
The Recurrent Cascade-Correlation Architecture

Scott E. Fahlman
May 9, 1991

CMU-CS-91-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Recurrent Cascade-Correlation (RCC) is a recurrent version of the Cascade-Correlation learning architecture
of Fahlman and Lebiere [Fahlman, 1990]. RCC can learn from examples to map a sequence of inputs into
a desired sequence of outputs. New hidden units with recurrent connections are added to the network one
at a time, as they are needed during training. In effect, the network builds up a finite-state machine tailored
specifically for the current problem. RCC retains the advantages of Cascade-Correlation: fast learning,
good generalization, automatic construction of a near-minimal multi-layered network, and the ability to
learn complex behaviors through a sequence of simple lessons. The power of RCC is demonstrated on two
tasks: learning a finite-state grammar from examples of legal strings, and learning to recognize characters
in Morse code.

This research was sponsored in part by the National Science Foundation (Contract EET-8716324) and the Defense Advanced
Research Projects Agency (Contract F33615-90-C-1465). The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Govenrment or
any of its agencies.



1. The Architecture

Cascade-Correlation [Fahlman, 1990] is a supervised learning architecture that builds a near-minimal multi-
layer network topology in the course of training. Initially the network contains only inputs, output units, and
the connections between them. This single layer of connections is trained (using the Quickprop algorithm
[Fahlman, 1988]) to minimize the error. When no further improvement is seen in the level of error, the
network’s performance is evaluated. If the error is small enough, we stop. Otherwise we add a new hidden
unit to the network in an attempt to reduce the residual error.

To create a new hidden unit, we begin with a pool of candidate units, each of which receives weighted
connections from the network’s inputs and from any hidden units already present in the net. The outputs
of these candidate units are not yet connected into the active network. Multiple passes through the training
set are run, and each candidate unit adjusts its incoming weights to maximize the correlation between its
output and the residual error in the active net. When the correlation scores stop improving, we choose the
best candidate, freeze its incoming weights, and add it to the network. This process is called “tenure.” After
tenure, a unit becomes a permanent new feature detector in the net. We then re-train all the weights going
to the output units, including those from the new hidden unit. This process of adding a new hidden unit and
re-training the output layer is repeated until the error is negligible or we give up. Since the new hidden unit
receives connections from the old ones, each hidden unit effectively adds a new layer to the net. (See figure
1.)

Cascade-correlation eliminates the need for the user to guess in advance the network’s size, depth, and
topology. A reasonably small (though not minimal) network is built automatically. Because a hidden-unit
feature detector, once built, is never altered or cannibalized, the network can be trained incrementally. A
large data set can be broken up into smaller “lessons,” and feature-building will be cumulative.

Cascade-Correlation learns much faster than backprop for several reasons: First only a single layer of weights
is being trained at any given time. There is never any need to propagate error information backwards through
the connections, and we avoid the dramatic slowdown that is typical when training backprop nets with many
layers. Second, this is a “greedy” algorithm: each new unit grabs as much of the remaining error as it can.
In a standard backprop net, the all the hidden units are changing at once, competing for the various jobs that
must be done—a slow and sometimes unreliable process.

Cascade-correlation, like back-propagation and other feed-forward architectures, has no short-term memory
in the network. The outputs at any given time are a function only of the current inputs and the network’s
weights. Of course, many real-world tasks require the recognition of a sequence of inputs and, in some
cases, the corresponding production of a sequence of outputs.

A number of recurrent architectures have been proposed in response to this need. Perhaps the most widely
used, at present, is the Elman model [Elman, 1988], which assumes that the network operates in discrete
time-steps. The outputs of the network’s hidden units at time t are fed back for use as additional network
inputs at time-step t + 1. (See figure 2.) These additional inputs can be thought of as state-variables whose
contents and interpretation are determined by the evolving weights of the network. In effect, the network is
free to choose its own representation of past history in the course of learning.

Recurrent Cascade-Correlation (RCC) is an architecture that adds Elman-style recurrent operation to the
Cascade-Correlation architecture. However, some changes were needed in order to make the two models fit
together. In the original Elman architecture there is total connectivity between the state variables (previous

1



Output Units

Outputs

Hidden unit 1

Hidden Unit 2

+1

Inputs

Figure 1: The Cascade-Correlation architecture after two hidden units have been added. The vertical lines
sum all incoming activation. Boxed connections are frozen, X connections are trained repeatedly.

Input Units Context Units

Output Units

Hidden Units
Copy

Figure 2: The recurrent network architecture of Elman.

2



I

w

w

i

i

s

V(t)

Figure 3: Candidate or hidden unit with a self-recurrent link.

outputs of hidden units) and the hidden unit layer. In Cascade-Correlation, new hidden units are added one
by one, and are frozen once they are added to the network. It would violate this concept to insert the outputs
from new hidden units back into existing hidden units as new inputs. On the other hand, the network must
be able to form recurrent loops if it is to retain state for an indefinite time.

The solution we have adopted in RCC is to augment each candidate unit with a single weighted self-recurrent
input that feeds back that unit’s own output on the previous time-step (figure 3). That self-recurrent link
is trained along with the unit’s other input weights to maximize the correlation of the candidate with the
residual error. If the recurrent link adopts a strongly positive value, the unit will function as a flip-flop,
retaining its previous state unless the other inputs force it to change; if the recurrent link adopts a negative
value, the unit will tend to oscillate between positive and negative outputs on each time-step unless the other
inputs hold it in place; if the recurrent weight is near zero, then the unit will act as a gate of some kind. When
a candidate unit is added to the active network as a new hidden unit, the self-recurrent weight is frozen,
along with all the other weights. Each new hidden unit is in effect a single state variable in a finite-state
machine that is built specifically for the task at hand. In this use of self-recurrent connections only, the RCC
model resembles the “Focused Back-Propagation” algorithm of Mozer[Mozer, 1988].

The output, V(t), of each self-recurrent unit is computed as follows:

V(t) = � X
i

Ii(t) wi + V(t� 1) ws

!
where � is some non-linear squashing function applied to the weighted sum of inputs I plus the self-weight,
ws, times the previous output. In the studies described here, � is always the hyperbolic tangent or “symmetric
sigmoid” function, with a range from -1 to +1. During the candidate training phase, we adjust the weights
wi and ws for each unit so as to maximize its correlation score. This requires computing the derivative of
V(t) with respect to these weights:@V(t)=@wi = �0(t) �Ii(t) + ws @V(t� 1)=@wi

�
3



@V(t)=@ws = �0(t) �V(t� 1) + ws @V(t� 1)=@ws
�

The rightmost term reflects the influence of the weight in question on the unit’s previous state. Since we
computed @V(t� 1)=@w on the previous time-step, we can just save this value and use it in the current step.
So the recurrent version of the learning algorithm requires us to store a single additional number for each
candidate weight, plus V(t� 1) for each unit. At t = 0 we assume that the unit’s previous value and previous
derivatives are all zero.

As an aside, the usual formulation for Elman networks treats the hidden units’ previous values as independent
inputs, ignoring the dependence of these previous values on the weights being adjusted. In effect, the
rightmost terms in the above equations are being dropped, though they are not negligible in general. This
rough approximation apparently causes little trouble in practice, but it might explain the instability that some
researchers have reported when Elman nets are run with aggressive second-order learning procedures such
as quickprop. The Mozer algorithm does take these extra terms into account.

2. Empirical Results: Finite-State Grammar

Figure 4a shows the state-transitiondiagram for a simple finite-state grammar, called the Reber grammar, that
has been used by other researchers to investigate learning and generalization in recurrent neural networks.
To generate a “legal” string of tokens from this grammar, we begin at the left side of the graph and move
from state to state, following the directed edges. When an edge is traversed, the associated letter is added
to the string. Where two paths leave a single node, we choose one at random with equal probability. The
resulting string always begins with a “B” and ends with an “E”. Because there are loops in the graph, there
is no bound on the length of the strings; the average length is about eight letters. An example of a legal
string would be “BTSSXXVPSE”.

Cleeremans, Servan-Schreiber, and McClelland [Cleeremans, 1989] showed that an Elman network can
learn this grammar if it is shown many different strings produced by the grammar. The internal state of the
network is zeroed at the start of each string. The letters in the string are then presented sequentially at the
inputs of the network, with a separate input connection for each of the seven letters. The network is trained
to predict the next character in the string by turning on one of the seven outputs. The output is compared to
the true successor and the learning algorithm attempts to minimize the resulting errors.

When there are two legal successors from a given state, the network will never be able to do a perfect job
of prediction. During training, the net will see contradictory examples, sometimes with one successor and
sometimes the other. In such cases, the net will eventually learn to partially activate both legal outputs.
During testing, a prediction is considered correct if the two desired outputs are the two with the largest
values.

This task requires generalization in the presence of considerable noise. The rules defining the grammar
are never presented—only examples of the grammar’s output. Note that if the network can perform the
prediction task perfectly, it can also be used to determine whether a string is a legal output of the grammar.
Note also that the successor letter(s) cannot be determined from the current input alone; some memory of of
the network’s state or past inputs is essential.

4




