
ar
X

iv
:0

80
8.

12
99

v1
  [

m
at

h.
PR

] 
 8

 A
ug

 2
00

8

Optimal control of a stochastic network driven by a

fractional Brownian motion input

Arka P. Ghosh∗ Alexander Roitershtein Ananda Weerasinghe†

Iowa State University

August 5, 2008

Abstract

We consider a stochastic control model driven by a fractional Brownian motion.

This model is a formal approximation to a queueing network with an ON-OFF input

process. We study stochastic control problems associated with the long-run average

cost, the infinite horizon discounted cost, and the finite horizon cost. In addition, we

find a solution to a constrained minimization problem as an application of our solution

to the long-run average cost problem. We also establish Abelian limit relationships

among the value functions of the above control problems.
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1 Introduction

Self-similarity and long-range dependence of the underlying data are two important features
observed in the statistical analysis of high-speed communication networks in heavy traffic,
such as local area networks (LAN) (see for instance [10, 21, 25, 26, 30, 34, 35] and references
therein). In theoretical models such traffic behavior has been successfully described by
stochastic models associated with fractional Brownian motion (fBM) (see [14, 15, 19, 30,
32, 33]). It is well known that fBM exhibits both of these features when the associated
Hurst parameter is above 1

2
. Therefore, understanding the behavior and control of these

stochastic models are of significant interest. The non-Markovian nature of the fractional
Brownian motion makes it quite difficult to study stochastic control problems for a state
process driven by fBM. The techniques such as dynamic programming and analysis of the
corresponding Hamilton-Jacobi-Bellmann equations which are the commonly used tools in
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the analysis of the stochastic control problems associated with the ordinary Brownian motion
are not available for fBM-models.

In this paper, we study several basic stochastic control problems for a queueing model
with an input described by a fractional Brownian motion process. Similar queueing models,
but not in the context of control of the state process, were considered for instance in [18,
23, 36]. We are aware of only a few solvable stochastic control problems in fBM setting.
Usually, the controlled state process is a solution of a linear (semi-linear in [7]) stochastic
differential equation driven by fBM, and the control typically effects the drift term of the
SDE. In particular, the linear-quadratic regulator control problem is addressed [16, 17] and a
stochastic maximum principle is developed and applied to several stochastic control problems
in [3]. We refer to [16] and to Chapter 9 of the recent book [4] for further examples of control
problems in this setting. In contrast to the models considered in the above references, the
model described here is motivated by queueing applications and involves processes with state-
constraints. At the end of this section, we discuss an example of a queueing network which
leads to our model. Our analysis relies on a coupling of the state process with its stationary
version (see [18, 36]) which enables us to address control problems in a non-Markovian
setting, and our techniques are different from those employed in [3, 7, 16, 17].

A real-valued stochastic process WH =
(
WH(t)

)
t≥0

is called fractional Brownian motion

with Hurst parameter H ∈ (0, 1) if WH(0) = 0 and WH is a continuous zero-mean Gaussian
process with stationary increments and covariance function given by

Cov
(
WH(s),WH(t)

)
=

1

2
[t2H + s2H − |t− s|2H ], s ≥ 0, t ≥ 0.

The fractional Brownian motion is a self-similar process with index H, that is for any a > 0
the process 1

aH

(
WH(at)

)
t≥0

has the same distribution as
(
WH(t)

)
t≥0
. If H = 1

2
then WH

is an ordinary Brownian motion, and if H ∈ [1
2
, 1) then the increments of the process are

positively correlated and the process exhibits long-range dependence, which means that

∞∑

n=1

Cov
(
WH(1),WH(n+ 1) −WH(n)

)
= ∞.

Notice that fBM is a recurrent process, and in particular, for any u > 0, lim
t→∞

WH(t)/t = 0

a.s. and consequently lim
t→∞

(
WH(t) − ut

)
= −∞ a.s. For additional properties and a more

detailed description of the process we refer to [22, 24, 27, 28].
We consider a single server stochastic processing network having deterministic service

process with rate µ > 0. For any time t ≥ 0, the cumulative work input to the system over
the time interval [0, t] is given by λt + WH(t), where λ is a fixed constant and WH is a
fractional Brownian motion with Hurst parameter H ∈ [1

2
, 1). We assume that the service

rate µ satisfies µ > λ and that the parameter µ can be controlled. The workload present
in the system at time t ≥ 0 is given by Xu

x (t) which is defined in (2.1) and (2.2) below.
Here x ≥ 0 is the initial workload and u = µ − λ > 0 is the control variable. Assuming for
simplicity that x = 0, an equivalent representation for the process Xu

x is given by (see (2.12)
below for the general case)

Xu
x (t) =

(
WH(t) − ut

)
− inf

s∈[0,t]

(
WH(t) − ut

)
, t ≥ 0. (1.1)
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For a given arrival process WH , this is a common formulation for a simple stochastic network
where the server works continuously unless there are no customers in the system. The first
term above represents the difference between the cumulative number of job arrivals and
completed services in the time interval [0, t], and the last term ensures that the the queue-
length is non-negative, and it is a non-decreasing process which increases only when the
queue-length process is zero. For more examples of such formulations for queueing networks
or stochastic processing networks, we refer to [11] and [33]. The above queueing model with
WH in (1.1) being a fractional Brownian motion was considered by Zeevi and Glynn in [36].
In particular, we are motivated by their work.

Our goal is to address several stochastic control problems related to the control of the
workload process Xu

x described above. The organization of the paper is as follows. We will
conclude this section with a motivating example of a queueing network which leads to our
model. In Section 2, we introduce the model and describe three basic stochastic control
problems associated with it, namely the long-run average cost problem, the infinite horizon
discounted cost problem, and the finite horizon control problem. Here we also discuss some
properties of the reflection map which will be used in our analysis.

In Section 3, we study the long-run average cost problem. Here we obtain an explicit
deterministic representation of the cost functional for each control u > 0. This enables us to
reduce the stochastic control problem to a deterministic minimization problem. We obtain
an optimal control u∗ > 0 and show its uniqueness under additional convexity assumptions
for the associated cost functions. We show that the value function and the corresponding
optimal control are independent of the initial data. It is well known that the above property is
true for the classical long-run average cost problem associated with non-degenerate diffusion
processes. Here we show that it remains valid for our model driven by fBM which is highly
non-Markovian. The main results of this section are given in Theorems 3.4 and 3.5. Their
generalizations are given in Theorems 3.6 and 3.7. Our proofs here rely on the use of
a coupling of the underlying stochastic process with its stationary version introduced in
[18]. In particular, we show that the coupling time has finite moments in Proposition 3.2.
Because of the highly non-Markovian character of the fractional Brownian motion (it is well
known that fBM cannot be represented as a function of a finite-dimensional Markov process),
coupling arguments in general do not work for the models associated with fBM (we refer to
[13] for an exception). In our case, the coupling is available due to the uniqueness results
related to the reflection map described in Section 2.

We use our results in Section 3 to obtain an optimal strategy for a constrained optimiza-
tion problem in Theorem 4.2 of Section 4. Similar stochastic control problems for systems
driven by an ordinary Brownian motion were previously considered in [1, 31]. An inter-
esting application of this model to wireless networks is discussed in [1]. Our constrained
optimization problem (in the fBM setting) is a basic example of a general class of problems
with an added bounded variation control process in the model. This class of problems has
important applications to the control of queueing networks, but in fBM setting, it seems to
be an unexplored area of research.

In Section 5, we address the infinite horizon discounted cost problem associated with a
similar cost structure. An optimal control for this problem is given in Theorem 5.3.

In Section 6, we establish Abelian limit relationships among the value functions of the
three stochastic control problems introduced in Section 2. The main result of this section
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is stated in Theorem 6.3. We show that the long term asymptotic for the finite horizon
control problem and the asymptotic for the infinite horizon discounted control problem, as
the discount factor approaches zero, share a common limit. This limit turns out to be the
value of the long-run average cost control problem. Our proof also shows that the optimal
control for the discounted cost problem converges to the optimal control for the long-run
average cost control problem when the discount factor approaches zero. A similar result
holds also for the optimal control of the finite horizon problem, as the time horizon tends
to infinity. For a class of controlled diffusion processes analogous results were previously
obtained in [31].

Motivating example. We conclude this section with a description of a queueing network
related to the internet traffic data in which the weak limit of a suitably scaled queue-length
process satisfies (2.1) and (2.2) (which are reduced to the above (1.1) when the initial work-
load x equals 0). For more details on this model we refer to [30] and Sections 7 and 8 of
[33].

We begin by defining a sequence of queueing networks with state dependent arrival and
service rates, indexed by an integer n ≥ 1 and a non-negative real-valued parameter τ ≥ 0.
For each n ≥ 1 and τ ≥ 0, the (n, τ)-th network has only one server and one buffer of
infinite size, and the arrivals and departures from the system are given as follows. There are
n input sources (e.g. n users connected to the server), and job requirements of each user is
given by the so-called ON-OFF process {Xn,τ

i , i ≥ 1} as defined in [30], namely each user
stays connected to the server for a random ON-period of time with distribution function
F1, and stays off during a random OFF-period of time with distribution function F2. The
distribution Fi is assumed to have finite mean mi but infinite variance, and in particular,

1 − Fi(x) ∼ cix
−αi ,

where 1 < αi < 2 for i = 1, 2. While connected to the server, each user demands service
at unit rate (sends data-packets at a unit rate to the server for processing). The server
is processing users requests at a constant rate, say µn,τ . Assume that the ON and OFF-
periods are all independent (for each user as well as across users), the ON-OFF processes
have stationary increments, and average rate of arrival of jobs (packets) from each source
(customer) is given by λ = m1/(m1 +m2). The queue-length at time t ≥ 0 is given by

Xn,τ (t) = Xn,τ(0) +

n∑

i=1

∫ t

0

Xn,τ
i (s)ds− µn,τ t+ Ln,τ (t),

where Ln,τ is a non-decreasing process that starts from 0, increases only when Xn,τ is zero,
and ensures that Xn,τ is always non-negative. Physically, this implies that the server is non-
idling, i.e it serves jobs continuously as long as the buffer is non-empty. The second term in
the right-hand side of the above equation represents cumulative number of packets sent to the
server by all the n customers in the interval [0, t]. We will assume that Xn,τ(0) = xn,τ , where
xn,τ are fixed non-negative real numbers for each n and τ. In this setup, τ > 0 represents
the time scaling parameter, and it is well known (see [29] or Theorem 7.2.5 of [33]) that

τ−Hn− 1
2

n∑

i=1

∫ τ ·

0

Xn,τ
i (s)ds ⇒ WH(·),
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when n → ∞ first and then τ → ∞. Here WH is a fractional Brownian motion with Hurst
parameter H = (3 − min{α1, α2})/2 ∈

(
1
2
, 1

)
, and the convergence is the weak convergence

in the space D
(
[0,∞),R

)
of right-continuous real functions with left limits equipped with

the standard Jα,1 topology (see [33] for details).
From the above convergence result it can be derived (see Theorem 8.7.1 in [33]) that if

the service rates µn,τ satisfy the following heavy traffic assumption

τ−Hn− 1
2

n∑

i=1

(µnτ − nλ) τ → u,

as (n, τ) → ∞, then a suitably scaled queue-length satisfies equations (2.1) and (2.2). More

precisely, if the above heavy traffic condition is satisfied, and τ−Hn− 1
2xn,τ → x, then the

scaled queue-length τ−Hn− 1
2Xn,τ(τ ·) converges weakly to a limiting process Xu

x (·) that sat-
isfies (2.1), (2.2) if we let n→ ∞ first and then τ → ∞.

Hence, we see that with a “super-imposed” ON-OFF input source and deterministic
services times for the queueing processes, a suitably-scaled queue length in the limit satisfies
our model. With a cost structure similar to either (2.5) or (2.7), or (2.10) for the queueing
network problem, one can consider the problem described in this paper as a formal fractional
Brownian control problem (fBCP) of the corresponding control problem for the queueing
network. We, however, do not attempt to solve the queueing control problem in this paper.
A solution the limiting control problem provides useful insights into the queueing network
control problem (see for instance [12]). For a broad class of queueing problems, it has been
shown that the value function of the Brownian control problem (BCP) is a lower bound for
the minimum cost in the queueing network control problem (see [6]). In many situations, the
solution to the BCP can be utilized to obtain optimal strategies for the queueing network
control problem (cf. [2], [5], [9] etc.). Here, we study just the Brownian control problem,
which is an important problem in its own right. Our explicit solution to the fBCP can be
considered as an “approximate solution” to the queueing network problem.

2 Basic setup

In this section we define the controlled state process (Section 2.1), describe three standard
control problems associated with it (Section 2.2), and also discuss some basic properties of
a reflection mapping which is involved in the definition of the state process (Section 2.3).

2.1 Model

Let
(
WH(t)

)
t≥0

be a fractional Brownian motion with Hurst parameter H ≥ 1/2 and let σ(·)

be a deterministic continuous function defined on [0,∞) and taking positive values. For a
given initial value x ≥ 0 and a control variable u ≥ 0, the controlled state process Xu

x is
defined by

Xu
x (t) = x− ut+ σ(u)WH(t) + Lu

x(t), t ≥ 0, (2.1)
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where the process Lu
x is given by

Lu
x(t) = −min

{
0, min

s∈[0,t]

(
x− us+ σ(u)WH(s)

)}
, t ≥ 0. (2.2)

The control variable u ≥ 0 remains fixed throughout the evolution of the state process Xu
x .

It follows from (2.1) and (2.2) that Xu
x (t) ≥ 0 for all t ≥ 0. Notice that the process Lu

x has
continuous paths, and it increases at times when Xu

x (t) = 0.
The process Xu

x represents the workload process of a single server controlled queue fed
by a fractional Brownian motion, as described in the previous section (see also [36]). For
a chosen control u ≥ 0 that remains fixed for all t ≥ 0, the controller is faced with a
cost structure consisting of the following three additive components during a time interval
[t, t+ dt] :

1. a control cost h(u)dt,

2. a state dependent holding cost C
(
Xu

x

)
dt,

3. a penalty of p dLu
x(t), if the workload in the system is empty.

Here p ≥ 0 is a constant, and h and C are non-negative continuous functions satisfying the
following basic assumptions:

(i) The function h is defined on [0,+∞), and

h is non-decreasing and continuous, h(0) ≥ 0, lim
u→+∞

h(u) = +∞. (2.3)

(ii) The functions C is also defined on [0,+∞), and it is a non-negative, non-decreasing
continuous function which satisfies the following polynomial growth condition:

0 ≤ C(x) ≤ K(1 + xγ) (2.4)

for some positive constants K > 0 and γ > 0.

We will sometimes assume convexity of h and C in order to obtain sharper results, such as
the uniqueness of the optimal controls.

2.2 Three control problems

Here we formulate three cost minimization problems for our model. In the long-run average
cost minimization problem (it is also called ergodic control problem), the controller minimizes
the cost functional

I(u, x) := lim sup
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Xu

x (t)
)]
dt+

∫ T

0

p dLu
x(t)

)

= h(u) + lim sup
T→∞

1

T
E

(∫ T

0

C
(
Xu

x (t)
)
dt+ pLu

x(T )
)
, (2.5)

6



subject to the constraint u > 0 for a fixed initial value x ≥ 0. Notice that since Lu
x(t) is an

increasing process, the integral with respect to Lu
x(t) can be defined an ordinary Riemann-

Stieltjes integral. The value function of this problem is given by

V0(x) = inf
u>0

I(u, x). (2.6)

In Section 3, we show that I(u, x) and hence also the value function V0(x) are actually
independent of x. In addition, we show the existence of a finite optimal control u∗ > 0 and
also prove that u∗ is unique if the functions h and C are convex. We apply the results on
the long run average cost problem to find an optimal strategy for a constrained optimization
problem, in Section 4.

In Section 5, we solve the infinite horizon discounted cost minimization problem for the
case when σ(u) ≡ 1 in (2.1). In this problem it is assumed that the controller wants to
minimize the cost functional

Jα(u, x) := E
(∫ ∞

0

e−αt
[
h(u) + C

(
Xu

x (t)
)]
dt+ p

∫ ∞

0

e−αtdLu
x(t)

)
. (2.7)

subject to u > 0 for a fixed initial value x ≥ 0. Here the discount factor α > 0 is a strictly
positive constant. The value function in this case is given by

Vα(x) = inf
u>0

Jα(u, x). (2.8)

We study the asymptotic behavior of this model in Section 6. When α approaches zero,
we prove that lim

α→0+
αJα(u, x) = I(u, x) for any control u > 0. Furthermore, we show that

lim
α→0+

αVα(x) = V0(x) and the optimal controls for the discounted cost problem converges to

that of the long-run average cost problem as α tends to zero. In Section 6, we also consider
the finite horizon control problem with the value function V (x, T ) defined by

V (x, T ) := inf
u>0

I(u, x, T ), (2.9)

where

I(u, x, T ) := E
(∫ T

0

[
h(u) + C

(
Xu

x (t)
)]
dt+ pLu

x(T )
)

= h(u)T + pE
(
Lu

x(T )
)

+ E
(∫ T

0

C
(
Xu

x (t)
)
dt

)
, (2.10)

and p ≥ 0 is a non-negative constant. We prove that lim
T→∞

V (x,T )
T

= V0(x). Furthermore,

we show that the optimal controls for the finite horizon problem converges to that of the
long-run average cost problem, as T tends to infinity.

2.3 The reflection map

The model equations (2.1) and (2.2) have an equivalent representation which is given below
in (2.12) by using the reflection map. Therefore we briefly discuss some basic properties of
the reflection map and of the representation (2.12).
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Let C([0,∞),R) be the space of continuous functions with domain [0,∞). The standard
reflection mapping Γ : C([0,∞),R) → C([0,∞),R) is defined by

Γ
(
f
)
(t) = f(t) + sup

s∈[0,t]

(−f(s))+, (2.11)

for f ∈ C([0,∞),R).Here and henceforth we use the notation a+ := max{0, a}. This mapping
is also known as the Skorokhod map or the regulator map in different contexts. For a detailed
discussion we refer to [20, 33].

In our model (2.1)-(2.2), we can write Xu
x as follows:

Xu
x (t) = Γ

(
x− ue+ σ(u)WH

)
(t), (2.12)

where e(t) := t for t ≥ 0, is the identity map.
Note that according to the definition, Γ

(
f
)
(t) ≥ 0 for t ≥ 0. We will also use the following

two standard facts about Γ (see for instance [20, 33]). First, we have

sup
t∈[0,T ]

|Γ
(
f
)
(t)| ≤ 2 sup

t∈[0,T ]

|f(t)|, (2.13)

for f ∈ C([0,∞),R). Secondly, let f and g be two functions in C([0,∞),R) such that
f(0) = g(0) and h(t) := f(t)−g(t) is a non-negative non-decreasing function in C([0,∞),R).
Then

Γ
(
f
)
(t) ≥ Γ

(
g
)
(t), for all t ≥ 0. (2.14)

We shall also rely on the following convexity property of the reflected mapping. Let α ∈ (0, 1)
and f and g be two functions in C([0,∞),R). Then, αf + (1 − α)g ∈ C([0,∞),R), and

Γ
(
αf + (1 − α)g

)
(t) ≤ αΓ

(
f
)
(t) + (1 − α)Γ

(
g
)
(t) (2.15)

for all t ≥ 0. The proof is straightforward. Let F (x) = x− := max{0,−x}. Then F is
a convex function and therefore (αf(s) + (1 − α)g(s))− ≤ αf−(s) + (1 − α)g−(s). Conse-
quently, sups∈[0,t](αf(s) + (1 − α)g(s))− ≤ α sups∈[0,t] f

−(s) + (1 − α) sups∈[0,t] g
−(s). Since

sups∈[0,t](−f(s))+ = sups∈[0,t] f
−(s), the inequality (2.15) follows from the definition (2.11).

The reflection map also satisfies the following minimality property: if ψ, η ∈ C
(
[0,∞),R

)

are such that ψ is non-negative, η(0) = 0, η is non-decreasing, and ψ(t) = ϕ(t) + η(t) for
t ≥ 0, then

ψ(t) ≥ Γ(ϕ)(t) and η(t) ≥ sup
s∈[0,t]

(
−ϕ(s)

)+
, for all t ≥ 0. (2.16)

3 Long-run average cost minimization problem

In this section we address the control problem defined in (2.5)-(2.6). First we find a solution
to the control problem for the particular case when σ(u) ≡ 1 in (2.1). This is accomplished
in Sections 3.1–3.4. In Section 3.5, we show that the general case can be reduced to this
simplified version.
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3.1 Reduction of the cost structure

The controlled state space process Xu
x (corresponding to σ(u) ≡ 1) has the form

Xu
x (t) = x− ut+WH(t) + Lu

x(t), t ≥ 0. (3.1)

The following lemma simplifies the expression for the cost functional (2.5) by computing
lim

T→∞

1
T
E

(
Lu

x(T )
)
.

Lemma 3.1. Let Xu
x be given by (3.1). Then lim

T→∞

1
T
E

(
Lu

x(T )
)

= u.

Proof. Since u > 0, using (2.12), (2.13), and (2.14), we obtain:

0 ≤ Xu
x (t) ≤ X0

x(t) = Γ
(
x+WH

)
(t) ≤ 2

(
|x| + sup

s∈[0,t]

|WH(s)|
)
.

By the self-similarity of fractional Brownian motion process,

E
(

sup
s∈[0,T ]

|WH(s)|
)
≤ K1T

H ,

where K1 ∈ (0,∞) is a constant independent of T (see for instance [24, p. 296]). Therefore,

0 ≤ E
(
Xu

x (T )
)
≤ 2K1

(
|x| + TH

)
. (3.2)

Consequently, lim
T→∞

1
T
E

(
Xu

x (T )
)

= 0. SinceWH(T ) is a mean-zero Gaussian process, it follows

from (3.1) that 1
T
E

(
Lu

x(T )
)
− u = 1

T

(
E

(
Xu

x (T )
)
− x

)
. Letting T tend to infinity completes

the proof of the lemma.

Remark. Lemma 3.1 with literally the same proof as above remains valid if Xu
x satisfies

(2.1) instead of (3.1).

With the above lemma in hand, we can represent the cost functional (2.5) and reformulate
the long-run average cost minimization problem as follows. The controller minimizes

I(u, x) =
(
h(u) + pu

)
+ lim sup

T→∞

1

T
E

(∫ T

0

C
(
Xu

x (t)
)
dt

)
(3.3)

subject to u > 0 and Xu
x given in (3.1). Note that the above reduction shows that the original

minimization problem (2.5) reduces to the case p = 0 with the function h(u) replaced by
h(u) + pu.

Our next step is to analyze the cost component lim sup
T→∞

1
T E

(∫ t

0
C

(
Xu

x (t)
)
dt

)
. The fol-

lowing results are described in [18] and [8], and are collected in [36] in a convenient form for
our application. We summarize them here using our notation.

(i) The random sequence Xu
0 (t) with t ≥ 0 converges weakly, as t goes to infinity, to the

random variable

Zu := max
s≥0

{WH(s) − us}. (3.4)
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(ii) There is a probability space supporting the processes Xu
0 , L

u
0 (and hence Xu

x as well as
Lu

x for any x ≥ 0) and a stationary process X∗
u = {X∗

u(t) : t ≥ 0} such that

X∗
u(t) = WH(t) − ut+ max{X∗

u(0), Lu
0(t)}, t ≥ 0, (3.5)

and

X∗
u(t)

D
= Zu, t ≥ 0, (3.6)

where “
D
=” denotes the equality in distribution and Zu is defined in (3.4).

(iii) The tail of the stationary distribution satisfies

lim
z→∞

z
2H−2 logP (Zu ≥ z) = −θ∗(u), (3.7)

where θ∗(u) is given by

θ∗(u) =
u2H

2H2H(1 −H)2(1−H)
> 0. (3.8)

In particular, all the moments of Zu are finite.

Throughout the rest of the paper, we use this probability space where all these processes are
defined. Using (3.1) and (2.2), we can write for t ≥ 0,

Xu
x (t) = WH(t) − ut+ max{x, Lu

0(t)}, (3.9)

where

Lu
0(t) = − inf

s∈[0,t]

(
WH(s) − us

)
= sup

s∈[0,t]

(
us−WH(s)

)
. (3.10)

The above representation (3.9) and (3.10) agrees with (3.5) if the process Xu
x is initialized

with X∗
u(0).

3.2 A coupling time

The following coupling argument is crucial to address the optimal control problems. In
particular, it enables us to deal with the last term of I(u, x) in (3.3).

Proposition 3.2. Let u > 0 and the initial point x ≥ 0 be fixed. Consider the state process
Xu

x in (3.1) and the stationary process X∗
u of (3.5) and (3.6). Then the following results

hold:

(i) There is a finite stopping time τ0 such that Xu
x (t) = X∗

u(t) for all t ≥ τ0. Furthermore,
E(τβ

0 ) <∞ for all β ≥ 0.

(ii) The cost functional I(u, x) defined in (2.5) is finite and independent of x, that is
I(u, x) = I(u, 0) < ∞ for x ≥ 0. Consequently, the value function V0(x) = inf

u>0
I(u, x)

is also finite and independent of x, that is V0(x) = V0(0) <∞ for x ≥ 0.

10



Proof. For y > 0 introduce the stopping time

λy = inf{t > 0 : Lu
x(t) > x+ y}.

The stopping time λy is finite a.s. because lim
t→+∞

Lu
x(t) ≥ lim

t→+∞

(
ut − WH(t)

)
= +∞ a.s.

Define the stopping time τ0 by

τ0 = inf{t > 0 : Lu
0(t) > x+X∗

u(0)}. (3.11)

Here X∗
u is the stationary process which satisfies (3.5) and (3.6). That is τ0 = λX∗

u(0) a.s. It
follows that for t ≥ τ0, we have Lu

0(t) ≥ Lu
0(τ0) = x + X∗

u(0) and X∗
u(0) ≥ 0. Therefore, it

follows from (3.9) and (3.10) that Xu
x (t) = WH(t) − ut+ L0

u(t) = X∗
u(t) for t ≥ τ0.

Next, we prove that E(τβ
0 ) < +∞ for each β ≥ 0. Clearly, without loss of generality we

can assume that β ≥ 1. We then have:

E(τβ
0 ) ≤

∞∑

m=0

E
(
λβ

m+1 · 1[m≤X∗

u(0)<m+1]

)
≤

∞∑

m=0

[
E(λ2β

m+1)P (X∗
u(0) ≥ m)

]1/2
, (3.12)

where in the last step we have used the Cauchy-Schwartz inequality. Since X∗
u(0) has the

same distribution as Zu = sups≥0{WH(s) − us}, it follows from (3.7) that for all m large
enough,

P (X∗
u(0) ≥ m) ≤ e−

1
2
θ∗(u)m2(1−H)

, (3.13)

where θ∗(u) is defined in (3.8). Next, we estimate E(λ2β
m ) for m ≥ 0 and β ≥ 1. For m ∈ N,

let bm = x+m and Tm = 2bm

u
. We have

E(λ2β
m ) = 2β

∫ ∞

0

t2β−1P (λm > t)dt = 2β

∫ ∞

0

t2β−1P (Lu
0(t) ≤ x+m)dt

≤ T 2β
m + 2β

∫ ∞

Tm

t2β−1P (Lu
0(t) ≤ bm)dt, (3.14)

where the second equality is due to the fact that P (λm > t) = P (Lu
0(t) ≤ x+m) according

to the definition of λm. Notice that

P
(
Lu

0(t) ≤ bm
)

= P
(

sup
s∈[0,t]

{us−WH(s)} ≤ bm
)
≤ P

(
WH(t) ≥ ut− bm

)
, (3.15)

and recall that Z := WH(t)
tH

has a standard normal distribution. Therefore, by (3.15), for
t > Tm we have

P
(
Lu

0(t) ≤ bn
)

≤ P
(
WH(t) ≥ ut− bm

)
≤ P

(
WH(t) ≥

ut

2

)

= P
(
Z ≥

ut1−H

2

)
. (3.16)

11



It follows from (3.14) and (3.16) that

E(λ2β
m ) ≤ T 2β

m + 2β

∫ ∞

0

t2β−1P
(
Z ≥

ut1−H

2

)
dt

= T 2β
m + 2β

∫ ∞

0

t2β−1P
[(2Z

u

) 1
1−H

≥ t
]
dt

= T 2β
m + E

[(2|Z|

u

) 2β

1−H
]

=
4β

u2β
(x+m)2β + E

[(2|Z|

u

) 2β

1−H
]
<∞. (3.17)

The estimates (3.13) and (3.17) imply that the infinite series in the right-hand side of (3.12)
converges. Thus E(τβ

0 ) <∞ for all β ≥ 1, and hence for all β ≥ 0. This completes the proof
of the first part of the proposition.

We turn now to the proof of part (ii). First, we will prove that

E
(∫ ∞

0

∣∣C
(
Xu

x (t)
)
− C

(
X∗

u(t)
)∣∣dt

)
<∞. (3.18)

We will show later that part (ii) of the proposition is a rather direct consequence of this
inequality.

Notice that

E
(∫ ∞

0

∣∣C
(
Xu

x (t)
)
− C

(
X∗

u(t)
)∣∣dt

)
= E

(∫ τ0

0

∣∣C
(
Xu

x (t)
)
− C

(
X∗

u(t)
)∣∣dt

)
,

where τ0 is given in (3.11) and X∗
u is given in (3.5) and (3.6). The definition of τ0 implies

Lu
0(τ0) ≤ x+X∗

u(0). Therefore, it follows from (3.4) and (3.5) that for t ∈ [0, τ0],

max{Xu
x (t), X∗

u(t)} ≤ Zu + x+X∗
u(0).

Since C is a non-decreasing function, this implies

max
{
C

(
Xu

x (t)
)
, C

(
X∗

u(t)
)
} ≤ C

(
Zu + x+X∗

u(0)
)
,

and consequently, using the Cauchy-Schwartz inequality,

E
(∫ τ0

0

∣∣C
(
Xu

x (t)
)
− C

(
X∗

u(t)
)∣∣dt

)
≤ E

(
τ0C

(
Zu + x+X∗

u(0)
))

≤
[
E(τ 2

0 )E
([
C

(
Zu + x+X∗

u(0)
)]2

)]1/2

.

Since E(τ 2
0 ) <∞ by part (i) of the lemma, (3.18) will follow once we show that

E
([
C

(
Zu + x+X∗

u(0)
)]2

)
<∞. (3.19)

Recall that X∗
u(0) and Zu have the same distribution. The tail asymptotic (3.7) implies that

any moment of Zu is finite. This fact together with (2.4) yield (3.19).
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We will now deduce part (ii) of the proposition from (3.18). Toward this end, first observe
that, since X∗

u(t) is a stationary process,

1

T
E

(∫ T

0

C
(
X∗

u(t)
)
dt

)
=

1

T
E

(∫ T

0

C
(
X∗

u(0)
)
dt

)
= E

(
C(Zu)

)
,

and recall that E
(
C(Zu)

)
<∞ by (3.7). Then notice that by (3.18),

lim sup
T→∞

∣∣∣
1

T
E

(∫ T

0

C
(
X∗

u(t)
)
dt

)
−

1

T
E

(∫ T

0

C
(
Xu

x (t)
)
dt

)∣∣∣

≤ lim sup
T→∞

1

T
E

(∫ ∞

0

∣∣C
(
Xu

x (t)
)
− C

(
X∗

u(t)
)∣∣dt

)
= 0.

Therefore

lim
T→∞

1

T
E

(∫ T

0

C
(
Xu

x (t)
)
dt

)
= E

(
C(Zu)

)
, (3.20)

which implies part (ii) of the proposition in view of (3.3). Therefore, the proof of the
proposition is complete.

Remark. The above proposition is in agreement with a result in Theorem 1 of [36] which
shows that the asymptotic distributions, as t approaches infinity, for M(t) = maxs∈[0,t]X

u
x (s)

and M∗(t) = maxs∈[0,t]X
∗
u(s) coincide.

3.3 Properties of E
(
C(Zu)

)
.

For u > 0, let G(u) = E
(
C(Zu)

)
. We are interested in the behavior of G(u) in view of the

identity (3.20).

Lemma 3.3. Let G(u) = E
(
C(Zu)

)
where Zu is defined in (3.4). Then the following results

hold:

(i) G(u) is a decreasing and continuous function of u on [0,∞).

(ii) If C(x) is a convex function then so is G(u).

(iii) lim
u→0+

G(u) = +∞.

Proof. First we observe that the polynomial bound (2.4) on the growth of C combined with
(3.7), which describes the tail behavior of Zu, imply that G(u) = E

(
C(Zu)

)
is finite for

each u ≥ 0. It is a decreasing function of u because C is non-decreasing while Zu1 ≤ Zu2 if
u1 > u2.

To complete the proof of part (i), it remains to show that G(u) is a continuous function.
To prove this, first notice that, according to the definition (3.4), Zu is a continuous function of
the variable u a.s., as shown below. Indeed, if tu is a random time such that Zu = WH(tu)−utu
and u ∈ (0, v), then

Zu ≥ Zv ≥WH(tu) − vtu = Zu − tu(v − u).
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Hence limv→u+ Zv = Zu. A similar argument shows that limv→u− Zv = Zu. Therefore, since
C is a continuous function, C(Zu) is a continuous function of u with probability one. Since
C(Zu) is monotone in u, the dominated convergence theorem implies the continuity of G.

To prove part (ii), fix constants r ∈ [0, 1], u1 > 0, u2 > 0, and let ūr = ru1 + (1 − r)u2.
Then Zūr

= supt≥0{WH(t) − ūrt} ≤ rZu1 + (1 − r)Zu2. If C is a non-decreasing convex
function, we have E

(
C(Zūr

)
)
≤ rE

(
C(Zu1)

)
+ (1 − r)E

(
C(Zu2)

)
. Hence G is convex, and

the proof of part (ii) is complete.
Turning to the part (iii), we first notice that Z0 = supt≥0WH(t) = +∞ with proba-

bility one. Let (un)n≥0 be any sequence monotonically decreasing to zero. Then, Zun
is

increasing and hence there exists a limit (finite or infinite) lim
n→∞

Zun
= L and Zun

≤ L for

all n ≥ 0. Thus WH(t) − unt ≤ L for all n ≥ 0 and t ≥ 0. By letting n go to infinity
we obtain supt≥0WH(t) ≤ L, and consequently L = +∞ with probability one. Therefore
lim

u→0+
Z(u) = +∞ a.s. Since C is a non-decreasing function, the monotone convergence

theorem implies that lim
u→0+

E
(
C(Zu)

)
= +∞. This completes the proof of the lemma.

3.4 Existence of an optimal control

In the following two theorems we provide a representation of the cost functional I(u, x) as
well as the existence and uniqueness results for the optimal control u∗ > 0.

Theorem 3.4. Let I(u, x) be the cost functional of the long-run average cost problem de-
scribed in (3.3). Then

(i) I(u, x) is independent of x and has the representation

I(u) := I(u, x) = h(u) + pu+G(u), (3.21)

where G(u) is given in Lemma 3.3. Furthermore, I(u) is finite for each u > 0 and is
continuous in u > 0.

(ii) lim
u→0+

I(u) = +∞ and lim
u→∞

I(u) = +∞.

(iii) If h(x) and C(x) are convex functions, then I(u) is also convex.

Proof. Part (i) follows from (3.3), Proposition 3.2, and Lemma 3.3.
The first part of claim (ii) follows from the fact that I(u) ≥ G(u) along with part (iii)

of Lemma 3.3. To verify the second part, notice that I(u) ≥ h(u) for all u > 0, and
lim

u→+∞
h(u) = +∞. Consequently, lim

u→+∞
I(u) = +∞.

Part (iii) follows from the representation (3.21) combined with the part (ii) of Lemma 3.3.
This completes the proof of the theorem.

Theorem 3.5.

(i) There is an optimal control u∗ > 0 such that for all x ≥ 0 we have

I(u∗) = min
u>0

I(u, x)

where I is given in (3.21). In particular, u∗ is independent of x.
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(ii) In the case p > 0, if h and C are convex functions, then u∗ is unique.

(iii) In the case p = 0, if h is a strictly convex function and C is a convex function, then u∗

is unique.

Proof. Since I(u) is a continuous function, part (i) follows from parts (i) and (ii) of Theo-
rem 3.4.

If h and C are convex functions, the representation (3.21) yields that I is a strictly convex
function when p > 0. Therefore, u∗ is unique in this case.

In the case p = 0, if h is a strictly convex function and C is a convex function, the results
follows from the representation (3.21) in a similar way as in the case p > 0.

3.5 Generalizations

In this section we generalize the results in Theorem 3.4 and 3.5 to the more general model
introduced in (2.1). Notice that for a given control u > 0 fixed in (2.1), the self-similarity of

fBM yields that the process ŴH defined by

ŴH(t) = σ(u)WH

( t

σ(u)
1
H

)
, t ∈ R,

is a fractional Brownian motion. Let

Y u
x (t) = Xu

x

( t

σ(u)
1
H

)
.

Then Y u
x satisfies

Y u
x (t) = x−

ut

σ(u)
1
H

+ ŴH(t) + L̂u
x(t), (3.22)

where

L̂u
x(t) = Lu

x

( t

σ(u)
1
H

)
.

Using (2.2) and change of the variable s = t

σ(u)
1
H

, we observe that

L̂u
x(t) = Lu

x

( t

σ(u)
1
H

)
= −min

{
0, min

s∈[0,t]

(
x−

su

σ(u)
1
H

+ ŴH(s)
)}
. (3.23)

The equations (3.22) and (3.23) are analogous to (2.1) and (2.2).
We next consider the change in the cost structure due to the change of the variable

s = t

σ(u)
1
H

. We notice that

1

T

∫ T

0

C
(
Xu

x (t)
)
dt =

1

M(T )

∫ M(T )

0

C
(
Y u

x (t)
)
dt,
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where M(T ) = σ(u)
1
H T. Therefore, using the results in Theorem 3.4, we obtain

lim
T→∞

1

T
E

(∫ T

0

C
(
Xu

x (t)
)
dt

)
= G

( u

σ(u)
1
H

)
. (3.24)

We have the following result.

Theorem 3.6. Consider the controlled state process Xu
x defined by (2.1) and (2.2) with the

cost functional I(x, u) given in (2.5). Define f : [0,∞) → [0,∞) by

f(u) =
u

σ(u)
1
H

. (3.25)

Then

I(u, x) = h(u) + p u+G
(
f(u)

)
, (3.26)

where the function G is given in Lemma 3.3. Furthermore, I(u, x) is independent of x (we
will henceforth denote the cost function by I(u)).

Proof. The same argument as in the proof of Lemma 3.1 yields lim
T→∞

1
T
E

(
Lu

x(T )
)

= u. Com-

bining this result with (3.24) we obtain the representation (3.26).

Our next result is analogous to Theorems 3.4 and 3.5.

Theorem 3.7. Assume that the function f in (3.25) is continuous and lim
u→0+

f(u) = 0. Then,

with I(u) = I(u, x) as in (3.26), we have:

(i) lim
u→0+

I(u) = lim
u→+∞

I(u) = +∞, and I(u) is a finite continuous function on [0,∞).

Furthermore, there is a constant u∗ > 0 such that I(u∗) = minu>0 I(u).

(ii) If f is a concave increasing function then the statements similar to parts (i) and (ii)
of Theorem 3.5 (regarding the uniqueness u∗) hold.

The proof of this theorem is a straightforward modification of the proofs of Theorems 3.4
and 3.5 and therefore is omitted.

Remark. One can further generalize our model to cover the following situation. For given
positive continuous functions b(u) and σ(u) let

Xu
x (t) = x+ σ(u)Wh(t) − b(u)t+ Lu

x(t),

where for u > 0,

Lu
x(t) = −min

{
0, min

s∈[0,t]

(
x− b(u)s+ σ(u)WH(s)

)}
.

The optimization problem here is to minimize the cost functional I(u, x) defined in (2.5).
Following the time change method described in Section 3.5, one can obtain an analogue of

Theorem 3.7 regarding the derivation of the optimal control. In this situation, the function
f defined in (3.25) needs to be replaced by f(u) = b(u)(σ(u))−

1
H with the assumptions that

f is continuous and lim
u→0+

f(u) = 0. We omit the details of the proof.
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4 A constrained minimization problem

In this section, we address a constrained minimization problem that can be solved by using
our results in Section 3. Our model here is of the form

Y u
x (t) = x− ut+ σ(u)WH(t) +Ku(t), (4.1)

where σ is a non-negative continuous function, Ku(·) is a non-negative non-decreasing right-
continuous with left limits (RCLL) process adapted to the natural filtration (Ft)t≥0, where
Ft is the σ-algebra generated by {WH(s) : 0 ≤ s ≤ t} augmented with all the null sets.
Furthermore, Ku(0) = 0 and the process Ku is chosen by the controller in such a way that
the state process Y u is constrained to non-negative reals. In this situation, the controller
is equipped with two controls: the choice of u > 0 and the choice of Ku process subject
non-negativity of the Y u process.

Throughout this section we keep the initial state x ≥ 0 fixed. We will deduce using the
results of the previous section that the value of this minimization problem as well as the
optimal control are not affected by the initial data.

Let m > 0 be any fixed positive constant. The constrained minimization problem we
would like to address here is the following:

Minimize

lim sup
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Y u(t)

)]
dt

)
(4.2)

Subject to:

lim sup
T→∞

E
(
Ku(T )

)

T
≤ m. (4.3)

A controlled optimization problem of this nature for diffusion processes was considered in
[1], and for a more complete treatment in the case of diffusion processes we refer to [31].

Fix any integer m > 0 and define a class of state processes Um as follows:

Um =
{

(Y u, Ku) : Y u(t) ≥ 0 for t ≥ 0, (4.1) is satisfied, lim sup
T→∞

E
(
Ku(T )

)

T
≤ m

}
.

From our results in Section 3 it follows that for any u ≤ m, the pair (Xu
x , L

u
x) in (2.1) and

(2.2) belongs to Um, and hence Um is non-empty. Therefore, the constrained minimization
problem is to find

inf
(Y u,Ku)∈Um

lim sup
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Y u(t)

)]
dt

)
.

In this section we make the following additional assumptions:

(i) For functions h and C we assume:

h is strictly convex and satisfies (2.3), C is convex and satisfies (2.4). (4.4)
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(ii) Let f(u) = u

σ(u)
1
H

. Then

f(u) > 0, lim
u→0+

f(u) = 0, and f is a convex increasing function. (4.5)

The following lemma enables us to reduce the set Um to the collection of processes (Xu
x , L

u
x)

described in the previous section, with u ≤ m.

Lemma 4.1. Let u > 0 and let (Y u, Ku) be a pair of processes satisfying (4.1). Consider
(Xu

x , L
u
x) which satisfies (2.1), (2.2), and is defined on the same probability space as (Y u, Ku).

Then

(i) Lu
x(t) ≤ Ku(t) and Xu

x (t) ≤ Y u(t) for t ≥ 0.

(ii) u = lim
T→∞

1
T
E

(
Lu

x(T )
)
≤ lim sup

T→∞

1
T
E

(
Ku(T )

)
.

(iii) G
(
f(u)

)
= lim

T→∞

1
T
E

(∫ T

0
C

(
Xu

x (t)
)
dt

)
≤ lim sup

T→∞

1
T
E

(∫ T

0
C

(
Y u(t)

)
dt

)
.

Proof. Since, Y u ≥ 0, Ku(0) = 0, and Ku is non-increasing process, the minimality property
of the reflection map stated in (2.16) implies that Lu

x(t) ≤ Ku(t) and Xu
x (t) ≤ Y u

x (t) for
t ≥ 0.

Next, observe that part (ii) of the lemma follows from the result in part (i) while the
identity u = lim

T→∞

1
T
E

(
Lu

x(T )
)

is implied by Lemma 3.1 (see also the remark right after the

proof of Lemma 3.1).
Finally, part (iii) of the lemma follows from (3.24), part (i), and from the fact that C is

non-decreasing. The proof of the lemma is complete.

Let

Vm = {(Xu
x , L

u
x) : (2.1),(2.2) are satisfied and in addition u ≤ m}.

From the above lemma it is clear that

inf
(Ku,Y u)∈Um

lim
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Xu

x (t)
)]
dt

)

= inf
(Xu

x ,Lu
x)∈Vm

lim sup
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Y u(t)

)]
dt

)
. (4.6)

Therefore, our minimization problem is reduced. Next, we can use the results in Section 3.5
and write for any u > 0,

lim
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Xu

x (t)
)]
dt

)
= h(u) +G

(
f(u)

)
. (4.7)

Here G is given by Lemma 3.3, and f is described in (3.25) and (4.5). Consequently,

inf
(Xu

x ,Lu
x)∈Vm

lim
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Xu

x (t)
)]
dt

)

= inf{h(u) +G
(
f(u)

)
: 0 < u ≤ m}. (4.8)
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We next consider the optimal control described in Theorem 3.7 corresponding to the case
p = 0. In virtue of the assumptions (4.4) and (4.5), the optimal control is unique and we will
label it by u∗0 > 0. We have the following result.

Theorem 4.2. Let

u∗(m) =

{
m if m < u∗0,
u∗0 if m ≥ u∗0

, (4.9)

where u∗0 is the unique optimal control in Theorem 3.7 corresponding to p = 0.

Then the pair (X
u∗(m)
x , L

u∗(m)
x ) is an optimal process for the constrained minimization

problem (4.2) and (4.3). Furthermore, the optimal control u∗(m) is a continuous increasing
function of the parameter m.

Proof. Let Λ(u) = h(u)+G
(
f(u)

)
where f and G are as in (4.7). Then, by the assumptions

(4.4), (4.5) and Theorem 3.7, Λ is a strictly convex function which is finite everywhere on
(0,∞). Furthermore, lim

u→0+
Λ(u) = +∞ and lim

u→+∞
Λ(u) = +∞, and hence Λ has a unique

minimum at u∗0. Therefore, Λ is strictly increasing on (u∗0,∞). Clearly, with u∗(m) defined
in (4.9),

Λ
(
u∗(m)

)
= inf

u≤m
Λ(u),

and u∗(m) is the unique number which has this property. By (4.6) and (4.8), we have

Λ
(
u∗(m)

)
= inf

(Xu
x ,Lu

x)∈Vm

lim sup
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Y u(t)

)]
dt

)
.

Consider the pair of processes (X
u∗(m)
x , L

u∗(m)
x ) defined in (2.1) and (2.2). Then, in virtue of

Lemma 3.1, we have lim
T→∞

1
T
E

(
Lu∗(m)(T )

)
= u∗(m) ≤ m, and by Theorem 3.6,

lim sup
T→∞

1

T
E

(∫ T

0

[
h(u) + C

(
Xu∗(m)

x (t)
)]
dt

)
= Λ

(
u∗(m)

)
.

Hence (X
u∗(m)
x , L

u∗(m)
x ) describes an optimal strategy. This completes the proof of the theo-

rem.

Remark. Notice that the above optimal control u∗(m) is independent of the initial point x.

5 Infinite horizon discounted cost minimization prob-

lem

In this section we define an optimal control u∗ for the infinite horizon discounted cost func-
tional given in (2.7). Throughout this section we assume that σ(u) ≡ 1, the state process Xu

x

satisfies (3.1), and that the functionals h and C are convex in addition to the assumptions
stated in (2.3) and (2.4). In contrast with Section 3, our methods here do not readily extend
to the case where the function σ(u) is non constant.
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The discounted cost functional Jα(x, u) is given by

Jα(x, u) = E
(∫ ∞

0

e−αt
[
h(u) + C

(
Xu

x (t)
)]
dt+

∫ ∞

0

e−αtp dLu
x(t)

)

=
h(u)

α
+ E

(∫ ∞

0

e−αt
[
C

(
Xu

x (t)
)

+ αpLu
x(t)

]
dt

)
. (5.1)

Here α > 0 is a constant discount function. To derive the last equality above we have used
Fubini’s theorem to obtain

∫ ∞

0
e−αtdLu

x(t) = α
∫ ∞

0
e−αtLu

x(t)dt.
Let

Jα,1(x, u) = E
(∫ ∞

0

e−αtC
(
Xu

x (t)
)
dt

)

and

Jα,2(x, u) = E
(∫ ∞

0

e−αtLu
x(t)dt

)
. (5.2)

Next we use the convexity of the reflection mapping described in (2.15) to establish the
convexity of the cost functional with respect to u.

Lemma 5.1. Let x ≥ 0 be fixed and let C be a convex function satisfying assumption (2.4).
Then, Jα,1(x, u) and Jα,2(x, u) introduced above are finite for each u ≥ 0 and are convex in
u-variable.

Proof. By (3.2), we have the bound E
(
Lu

x(t)
)
≤ ut+K0(1+ tH), where K0 > 0 is a constant

independent of t. This implies, by using Fubini’s theorem, that Jα,2(x, u) is finite.
Next, by using (3.18) we obtain

∣∣∣Jα,1(x, u) − E
(∫ ∞

0

e−αtC
(
X∗

u(t)
)
dt

)∣∣∣ ≤ E
(∫ ∞

0

∣∣C
(
Xu

x (t)
)
− C

(
X∗

u(t)
)∣∣dt

)
<∞.

But, using the stationary of X∗
u, we have E

(∫ ∞

0
e−αtC

(
X∗

u(t)
)
dt

)
= α−1E

(
C(Zu)

)
, where

Zu is given in (3.4). Notice that E
(
C(Zu)

)
is finite because C has polynomial growth and

in virtue of (3.7). Consequently, Jα,1(x, u) is also finite.
To establish convexity of Jα,1(x, u), first recall that Xu

x = Γ
(
x+WH −ue

)
, where e(t) ≡ t

for t ≥ 0, and Γ is the reflection mapping described in Section 2.3. Now let u1 ≥ 0, u2 ≥ 0,
and r ∈ (0, 1). Then, for t ≥ 0,

x+WH(t) −
(
ru1 + (1 − r)u2

)
e(t)

= r
(
x+WH(t) − u1e(t)

)
+ (1 − r)

(
x+WH(t) − u2e(t)

)
.

Since the reflection map Γ satisfies the convexity property (2.15), we have:

X ūr

x (t) ≤ rXu1
x (t) + (1 − r)Xu2

x (t), (5.3)

where ūr = ru1 + (1− r)u2. Next, since C is a convex non-decreasing function, (5.3) implies
that C

(
X ūr

x (t)
)
≤ rC

(
Xu1

x (t)
)

+ (1 − r)C
(
Xu2

x (t)
)

for t ≥ 0. From this it follows that

Jα,1(x, ūr) ≤ rJα,1(x, u1) + (1 − r)Jα,1(x, u2).
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Hence Jα,1(x, u) is convex in u-variable.
Next, by (2.2) and (2.11), we have

Γ
(
x+WH − ue

)
(t) − (x+WH − ue)(t) = Lu

x(t), t ≥ 0.

Then, since Γ is convex in u-variable by (2.15), the process Lu
x is also convex in u-variable.

Consequently, with ūr = ru1 + (1 − r)u2, we obtain

Lūr

x (t) ≤ rLu1
x (t) + (1 − r)Lu2

x (t), t ≥ 0.

Finally, it is evident that Jα,2(x, u) is convex in u-variable from the definition (5.2).

Corollary 5.2. Under the conditions of Lemma 5.1, the discounted cost functional Jα(x, u)
is finite for each u ≥ 0 and is convex in u-variable.

Proof. Notice that

Jα(x, u) =
h(u)

α
+ Jα,1(x, u) + αpJα,2(x, u). (5.4)

By our assumptions, h is a convex function and p ≥ 0 and α > 0 are constants. Therefore,
the claim follows from Lemma 5.1.

The above lemma and the corollary lead to the following result.

Theorem 5.3. Consider the Xu
x process satisfying (3.1) and the associated discounted cost

functional Jα(x, u) described in (5.1). Then, for each initial point x ≥ 0, there is an optimal
control u∗ ≥ 0 such that

Jα(x, u∗) = inf
u≥0

Jα(x, u) ≡ Vα(x),

where Vα(x) is the value function of the discounted cost problem defined in (2.8).

Proof. Fix any x ≥ 0 and α > 0. By Corollary 5.2, Jα(x, u) is finite for each u ≥ 0 and is con-

vex in u-variable. By (5.4), we have that Jα(x, u) ≥ h(u)
α

and hence, since lim
u→∞

h(u) = +∞,

we obtain lim
u→∞

Jα(x, u) = +∞. Since Jα(x, u) is convex in u-variable, we can conclude that

there is a u∗ ≥ 0 (which may depend on x) such that Jα(x, u∗) = infu≥0 Jα(x, u). This
completes the proof of the theorem.

Remark. Notice that in contrast with the long-run average cost minimization problem, we
cannot rule out the possibility u∗ = 0 here.

Corollary 5.4. For the special case p = 0, assume further that h(x) is constant on an
interval [0, δ] for some δ > 0. Then, for every initial point x ≥ 0, the optimal control u∗ is
strictly positive.

Proof. It follows from (5.4) that Jα(x, u) = Jα,1(x, u). The function C is increasing and
Xu1

x (t) < Xu2
x (t) for all t ≥ 0 and u1 > u2. Therefore Jα,1(x, u1) ≤ Jα,1(x, u2) for u1 > u2.

Consequently, Jα(x, 0) ≥ Jα(x, u) for all u > 0. Hence, we can find an optimal control u∗ > 0,
and the proof of the corollary is complete.
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6 Finite horizon problem and Abelian limits

In this section, we establish Abelian limit relationships among the value functions of three
stochastic control problems introduced in Section 2.2. The main result is stated in The-
orem 6.3 below. Throughout this section, for simplicity, we assume that σ(u) ≡ 1 in the
model described in (2.1).

We begin with the existence of an optimal control for the finite horizon control problem
introduced in Section 2.2.

Proposition 6.1. For any fixed x ≥ 0 and T > 0, we have:

(i) I(u, x, T ) is finite for each u > 0 and is continuous in u > 0.

(ii) lim
u→∞

I(u, x, T ) = +∞.

(iii) If h and C are convex functions, then I(u, x, T ) is a convex function of the variable u.

Corollary 6.2. For any fixed x ≥ 0 and T > 0, we have:

(i) There is an optimal control u∗(x, T ) ≥ 0 such that I
(
u∗(x, T )

)
= minu>0 I(u, x, T ).

(ii) In the case p > 0, if h and C are convex functions, then u∗(x, T ) is unique.

(iii) In the case p = 0, if h is a strictly convex function and C is a convex function, then
u∗(x, T ) is unique.

The proof of the proposition and of the corollary is a straightforward adaptation of the
corresponding proofs given in Section 3, and therefore is omitted.

The following theorem is the main result of this section.

Theorem 6.3. Let Xu
x satisfy (3.1) and let V0, Vα(x), V (x, T ) be the value functions defined

in (2.6), (2.8), and (2.9) respectively. Then the following Abelian limit relationships hold:

lim
α→0+

αVα(x) = lim
T→∞

V (x, T )

T
= V0.

We prove this result in Propositions 6.5 and 6.6 below. The following technical lemma
gathers necessary tools to establish lim

α→0+
αVα(x) = V0.

Lemma 6.4. Let u > 0 be given and Xu
x satisfy (3.1). Consider the cost functional Jα(x, u)

as defined in (2.7). Then

lim
α→0+

αJα(x, u) = I(u),

where I(u) is described in (3.21).

Proof. First consider lim
α→0+

αE
(∫ ∞

0
e−αtdLu

x(t)
)
, where Lu

x is as in (2.2). Similarly to (5.1),

we have

αE
(∫ ∞

0

e−αtdLu
x(t)

)
= α2E

(∫ ∞

0

e−αtLu
x(t)dt

)
= α2

∫ ∞

0

e−αtE
(
Lu

x(t)
)
dt, (6.1)
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where we used Fubini’s theorem to obtain the last identity. By (3.1),

E
(
Lu

x(t)
)

= ut+ E
(
Xu

x (t)
)
− x.

Therefore,

α2

∫ ∞

0

e−αtE
(
Lu

x(t)
)
dt = α2u

∫ ∞

0

e−αttdt+ α2

∫ ∞

0

e−αtE
(
Xu

x (t)
)
dt− αx

= u+ α2

∫ ∞

0

e−αtE
(
Xu

x (t)
)
dt− αx. (6.2)

Further, by (3.2), 0 ≤ E
(
Xu

x (t)
)
≤ K0(1 + tH), where the constant K0 > 0 is independent

of t and u. Thus

0 ≤ α2

∫ ∞

0

e−αtE
(
Xu

x (t)
)
dt ≤ K0α

2

∫ ∞

0

e−αt(1 + tH)dt

≤ K0

(
α + Gamma(H)α1−H

)
, (6.3)

where Gamma(H) :=
∫ ∞

0
e−ttHdt = α1+H

∫ ∞

0
e−αttHdt is the Gamma function evaluated at

H.
Since H ∈ (0, 1), it follows from (6.3) that lim

α→0+
α2

∫ ∞

0
e−αtE

(
Xu

x (t)
)
dt = 0. Hence, using

(6.1) and (6.2), we obtain

lim
α→0+

αE
(∫ ∞

0

e−αtdLu
x(t)

)
= u. (6.4)

We next consider lim
α→0+

αE
(∫ ∞

0
e−αtC

(
Xu

x (t)
)
dt

)
. It follows from (3.18) that

∣∣∣E
(∫ ∞

0

e−αtC
(
Xu

x (t)
)
dt

)
− E

(∫ ∞

0

e−αtC
(
X∗

u(t)
)∣∣dt

)∣∣∣

≤ E
(∫ ∞

0

∣∣C
(
Xu

x (t)
)
− C

(
X∗

u(t)
)∣∣dt

)
<∞,

where X∗
u is the stationary process described in (3.5) and (3.6). Therefore,

lim
α→0+

αE
(∫ ∞

0

e−αtC
(
Xu

x (t)
)
dt

)
= lim

α→0+
αE

(∫ ∞

0

e−αtC
(
X∗

u(t)
)
dt

)

= lim
α→0+

α

∫ ∞

0

e−αtE
(
C(Zu)

)
dt = E

(
C(Zu)

)
= G(u), (6.5)

where G(u) is defined in Section 3.3. It follows from (2.7), (6.4), and (6.5) that

lim
α→0+

αJα(x, u) = h(u) + pu+G(u) = I(u),

where I(u) is given in (3.21). This completes the proof of the lemma.

The next proposition contains the proof of the first part of Theorem 6.3.
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Proposition 6.5. Let Xu
x satisfy (3.1) and Vα(x) be the corresponding value function defined

in (2.8). Then

lim
α→0+

αVα(x) = V0 <∞,

where V0 is the value of the long-run average cost minimization problem given in (2.6).

Proof. Fix the initial point x ≥ 0. For any u > 0, we have αVα(x) ≤ αJα(x, u). Hence, by
Lemma 6.4, lim sup

α→0+

αVα(x) ≤ lim
α→0+

αJα(x, u) = I(u). Therefore, minimizing the right-hand

side over u > 0, we obtain

lim sup
α→0+

αVα(x) ≤ inf
u>0

I(u) = V0.

It remains to show the validity of the reverse inequality, namely that

lim inf
α→0+

αVα(x) ≥ inf
u>0

I(u) = V0. (6.6)

To this end, consider a decreasing to zero sequence αn > 0, n ∈ N, such that

lim inf
α→0+

αVα(x) = lim
n→∞

αnVαn
(x). (6.7)

Fix any ε0 > 0 and let un > 0, n ∈ N, be a sequence such that Vαn
(x) + ε0 > Jαn

(x, un).
Then

αnVαn
(x) + αnε0 > αnJαn

(x, un) ≥ h(un). (6.8)

Letting n→ ∞ we obtain

lim sup
n→∞

h(un) ≤ lim sup
n→∞

αnVαn
(x) ≤ V0. (6.9)

Since lim
x→∞

h(x) = +∞, this implies that un is a bounded sequence. That is, there is M > 0

such that un ∈ (0,M) for all n ∈ N. Therefore, without loss of generality we can assume
that un converges as n → ∞ to some u∞ ∈ [0,M ] (otherwise, we can consider a convergent
subsequence of un).

Let δ ∈ (u∞,∞). Then,

αnJαn
(x, un) ≥ h(un) + α2

np

∫ ∞

0

e−αntE
(
Lun

x (t)
)
dt+ αn

∫ ∞

0

e−αntE
[
C

(
Xδ

x(t)
)]
dt

Since E
(
Lun

x (t)
)

= E
(
Xun

x (t)
)

+ unt− x ≥ unt− x, we obtain

α2
n

∫ ∞

0

e−αntE
(
Lun

x (t)
)
dt ≥ un − αnx,

and hence

αnJαn
(x, un) ≥ h(un) + p un − pαnx+ αn

∫ ∞

0

e−αntE
[
C

(
Xδ

x(t)
)]
dt.
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Therefore, letting n go to infinity and using (6.5), we obtain

lim inf
n→∞

αnJαn
(x, un) ≥ h(u∞) + p u∞ + E

[
C

(
Zδ

)]
. (6.10)

In particular, one can conclude that u∞ > 0, because otherwise, letting δ tend to 0 and using
Lemma 3.3, we would obtain that lim infn→∞ αnJαn

(x, un) = +∞ which contradicts the fact
that lim sup

n→∞

αnJαn
(x, un) ≤ V0 <∞ according to (6.8) and (6.9).

Therefore u∞ > 0. Letting δ in (6.10) tend to u∞ and using again the continuity of
G(u) = E

[
C

(
Zu

)]
proved in Lemma 3.3, we obtain

lim inf
n→∞

αnJαn
(x, un) ≥ h(u∞) + p u∞ + E

[
C

(
Zu∞

)]
= I(u∞) ≥ V0. (6.11)

The inequalities (6.8), (6.9), and (6.11) combined together yield

lim
n→∞

αnJαn
(x, un) = I(u∞) = V0,

which completes the proof of the proposition in view of (6.7). Notice that (6.11) implies
that u∞ is an optimal control for the long-run average cost control problem.

The following proposition includes the second part of Theorem 6.3.

Proposition 6.6. Under the conditions of Theorem 6.3, we have

lim
T→∞

V (x, T )

T
= V0.

Proof. It follows from (2.5) and (2.10) that for any x ≥ 0 and u > 0 we have

lim sup
T→∞

I(u, x, T )

T
= I(u),

where I(u) is given in (3.21). Therefore lim sup
T→∞

V (x, T )
T ≤ lim sup

T→∞

I(u, x, T )
T = I(u), and,

minimizing the right-hand side over u > 0, we obtain

lim sup
T→∞

V (x, T )

T
≤ inf

u>0
I(u) = V0. (6.12)

It remains to show that

lim inf
T→∞

V (x, T )

T
≥ V0. (6.13)

The proof of (6.13) given below is quite similar to that of (6.6). Consider a sequence of
positive reals (Tn)n∈N such that lim

n→∞
Tn = +∞ and

lim inf
T→∞

V (x, T )

T
= lim

n→∞

V (x, Tn)

Tn

.
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Fix any ε0 > 0 and for each n ∈ N chose un > 0 such that V (x, Tn) + ε0 > I(un, x, Tn).
Then, in view of (2.10) and (6.12), we have

lim sup
n→∞

h(un) ≤ lim sup
n→∞

V (x, Tn)

Tn
≤ V0 < +∞.

Since lim
x→∞

h(x) = +∞, this implies that un is a bounded sequence. That is, there is M > 0

such that un ∈ (0,M) for all n ∈ N. Taking a further subsequence if necessary, we can assume
without loss of generality that un converges to some u∞ ∈ [0,M ], as n → ∞. Furthermore,
u∞ > 0 because if u∞ = 0, then by (3.20) we obtain

V0 ≥ lim sup
n→∞

V (x, Tn)

Tn
≥ lim sup

n→∞

I(un, x, Tn)

Tn
≥ E

(
C(Zδ)

)
for any δ > 0.

This is impossible in view of part (iii) of Lemma 3.3. Therefore u∞ > 0. Let v1, v2 be any
numbers such that 0 < v1 < u∞ < v2. Then, by (2.10) and an argument similar to the
derivation of (6.10), we have

V (x, Tn) + ε0 > I(un, x, Tn) ≥ h(v1)Tn + E
(
Lv1

x (Tn)
)

+

∫ Tn

0

E
[
C

(
Xv2

x (t)
)]
dt,

for n large enough. Using Lemma 3.1 along with (3.20) we deduce that

lim inf
n→∞

V (x, Tn)

Tn

≥ h(v1) + p v1 + E
(
C(Zv2)

)
.

Since v1 and v2 are arbitrary numbers satisfying the above inequality constraints and h(u)
and G(u) = E

(
C(Zu)

)
are continuous functions, this implies

V0 ≥ lim inf
n→∞

V (x, Tn)

Tn
≥ h(u∞) + p u∞ + E

(
C(Zu∞

)
)

= I(u∞) ≥ V0.

The proof of (6.13), and hence the proof of the proposition is complete. In fact, the above
inequality also shows that u∞ is an optimal control for the long-run average cost control
problem.

Propositions 6.5 and 6.6 combined together yield Theorem 6.3.

Remark. The proof of Propositions 6.5 and 6.6 imply the following results:

1. Let (αn)n≥0 be a sequence of positive numbers converging to zero and let un be an ε-optimal
control for Vαn

(x) in (2.8). Then the sequence (un)n≥0 is bounded and any limit point of
(un)n≥0 is an optimal control for V0 defined in (2.6).

2. Let (Tn)n≥0 be a sequence of positive numbers such that lim
n→∞

Tn = +∞. If un be an ε-

optimal control for V (x, Tn) in (2.9), then the sequence (un)n≥0 is bounded and any limit
point of (un)n≥0 is an optimal control for V0 defined in (2.6).
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