in arrival

processes when studying the performance of queueing systems seems to

be mandatory, at least in the cases we considered.

8.2 Future Work

The results of this research can be extended by the following work:

• Designing more computationally efficient sequential self-similar generator

able to construct arbitrary long sequences. Such sequences are necessary

in simulation studies of telecommunication networks.

• Developing diverse layered (for example, GOP and cell) modelling for

multimedia teletraffic of specific scenarios. Most important measures

of queueing performance can be obtained from single-streams, but to

obtain more reliable simulation results, the queueing performance for

multiplexed streams must also be investigated.

• Studies of multifractal processes that are related to the generalisation of

self-similar processes and provide more flexible scaling properties, which

seem necessary to capture local irregularities in computer network traffic

[36], [111], [168].
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nication Traffic, Queueing Models, and Subexponential Distributions.
Queueing Systems 33 (1999), pp. 125–152.

[50] Greiner, M., Jobmann, M., and Lipsky, L. The Importance of
Power-Tail Distributions for Modeling Queueing Systems. Operations
Research 47, 2 (1999), pp. 313–326.

[51] Gribble, S., Manku, G., Roselli, D., Brewer, E., Gibson, T.,

and Miller, E. Self-Similarity in File Systems. In Performance Eval-
uation Review, Proceedings of ACM SIGMETRICS’98 (Madison, Wis-
consin, 1998), pp. 141–150.

[52] Gross, D., and Harris, C. M. Fundamentals of Queueing Theory.
2nd ed., John Wiley and Sons, Inc., New York, 1985.

[53] Grossglauser, M., and Bolot, J.-C. On the Relevance of Long-
Range Dependence in Network Traffic. IEEE ACM Transactions on
Networking 7, 5 (1999), pp. 629–640.

[54] Gusella, R. Characterizing the Variability of Arrival Processes with
Indexes of Dispersion. IEEE Journal on Selected Areas in Communica-
tions 9 (1991), pp. 203–211.

[55] Hara, S., and Taketsugu, J. Another Cause of Long-Range Time
Dependence in Cellular Network Traffic. Kluwer Academic Publisher,
Netherlands, 2002.

[56] Heidelberger, P., and Welch, P. A Spectral Method for Confi-
dence Interval Generation and Run Length Control in Simulations. Com-
munications of the ACM 24, 4 (1981), pp. 233–245.

[57] Heyman, D. Some Issues in Performance Modeling of Data Teletraffic.
Performance Evaluation 34 (1998), pp. 227–247.

215



REFERENCES

[58] Heyman, D. Performance Implications of Very Large Service-Time
Variances. Performance Evaluation 40 (2000), pp. 47–70.

[59] Heyman, D., and Lakshman, T. Self-Similar Network Traffic and
Performance Evaluation. John Wiley & Sons, Inc., K. Park and W. Will-
inger (eds), New York, 2000, ch. Long-Range Dependence and Queueing
Effects for VBR Video, pp. 285–318.

[60] Heyman, D., Tabatabai, A., and Lakshman, T. Statistical Analy-
sis and Simulation Study of Video Teleconference Traffic in ATM. IEEE
Transactions on Circuits and Systems for Video Technology 2, 1 (1992),
pp. 49–59.

[61] Higuchi, T. Approach to an Irregular Time Series on the Basis of the
Fractal Theory. Physica D 31, 2 (1988), pp. 277–283.

[62] Hosking, J. Fractional Differencing. Biometrika 68, 1 (1981), pp. 165–
176.

[63] Hosking, J. Modeling Persistence in Hydrological Time Series Us-
ing Fractional Differencing. Water Resources Research 20, 12 (1984),
pp. 1898–1908.

[64] Huang, C., Devetsikiotis, M., Lambadaris, I., and Kaye, A.

Modeling and Simulation of Self-Similar Variable Bit Rate Compressed
Video: A Unified Approach. Computer Communication Review, Pro-
ceedings of ACM SIGCOMM’95 25, 4 (1995), pp. 114–125.

[65] Jain, R. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, Inc., New York, 1991.

[66] Jain, R. Current Issues in Telecom Networks: QoS, Traffic Engineering
and DWDM. Keynote speaker, http://www.cis.ohio-state.edu/∼jain/
talks/icon99.htm, 2000.
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Appendix A

Stochastic Preliminaries

The following sections provide definitions of statistical terms. Most of the

definitions are taken from Jain [65], Law and Kelton [85], and Leon-Garcia

[91].

A.1 Stochastic Processes

In analytical modelling, we use not only several random variables but also

several different sequences or families of random variables that are functions of

time. For example, let Xt denote the number of jobs at the CPU of a computer

system. If we examine several identical systems and observe the number of jobs

at the CPU as a function of time, the number Xt is a random variable. To

specify its behaviour, we would need to specify the probability distribution

function for Xt at each possible value of t. Similarly, the waiting time in a

queue (Wt) is a random function of time. Such random functions of time or

sequences are called stochastic processes, and are useful in representing the

state of queueing systems. Some of the common types of stochastic processes

used in queueing theory are described as follows:

A.1.1 Discrete-State and Continuous-State Processes

A process is classified as discrete-state or continuous-state depending on the

values its state can accept. If the number of possible values is finite or count-
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able, the process is called a discrete-state process. For example, the number

of jobs in a system, Xt, can only be equal to discrete values, such as 0, 1, 2, . . ..

Therefore, X is a discrete-state process. In contrast, the waiting time (Wt) can

equal any value on the real line. Therefore, W is a continuous-state process.

A discrete-state stochastic process is also called a stochastic chain.

A.1.2 Markov Processes

If the future states of a process are independent of the past and depend only on

its present state, the process is called a Markov process. The Markov property

makes a process easier to analyse, since we do not have to know the complete

past trajectory. These processes are named after A.A. Markov, who defined

and analysed them in 1907.

Note that to predict the future of a continuous-time Markov process, it is

sufficient to know the current state. It is unnecessary to know how long the

process has been in the current state. Predicting the future is possible only if

the state time has a memoryless distribution.

A.1.3 Poisson Processes

If inter-arrival times are independent and identically, exponentially distributed,

the number of arrivals over a given interval (t, t+s) has a Poisson distribution.

Then, the arrival process is referred to as a Poisson process or a Poisson stream

of arrivals.

In other words, the stochastic count process N = {Nt, t ≥ 0} is said to be

a Poisson process if

(i) customers arrive one at a time,

(ii) Nt+s −Nt (the number of arrivals in the time interval (t, t+ s]) is inde-

pendent of Nu, for any u, 0 ≤ u ≤ t, and

(iii) the distribution of Nt+s −Nt is independent of t for all t, s ≥ 0;

see for example Law and Kelton [85]. Poisson processes are popular in simu-

lating queueing theory; arrivals are memoryless because the inter-arrival time
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is exponentially distributed. In addition, Poisson streams have the following

properties:

• Merging of Poisson streams results in a Poisson stream.

• Splitting of a Poisson stream results in Poisson streams.

• Departures from an M/M/m queue, for m ≥ 1, form a Poisson process.

A.1.4 Stationary Random Processes

The simplest assumption about random processes is that the nature of their

randomness does not change over time. It means that a realisation of a process

in the time interval (t0, t1) exhibits the same type of random behaviour as its

realisation in some other time interval (t0+τ, t1+τ). This leads us to postulate

that the probabilities of samples of the process do not depend on the instant

at which we began taking observations; that is, probabilities involving samples

taken at times t1, . . . , ti will not differ from those taken at t1 + τ, . . . , ti + τ .

If we are working with random processes that began at t = −∞, then

the previous condition can be stated precisely as follows. A discrete-time

or continuous-time random process Xt is stationary if the joint distribution

of any set of samples does not depend on the placement of the time origin.

This means that the joint CDF of Xt1 , Xt2, . . . , Xti is the same as that of

Xt1+τ , Xt2+τ , . . . , Xti+τ :

FXt1 ,...,Xti
(x1, . . . , xi) = FXt1+τ ,...,Xti+τ (x1, . . . , xi),

for all time shifts τ , all i, and all choices of sample times t1, . . . , ti. If a process

begins at some definite time, i.e., t = 0, then we say it is stationary if its joint

distributions do not change under time shifts to the right.
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Appendix B

Self-Similarity of Inter-Arrival

Times

B.1 Graphical Test of Self-Similarity

For a graphical test of self-similarity, we used two real Ethernet traffic series

collected at the Bellcore Morristown Research and Engineering facility during

the period from August 1989 to October 1989. Leland et al. [89] used these

series in their paper on self-similarity as well. However, they looked at the

count processes (the number of packets submitted within a time unit). The

pAug.TL1 and pOct.TL traffic series contain one million arrival times (with

time counted from the beginning of recording) and lengths of arriving packets,

which were captured for 3,142.82 seconds starting at 11:25 a.m. on 29 August

1989 and for 1,759.62 seconds starting at 11:00 a.m. on 5 October 1989,

respectively.

We examined the same time series for self-similarity of inter-arrival times

and used a synthetic sequence of one million inter-arrival times with mean 1,

variance 10 and Hurst parameter 0.9 to demonstrate a graphical test, using

the inverse cumulative density function (ICDF) technique, based on the exact

self-similar FGN process. Figures B.1 and B.2 show graphical tests of self-

similarity of the pAug.TL and pOct.TL series over 10, 50, 100, 500 and 1000

1Ethernet LAN data traces can be obtained via anonymous ftp://bellcore.com/pub/
lan traffic.
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time units. Figure B.3 shows graphical tests of the self-similarity of synthetic

traffic generated by the exact self-similar FGN process. Bursts appeared over

all five time scales, and provided some evidence that inter-arrival times are also

self-similar. Visual comparisons between the different sequences also suggest

that the more often bursts occurred in the traffic, the higher the Hurst pa-

rameter H . However, Figure B.4 shows that the bursts of the Poisson process

did not appear in all five time scales. Thus, the self-similar processes shown

in Figures B.1 – B.3 have different characteristics from the Poisson process

shown in Figure B.4.

B.2 Comparison of the Exact FGN and Real

Ethernet LAN Traffic

Traffic generated by the exact self-similar FGN process was compared with a

Poisson model and the real Ethernet LAN traffic series: pAug.TL and pOct.TL

[89] using the index of dispersion for intervals (IDI). IDI was used to measure

the number and frequency of traffic bursts because it is relatively straightfor-

ward to estimate and conveys more information than simpler indices such as

the coefficient of variation.

Inter-arrival times obtained from the exact self-similar FGN process were

also compared with inter-arrival times of a real Ethernet LAN traffic series

and Poisson models using the IDI.

Figures B.5 and B.6 show that the IDI curves for inter-arrival times of

the exact self-similar FGN process, the pAug.TL series and the pOct.TL series

monotonically increased as t increased. The behaviour of self-similar processes

can clearly be recognised in Figures B.5 and B.6. The exact self-similar FGN

process and the pAug.TL series were similar over a wide range of time scales.

The exact self-similar FGN process and the pOct.TL series also were similar

well over a wide range of time scales, as seen in Figure B.6. However, the

IDI curve of the pOct.TL series was higher than the curve of the exact self-

similar FGN process when time scales log10 (t) < 1.9 because the variation of

the consecutive numbers of the pOct.TL series was unstable. There were large

variances in expected values when time scales were small. Hurst parameter

estimates, Ĥ , for the exact self-similar FGN process, the pAug.TL series and
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the pOct.TL series, were 0.8134, 0.7666 and 0.8090, respectively. In contrast,

Figures B.5 and B.6 also show that IDI curves for a Poisson model were a

constant value for all t. The Hurst parameter estimate, Ĥ , for the Poisson

model, was 0.4949.
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Figure B.1: Graphical test of self-similarity of inter-arrival times: pAug.TL

series over 10, 50, 100, 500 and 1000 time scales.
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Figure B.2: Graphical test of self-similarity of inter-arrival times: pOct.TL

series over 10, 50, 100, 500 and 1000 time scales.
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Figure B.3: Graphical test of self-similarity of inter-arrival times: synthetic

traffic obtained from the exact self-similar FGN process using the ICDF trans-

formation over 10, 50, 100, 500 and 1000 time scales.
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Figure B.4: Graphical test of self-similarity of inter-arrival times: synthetic

traffic obtained from the Poisson process over 10, 50, 100, 500 and 1000 time

scales (λ = 0.9).
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Figure B.5: IDI curves of inter-arrival times for the exact self-similar FGN

process, Bellcore Ethernet LAN traffic pAug.TL series and the Poisson pro-

cess.
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Figure B.6: IDI curves of inter-arrival times for the exact self-similar FGN

process, Bellcore Ethernet LAN traffic pOct.TL series and the Poisson pro-

cess.
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Appendix C

Exact Self-Similar FGN Process

C.1 Durbin-Levinson Algorithm

An exact self-similar FGN sequence {X1, X2, . . . , Xn} with mean zero and au-

tocovariance function given by coefficients γk = σ2

2
[(k+1)2H−2k2H +(k−1)2H ],

k = 0,±1,±2, . . ., can be generated using the Durbin-Levinson algorithm [1],

[13], [158]. First, generate a sequence {Z1, Z2, . . . , Zn} of IID normal N(0, 1)

random variables. Then, set X1 =
√
γ0Z1 and generate {X1, X2, . . . , Xn} from

Xn+1 = φn,1Xn + . . .+ φn,nX1 +
√
varnZn+1, n ≥ 1,

where the variances vari (i = 0, . . . , n) and the coefficients φn,i (i = 1, . . . , n)

are computed recursively by the following algorithm.

Set var0 = γ0, φ1,1 = γ1/γ0, var1 = var0 ∗ (1− φ1,1
2).

For n = 1, 2, . . .,

φn,n =

[
γn −

n−1∑
j=1

φn−1,jγn−j

]
/varn−1,




φn,1

...

φn,n−1


 =




φn−1,1

...

φn−1,n−1


− φn,n



φn−1,n−1

...

φn−1,1




and

varn = varn−1[1− φn,n
2].



C.1 Durbin-Levinson Algorithm

We use this algorithm to generate exact self-similar sequences in our com-

parative analysis of H estimation techniques. This algorithm, written in C,

has been adopted from [13] and [158].

#include <string.h>

#include <stdio.h>

#include <math.h>

#include "ranlib.h"

double ExactFGN(long n,double H,double std,double *data)

{

/*Calculate the autocovariance function. */

std2 = std*std/2.0;

for (i = 0; i <= n; i++)

autocov[i] = std2*(pow((double)(i+1),2.0*H) -

2.0*pow((double)i,2.0*H) +

pow((double)abs(i-1),2.0*H));

/* Calculate the Durbin-Levinson coefficients. */

phi1[1] = autocov[1]/autocov[0];

phi2[1] = phi1[1];

var[0] = autocov[0];

var[1] = var[0]*(1.0 - phi1[1]*phi1[1]);

data[1] = sqrt(var[0])*gennor(0.0,1.0);
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for (i=2; i <= n; i++){

phi1[i] = autocov[i];

for (j=1; j <= i-1; j++)

phi1[i] -= phi2[j]*autocov[i-j];

phi1[i] = phi1[i]/var[i-1];

var[i] = var[i-1]*(1.0-phi1[i]*phi1[i]);

data[i] = sqrt(var[i-1])*gennor(0.0,1.0);

for (j=1; j <= i-1; j++){

phi1[j] = phi2[j]-phi1[i]*phi2[i-j];

data[i] += phi2[j]*data[i-j];

}

for (j=1; j <= i; j++)

phi2[j] = phi1[j];

}

} /* ExactFGN */

int main(int argc, char *argv[])

{

x = (double*) malloc((n+1) * sizeof(double));

ExactFGN(n,H,1.0,x);

for (i = 1; i <= n; ++i){

fprintf(outfp,"%lg\n", x[i]);

}

free(x);

}
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Appendix D

FGN-DW Generator of

Self-Similar Sequences

D.1 C Code

#include <string.h>

#include <stdio.h>

#include <math.h>

#include "ranlib.h"

extern void DaubechiesFilter(double *h, double *g, double *rh,

double *rg, int daub_coeff);

extern void InverseWaveletTransform(double *data, double *rh,

double *rg, int scale, int n, int daub_coeff);

void FGN_spectrum(double *pow_spec, int size, double H);



D.1 C Code

int main(int argc,char *argv[])

{

/* Approximate ideal power spectrum: */

FGN_spectrum(pow_spec,n,H);

/* Adjust for estimating power spectrum via periodogram: */

for(i = 1; i <= n; i++)

pow_spec[i] *= genexp(1.0);

/* Construct corresponding complex numbers with random phase: */

for(i = 0; i < n; i++) {

z[2*i] = sqrt(pow_spec[i+1]);

z[2*i+1] = 2.0 * M_PI * ranf();

}

/* Calculate complex spectral density and */

/* real part/imaginary part form. */

for(i = 0; i < n; i++) {

re = z[2*i] * cos(z[2*i+1]);

im = z[2*i] * sin(z[2*i+1]);

z[2*i] = re;

z[2*i+1] = im;

}

/* Calculate filter values using Daubechies’ algorithm */

DaubechiesFilter(h,g,rh,rg,daub_coeff);

/* Calculate a sequence in time domain */

/* using inverse discrete wavelet transform (IDWT) */

InverseWaveletTransform(z,rh,rg,scale,n,daub_coeff);

}/* main */
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/**************************************************/

void FGN_spectrum(double *pow_spec, int n, double H)

{

/* Returns an approximation of the power spectrum */

/* for fractional Gaussian noise at the given frequencies */

/* lambda and the given Hurst parameter H.*/

g = exp(gamma(2.0 * H + 1.0));

fact1 = (1.0 / (2.0 * M_PI)) * sin(M_PI * H) * g;

mean1 = 0.0;

for(i=0; i < n; i++) {

lambda[i] = (M_PI * (i + 1)) / n;

mean1 += lambda[i];

}

mean1 /= n;

var1 = 0.0;

for(i=0; i < n; i++)

var1 += ((lambda[i] - mean1) * (lambda[i] - mean1));

var1 /= n;

for(i = 1; i < n+1; i++) {

a = pow(lambda[i-1],(1.0 - 2.0 * H));

pow_spec[i] = fact1 * var1 * a;

}

}/* FGN_spectrum */
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D.2 Matlab Code

% This function returns a self-similar sequence

% with n numbers and the Hurst parameter H.

function SS = FGNDW(n,H,Scale,VanishingMoment)

% Create n frequencies, then calculate fast,

% approximately power spectrum.

lambda = ((1:n)*pi)/n;

f = FGNDWSpectrum(lambda,H);

% Adjust for estimating power spectrum via periodogram.

r = random(’Exponential’,1,1,n);

f_r = f.*r;

% Construct corresponding complex numbers with random phase.

re = sqrt(f_r);

im = random(’Uniform’,0,2*pi,1,n);

% Calculate complex spectral density and

% real part/imaginary part form.

real_part = re.*cos(im);

imag_part = re.*sin(im);

z = real_part + imag_part*i;

% Calculate filter values using I. Daubechies’ algorithm.

[h,g,rh,rg] = Daub(VanishingMoment);

% Calculate a sequence in time domain

% using inverse discrete wavelet transform (IDWT).

SS = real(iwt(z,rh,rg,Scale));
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% ---------------------------------------------------

% Returns an approximation of the power spectrum

% for Fractional Gaussian Noise at the given

% frequencies lambda and the given Hurst parameter H.

% ---------------------------------------------------

function FGNS = FGNDWSpectrum(lambda,H)

cf = (1/(2*pi))*var(lambda)*sin(pi*H).*gamma(2*H+1);

FGNS = cf*(abs(lambda)).^(1-2*H);

% ---------------------------------------------------

% Returns coefficients of Daubechies wavelets

% ---------------------------------------------------

function [h,g,rh,rg] = Daub(VanishingMoment)

n = VanishingMoment/2;

poly = trigpol(n);

zeros = roots(poly);

modulus = abs(zeros);

j = 1;

for i = 1:(2*(n-1))

if (modulus(i)<1)

zerosinside(j) = zeros(i);

j = j+1;

end;

end;

Pol = poly(1);

Real = 0;

Image = 0;
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for i = 1:(n-1)

if (imag(zerosinside(i)) == 0)

Real = Real+1;

RealZeros(Real) = zerosinside(i);

else

Image = Image+1;

ImageZeros(Image) = zerosinside(i);

end;

end;

Norm = 1;

for i = 1:Real

Norm = Norm*abs(RealZeros(i));

end

for i = 1:Image

Norm = Norm*abs(ImageZeros(i));

end

Norm = sqrt(abs(Pol)/Norm);

Norm = 0.5^n*sqrt(2)*Norm;

rh = [1 1];

for i = 2:n

rh = conv(rh,[1 1]);

end

for i = 1:Real

rh = conv(rh,[1 -RealZeros(i)]);

end

for i = 1:2:Image

rh=conv(rh,[1 -2*real(ImageZeros(i)) abs(ImageZeros(i))^2]);

end

rh = Norm*rh;

[rh,rg,h,g] = rh2rg(rh);
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Appendix E

Wavelet Transform

E.1 Introduction

Various modelling approaches for capturing the self-similar nature of LAN

and VBR video traffic were outlined in Section 2.4. As mentioned earlier, an

important requirement for conducting simulation studies of telecommunica-

tion networks is the ability to generate long synthetic stochastic self-similar

sequences.

We present a new generator of pseudo-random self-similar sequences based

on fractional Gaussian noise (FGN) and a wavelet transform using Daubechies

wavelets (DW), called the FGN-DW method. Daubechies wavelets are more

accurate than Haar wavelets because they more closely match the self-similar

structure of long-range dependent processes (see also Section 4.4.5) [2], [170].

The statistical accuracy and time required to produce sequences of a given

(long) length were experimentally studied. This generator showed a high level

of accuracy of the output data (in the Hurst parameter) and is fast. Its the-

oretical algorithmic complexity is O(n) [26], [46]. We begin by describing a

wavelet transform for synthesising an approximate FGN.

E.2 Wavelet Transform

The wavelet transform was developed in the mid-1980s. The multi-resolution

analysis (MRA) term holds in all the procedures to obtain the decomposition



E.2 Wavelet Transform

of a sequence according to the scales occurring in it. In wavelet transforms,

the MRA is accomplished using the scaling parameter. The scaling function

and mother wavelet obtained from the decomposition of a discrete wavelet

transform (DWT) of a sequence are described [77], [101], [102]. Our method for

generating synthetic self-similar FGN sequences in a time domain is also based

on the discrete wavelet transform (DWT). It has been shown that wavelets can

provide compact representations for a class of FGN processes [40], [78]. This is

because the structure of wavelets naturally matches the self-similar structure

of the long range dependent processes [2], [26], [170].

E.2.1 Description of the Wavelet Transform

The basic algorithm of the wavelet transform is shown in Figure E.1 [46],

[153], [176]. This simple filter algorithm performs a one-dimensional one-scale

wavelet transform on any one-dimensional input sequence. It uses the pyrami-

dal algorithm shown in Figure E.2. This is a recursive algorithm based on two

filters (i.e., G0 and G1) that are derived from the scaling function and mother

wavelet chosen for the transformation. G1 is a high-pass wavelet filter and G0

is the complementary low-pass wavelet filter. The outputs are the low-pass

residue for the G0 filter branch, represented by Approx in Figure E.1, and the

high-pass sub-band for the G1 branch, represented by Detail [46], [115].

The DWT can be computed efficiently by the pyramidal algorithm. Figure

E.2 shows that the output coefficient of the one-dimensional multi-scale DWT

is obtained by iterating the basic algorithm on the low-pass residue of each

x(t)

G1

G0 2

2 Detail

Approx

Figure E.1: Basic algorithm for the wavelet transform.
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Detail 2

Detail 3

Approx 2

Approx 1

Approx 3

Figure E.2: Recursive pyramidal algorithm for the multi-scale wavelet trans-

form.

x(t)

G1

G02

2Detail

Approx

~

~

~

approx

detail

Figure E.3: Basic algorithm for the inverse wavelet transform.

of the previous stages. The computational cost of the pyramidal algorithm

is O(n) [2], [124], which is even lower than the cost of the FFT algorithm;

O(nlogn).

The synthesis or reconstruction process is achieved by using the basic algo-

rithm shown in Figure E.3. G̃0 and G̃1 execute inverse transformations to those

executed by G0 and G1, and X̃(t) is the outcome. The multi-scale reconstruc-

tion is performed with the same algorithm iterated to obtain the successive

low-pass residues.
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E.2.2 Multi-Resolution Analysis

The wavelet transform is based on the concept of MRA. It plays a role in

mapping the sequence to the time-scale joint representation. A simple def-

inition of MRA is one that considers information at different resolutions (or

scales). Fourier transforms are constant resolution based, because they involve

single forward/reverse transforms that convert data to/from a different rep-

resentation. The wavelet transform is an MRA, because it splits information

at a given scale into several sub-representations, each of which is a smaller

scale representation of part of the original data. This split can be repeated

iteratively (until a limit, defined by the size of the original data, is reached).

The MRA consists of a collection of nested subspaces {Vi, i ∈ Z}, satisfying

the following set of properties [1], [2],:

(i) ∩Vi = {0},∪Vi is dense in Hilbert space L2(R).

(ii) Vi ⊂ Vi−1.

(iii) x(t) ∈ Vi ←→ x(2it) ∈ V0.

(iv) There exists a function φ0(t) in vector V0, called the scaling function,

such that the collection {φ0(t−j), j ∈ Z} is an orthonormal basis for V0.

The scaled and shifted functions φi,j(t)

{φi,j(t) = 2−i/2φ0(2
−it− j), j ∈ Z} (E.1)

constitute an orthonormal basis for the vector space Vi.

Performing an MRA of a sequence x means successively projecting the

sequence into each of the approximation subspaces Vi, i.e.,

approxi(t) = (ProjVi
x)(t) =

∑
j

ax(i, j)φi,j(t), (E.2)

where the coefficient ax(i, j) is given by calculating the following inner product

of x:

ax(i, j) =< x, φi,j > . (E.3)
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The approximation approxi is a coarser approximation of x than approxi−1

since Vi ⊂ Vi−1, and the subsequent loss of information is the detail of the

sequence x when moving from one approximation to the next, one detaili(t) =

approxi−1(t) − approxi(t). The detail sequences, detaili, can be obtained by

projecting x onto a collection of subspaces, called the wavelet subspaces, Wi.

Furthermore, the MRA theory shows that there exists a function ψ0, called

the mother wavelet, derived from φ0, such that its templates

{ψi,j(t) = 2−i/2ψ0(2
−it− j), j ∈ Z} (E.4)

constitute an orthonormal basis for the wavelet subspace Wi. Moreover, all

base functions ψi,j(t) have the same shape as the mother wavelet and therefore

are self-similar. The detail information of the sequence x is given by

detaili(t) = (ProjWi
x)(t) =

∑
k

dx(i, j)ψi,j(t), (E.5)

where the coefficient dx(i, j) is given by calculating the following inner product

of x:

dx(i, j) =< x, ψi,j > . (E.6)

MRA represents the information about sequence x as a collection of details

and a low-resolution approximation

x(t) = approxN(t) +

N∑
i=1

detaili(t)

=
∑

j

ax(N, j)φN,j(t) +
N∑

i=1

∑
j

dx(i, j)ψi,j(t). (E.7)

For a scaling function φ0 and mother wavelet ψ0, the discrete wavelet trans-

form (DWT) is given by a mapping

x(t) −→ {{ax(N, j), j ∈ Z}, {dx(i, j), i = 1, . . . , N, j ∈ Z}}. (E.8)

Since the function φ0 produces an approximation of the signal x, it must be a

low-pass filter. In addition, the mother wavelet ψ0 must be a high-pass filter,

since it performs a differential operation on the input signal to produce the

detail version.
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A simple and popular example of an orthonormal wavelet basis is the Haar

wavelet, where the scaling function φ0 and the mother wavelet ψ0 are defined

by

φ0(i)

{
1√
2

i = 0, 1

0 otherwise
(E.9)

and

ψ0(i)




1√
2

i = 0

− 1√
2

i = 1

0 otherwise.

(E.10)

The Haar basis functions are the associated decomposition and reconstruc-

tion filters that are used in the discrete wavelet transform. The Haar wavelet

is not continuous and its Fourier transform decays only by |λ|−1, which means

that its decomposition has poor scale (frequency) localisation. Thus, the

Daubechies wavelets produce smoother curves than Haar wavelets by better

matching the self-similar structure of long-range dependent processes. The

Daubechies wavelets are also a family of orthonormal wavelets. Other exam-

ples of wavelets include the Battle-Lemarié, Meyer, Shannon, and Strömberg

wavelets [153].

E.2.3 Daubechies Wavelets

Daubechies discovered one of the original wavelet families [26]. This family

contains a single wavelet for each possible even valued filter length, beginning

with four coefficients. As the filter length grows, the wavelets move from highly

localised (due to the small number of non-zero filter coefficients) to highly

smooth (for larger numbers of coefficients). The formation of the smallest

of this family of wavelets, often referred to as Daub(4), which stands for the

Daubechies wavelets with four coefficients, is calculated below [26], [175].

The transformation matrix for a Daubechies wavelet of length four is given

by matrix (E.11).
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c0 c1 c2 c3 0 0 0 . . .

c3 −c2 c1 −c0 0 0 0 . . .

0 0 c0 c1 c2 c3 0 . . .

0 0 c3 −c2 c1 −c0 0 . . .

. . .

. . .

. . .

. . . c0 c1 c2 c3

. . . c3 −c2 c1 −c0
c2 c3 0 . . . . . . 0 0 c0 c1

c1 −c0 0 . . . . . . 0 0 c3 −c2




(E.11)

The odd rows of this matrix represent a convolution of the data vector with

the coefficients [c0, c1, c2, c3]. These rows can be efficiently calculated due to

its sparsity (requiring four multiplications and three additions per data value).

The even rows of this matrix represent a convolution of the data vector with

the coefficients [c3,−c2, c1,−c0]. They are also efficiently calculated, requiring

the same number of operations. The total effect of this operation is to convolve

the data vector with two different four-coefficient filters and reduce the results

by a factor of two.

The inverse (reconstruction) transform is the inverse of this matrix, and is

equal to its transpose. It can be used to generate the following requirements

for the values [c0, c1, c2, c3] [131]:

{
c20 + c21 + c22 + c23 = 1

c0 ∗ c2 + c1 ∗ c3 = 0.
(E.12)

For the values of these coefficients to form the desired high- and low-pass filters,

we must also require:

{
c3 − c2 + c1 − c0 = 0

0 ∗ c3 − 1 ∗ c2 + 2 ∗ c1 − 3 ∗ c0 = 0.
(E.13)
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The unique solution to these four equations is:


c0 = (1 +
√

3)/4 ∗ √2

c1 = (3 +
√

3)/4 ∗ √2

c2 = (3−√3)/4 ∗ √2

c3 = (1−√3)/4 ∗ √2.

(E.14)

This same general method can be used to form Daubechies wavelet filter

values for any even filter length greater than four.

The Daub(4) DWT of an input data vector is calculated as follows (this

method assumes a data vector length that is a power of two; the use of other

lengths requires special treatment).

Given the data vector:

[y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15],

transform it with (multiply by) the forward matrix (E.11) to give:

[s0 d0 s1 d1 s2 d2 s3 d3 s4 d4 s5 d5 s6 d6 s7 d7],

where s∗ are smooth responses (low-pass) and d∗ are detail responses (high-

pass).

This vector is then permuted to collect the smooth and detail areas as

follows:

[s0 s1 s2 s3 s4 s5 s6 s7 d0 d1 d2 d3 d4 d5 d6 d7].

For a DWT, this process is then iteratively repeated on the smooth values to

obtain the following:

[S0 D0 S1 D1 S2 D2 S3 D3 d0 d1 d2 d3 d4 d5 d6 d7],

and then permuted to:

[S0 S1 S2 S3 D0 D1 D2 D3 d0 d1 d2 d3 d4 d5 d6 d7].

In this example we must now stop, as the length of the next smooth sub-vector

(length four) equals the length of the analysis filter (length four). Reconstruc-

tion is an exact reversal of this procedure, using the transpose (inverse) of the

forward transform matrix.
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E.2 Wavelet Transform

For our generator, we chose Daubechies wavelets because they produce

more accurate coefficients of wavelets than Haar wavelets (for more detailed

discussions, see also [26], [170]; and our results of the comparison in Chapter

4).
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Appendix F

M/M/1/∞ Queueing Systems:

Simulation Run-Length for

Mean Waiting Time

In a typical simulation, a variance or a mean of parameters (such as response

times, waiting times and queue lengths) is unknown. Nevertheless, simulation

practitioners would like to be able to plan a simulation and, in particular, esti-

mate how long the simulation must be run so as to obtain a credible confidence

interval [123]. Depending on which steady-state parameters are estimated in

a queueing system, a different number of observations must be collected to

reach the required confidence interval. Here, we considered only the mean

waiting time from the M/M/1/∞ queueing system. These were estimated

with a specified error (or precision) for 95% confidence level. The theoretical

number of observations required to estimate these parameters can be obtained

as follows. The derivation of a formula that can calculate the theoretically

required run-length for the M/M/1/∞ queueing system is ascribed to Daley

[25]. We begin by defining a way to measure the relative precision.

Let Ŵq be the estimate for the mean waiting time in the queue Wq. The

requirement that the estimate Ŵq of Wq is obtained with a given relative

precision of 5%, for 95% confidence level, can be written as:

Pr(|Ŵq −Wq| ≤ 0.05Wq) = 0.95. (F.1)

If ρ = λ/µ is the traffic intensity, where λ is the arrival rate and µ is the
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service rate, then for an M/M/1/∞ queue the steady-state mean waiting time

in the queue is given by

Wq =
ρ2

λ(1− ρ) . (F.2)

The steady-state variance of the waiting time in the queue is also given by

σ2(Wq) =
ρ3(2− ρ)
λ2(1− ρ)2

. (F.3)

The Laplace-Stieltjes transform of PDF of response times W ∗(s) in the

M/G/1/∞ queueing system is defined as:

W ∗(s) =
(1− ρ)sB∗(s)
s− λ[1− B∗(s)]

(F.4)

in Kleinrock [79] (p.199), where B∗(s) is the Laplace-Stieltjes transform of

probability density function (PDF) of exponential service times, equal

B∗(s) =

∫ ∞

0

µe−µte−stdt =
µ

µ+ s
, (F.5)

in McNickle [106] and Kleinrock [79] (p.195).

This simplifies Equation (F.5) to:

W ∗(s) =
µ(1− ρ)

s + µ(1− ρ) (F.6)

as in Kleinrock [79] (p.202). The Laplace-Stieltjes transform of PDF of re-

sponse times can also be written as

W ∗(s) = W ∗
q (s)B∗(s),

where W ∗
q (s) is the Laplace-Stieltjes transform of PDF of waiting times in the

queue, since ResponseT ime = WaitingT imeInTheQueue + ServiceT ime.

Thus, the Laplace-Stieltjes transform of PDF of waiting times in the queue is

given by

W ∗
q (s) =

(1− ρ)s
s− λ[1− B∗(s)]

(F.7)

in [52] (p.202), which simplifies Equation (F.5) to:

W ∗
q (s) =

(s+ µ)(1− ρ)
s+ (µ− ρ) . (F.8)
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Detailed discussions of Laplace-Stieltjes transforms can be found in Gross and

Harris [52] and Kleinrock [79].

If the system has been operating for a long time, and one selects n ob-

servations of waiting times W1, · · · ,Wn, then the mean waiting time in the

queue

Ŵq =

n∑
i=1

Wi/n

has, for sufficiently large n,

nσ2(Ŵq) + σ2(Wq)

[
1 + 2

∞∑
j=1

ρj(m)

]
, (F.9)

where

1 + 2

∞∑
j=1

ρj(m) =
1 + ρ

1− ρ +
λ(W ′′′

q −W ′
qW

′′
q )

(1− ρ)(W ′′
q −W ′

qW
′
q)
,

where W ′
q,W

′′
q and W ′′′

q can be calculated by the first, second and third differ-

entiations of the Laplace-Stieltjes transform of PDF of mean waiting time in

the queue W ∗
q (s), and σ2(Wq) can be calculated by (W ′′

q −W ′
qW

′
q) to obtain

the number of observations in the queue. For a more detailed discussion, see

Daley [25] and Fishman [39].

From Equation (F.1), we assume that
(

|Ŵq−Wq|
σ(Ŵq)

)
is a normal N(0, 1) dis-

tribution, then we have

Pr

(
|Ŵq −Wq|
σ(Ŵq)

≤ 0.05Wq

σ(Ŵq)

)
= 0.95

or

0.05Wq

σ(Ŵq)
= 1.96. (F.10)

Then, from Equations (F.9) and (F.10), we can obtain the following equation

[106]. The number of observations needed to estimate the mean waiting times

in an M/M/1/∞ queueing system, with a relative precision of 5% for 95%

confidence level, can be calculated theoretically as

n =

(
1.96

0.05Wq

)2

A(ρ), (F.11)
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where

A(ρ) = σ2(Wq)

[
1 + ρ

1− ρ +
λ(W ′′′

q −W ′
qW

′′
q )

(1− ρ)(W ′′
q −W ′

qW
′
q)

]

=
ρ3(2− ρ)
λ2(1− ρ)2

[
2µ3 + 5λµ2 − 4µλ2 + λ3

(2µ− λ)(µ− λ)2

]
. (F.12)

Thus, using Equations (F.2) and (F.3) we get:

n =

(
1.96

0.05

)2(
2 + 5ρ− 4ρ2 + ρ3

ρ(1− ρ)2

)
(F.13)

= 1536.64

(
2 + 5ρ− 4ρ2 + ρ3

ρ(1− ρ)2

)
.

Table F.1 shows the numbers of observations required in theory, when esti-

mating mean waiting times in an M/M/1/∞ queueing system with a relative

precision of 5% and 10%, respectively; see also [145]. One can note that in

this case we need to run the simulation for approximately four times longer if

we want to achieve results twice as accurate.

Table F.1: Theoretically required run-length, when estimating mean waiting

times in the M/M/1/∞ queueing system with a relative precision of 5% and

10% at 95% confidence level.

ρ Relative Precision = 5% Relative Precision = 10%

0.1 46,687 11,671

0.2 34,190 8,547

0.3 33,105 8,276

0.4 36,357 9,134

0.5 44,562 11,140

0.6 60,441 15,110

0.7 94,710 24,830

0.8 189,775 47,443

0.9 681,072 170,268
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Appendix G

Automated Simulation Package:

Akaroa-2

A fully automated simulation package, Akaroa-2 (version 2.4.1)1, was used as

a performance evaluation tool in this dissertation. Akaroa-2 is the latest ver-

sion of a fully automated simulation tool designed to run parallel/distributed

stochastic simulations under the Multiple Replications In Parallel (MRIP) sce-

nario in a local area network (LAN) environment [32], [33].

The Akaroa-2 system has three main components: akmaster, akslave and

akrun, plus three auxiliary components: akadd, akstat and akgui; more de-

tailed discussion can be found in Ewing et al. [32] and [33]. Figure G.1 shows

the relationships between the three main components of Akaroa-2. Each bold-

outlined box represents one Unix process, and the connecting lines represent

Transmission Control Protocol and Internet Protocol (TCP/IP) stream con-

nections.

The Akmaster is the master process that coordinates the activity of all

other processes initiated by Akaroa-2. It launches new simulations, maintains

1The original version of Akaroa was designed at the Department of Computer Science,
University of Canterbury in Christchurch, New Zealand, by Associate Professor Krzysztof
Pawlikowski (Computer Science), Dr. Victor Yau (Computer Science) and Dr. Don Mc-
Nickle (Management). The latest version (Akaroa-2) was re-implemented by Dr. Greg
Ewing (Computer Science). The Akaroa-2 package can be freely downloaded for the pur-
pose of teaching and non-profit research activities at universities and research institutes from
http://www.cosc.canterbury.ac.nz.
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information about the state running simulations, performs global analysis of

the data produced by simulation engines, and makes simulation stopping de-

cisions.

The akslave processes run on hosts that run simulation engines. The sole

function of the akslave is to launch simulation engine(s) on its host as directed

by the akmaster.

Once the akmaster and any desired akslaves are running, the akrun program

is used to initiate a simulation. It first contacts the akmaster process, obtaining

its host name and port number from a file left by the akmaster in the user’s

home directory. For each simulation engine requested, the akmaster chooses a

host from among those hosts on the LAN that are running akslave processes. It

instructs the akslave on that host to launch an instance of the user’s simulation

program, passing on any specified arguments. The first time the simulation

program calls one of the Akaroa-2 library routines, the simulation engine opens

a connection to the akmaster process and identifies the simulation to which it

belongs, so that the akmaster can associate the connection with the appropriate

simulation data structure.

akmaster

akslave

Engine

Engine

Engine

Engine

Engine

Engine

akslave akslave

Simulation 1 Simulation 2

Host 1 Host 2 Host 3

akrun akrun

Figure G.1: Architecture of Akaroa-2 (taken from [33]).
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Akadd is used to add more simulations to a running simulation. It can

be used to replace simulation engines that have been lost for some reason, or

to speed up the simulation if more hosts become available. Akstat is used to

obtain information about the state of the Akaroa-2 system: which hosts are

available, which simulations are running, and what progress each simulation

is making. Akgui provides a graphical user interface to start and monitor

simulations that can be used instead of, or in addition to, akrun and akstat.

Following the principles of sequential simulation [122], each engine in Akaroa-

2 performs a sequential analysis of its own data to form a local estimate of

each performance measure. At more or less regularly determined checkpoints,

the engine sends its local estimates to the akmaster process, where the local

estimates of each performance measure from all the engines are combined to

produce a set of global estimates. Whenever a new global estimate is cal-

culated, the relative half-width of its confidence interval is computed, and

compared with the required precision. When the precision of all analysed

performance measures becomes satisfactory, the akmaster terminates all the

simulation engines and sends the final global estimate to the akrun process,

which in turn reports them to the user.
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