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Abstract
In this paper, we are primarily concerned with the oscillation of solutions to

higher-order dynamic equations. We first extend some recent results which have
been obtained for second-order dynamic equations to even-order neutral delay dy-
namic equations. Our technique depends on making use of the Riccati substitution
and the use of properties of the generalized Taylor monomials on time scales. We
also extend our results to odd-order neutral delay dynamic equations. Some ex-
amples for differential equations, difference equations, and q-difference equations
(which have important applications in quantum theory) are given to illustrate the
results obtained.
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1 Introduction

The theory of time scales has received a great deal of attention since it was introduced
by Hilger in his Ph.D. Thesis in 1988. The goal is to unify and extend continuous and
discrete analysis (see the Ph.D. Thesis of Hilger [9]). Since then, many authors have
contributed to various aspects of this new theory; see the survey paper [2] by Agarwal
et al. and references cited therein. We refer the readers to the book [4] by Bohner and
Peterson, which summarizes and organizes much of the time scale theory.

A time scale T is an arbitrary closed subset of the reals, and the cases when T = R or
T = Z represent the classical theories of differential and of difference equations. Many
other interesting time scales exist, and they give rise to a number of applications, among
them the study of population dynamic models which are discrete in season (and may
follow a difference scheme with variable step-size or may be modeled by continuous
dynamic systems). Then the population dies out, say in winter, while the eggs are
incubating or are dormant, and then in season again, the eggs hatch and therefore this
model gives rise to a non-overlapping population (see [4, Example 1.39]). Not only
does this new theory of so-called “dynamic equations” unify the existing theories of
differential equations and of difference equations, but it also extends these classical
cases to cases “in between”, e.g., to the so-called q-difference equations when T =
qN0 = {qn : n ∈ N0} where q > 1 (which has important applications in quantum
theory (see the book [10] by Kac and Cheung). Moreover, these ideas can be applied
to many different types of time scales such as T = hZ (h > 0), T = N2 and T ={ n∑
k=1

1/k : n ∈ N
}

, the set of harmonic numbers.

For a reader not familiar with time scale calculus, we summarize some of the fol-
lowing basic information. A time scale, which inherits the standard topology on R, is
a nonempty closed subset of the real line. Here, and later throughout this paper, a time
scale will be denoted by the symbol T, and intervals with a subscript are used to denote
the intersection of the usual real interval with T. For t ∈ T, we define the forward
jump operator σ : T → T by σ(t) := inf(t,∞)T while the backward jump operator
ρ : T → T is defined by ρ(t) := sup(−∞, t)T (Here we define inf ∅ = supT and
sup ∅ = inf T). The graininess function µ : T → R+

0 is defined by µ(t) := σ(t) − t.
A point t ∈ T is called right-dense if σ(t) = t and t 6= supT. If σ(t) > t it is called
right-scattered. Similarly left-dense and left-scattered points are defined with respect to
the backward jump operator. We recall also that Tκ := T\{supT} if supT = maxT
and satisfies ρ(maxT) 6= maxT; otherwise, Tκ := T. The (Hilger) derivative of a
function f : T→ R is defined by

f∆(t) :=


fσ(t)− f(t)

µ(t)
, µ(t) > 0

lim
s→t

f(t)− f(s)

t− s
, µ(t) = 0
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for t ∈ Tκ (provided that the limit exists). A function f is said to be rd-continuous
provided that it is continuous at right-dense points in T, and has a finite limit at left-
dense points. The set of rd-continuous functions will be denoted by Crd(T,R). The set
of functions C1

rd(T,R) denotes those functions f whose derivative is in Crd(T,R). For
s, t ∈ T and a function f ∈ Crd(T,R), the ∆-integral of f is defined by∫ t

s

f(η)∆η = F (t)− F (s) for s, t ∈ T,

where F ∈ C1
rd(T,R) is an anti-derivative of f , i.e., F∆ = f on Tκ.

In recent years, there have been several papers which have studied oscillation and
nonoscillation properties of delay dynamic equations on arbitrary time scales (see the
papers [2,3,14]). Much of the work thus far has been motivated by the qualitative theory
of second-order equations. There are fewer results dealing with the oscillation and
asymptotic behaviour of third and/or higher-order dynamic equations (see the papers
[7, 12, 13]).

In this paper, we shall present some results dealing with the oscillation and asymp-
totic behaviour of solutions of higher-order neutral delay dynamic equations of the fol-
lowing form:[

x(t) + A(t)x(α(t))
]∆n

+B(t)x(β(t)) = 0 for t ∈ [t0,∞)T. (1.1)

Here n ∈ N, T is a time scale which satisfies supT = ∞, and t0 is a fixed point in
T. In addition, we assume A ∈ Crd([t0,∞)T,R) and B ∈ Crd([t0,∞)T,R+

0 ). We
suppose that α ∈ Crd([t0,∞)T,T) and β ∈ C1

rd([t0,∞)T,T) are strictly increasing and
satisfy lim

t→∞
α(t) = ∞, lim

t→∞
β(t) = ∞, and α(t) ≤ t, β(t) ≤ t for all t ∈ [t0,∞)T.

We also assume that β([t0,∞)T) = [β(t0),∞)T. Our method makes use of the Riccati
substitution technique and, after deducing some second-order dynamic inequalities, we
relate oscillation of (1.1) to second-order dynamic equations, with which we are familiar
from well-known results in the literature.

We set t−1 := min
{

inft∈[t0,∞)T{α(t)}, inft∈[t0,∞)T{β(t)}
}

. By a solution of (1.1)
we mean a function x ∈ Crd([t−1,∞)T,R) such that x+ A(t)x ◦ α ∈ Cn

rd([t0,∞)T,R)
and x satisfies (1.1) identically on [t0,∞)T. If x is a solution of (1.1), then x is said to
be nonoscillatory if x is eventually of one sign. Otherwise, x is said to be oscillatory.

Let us briefly recall some classical results for the qualitative theory of the second-
order differential equation

x′′(t) + A(t)x(t) = 0 for t ∈ [t0,∞)R, (1.2)

where A ∈ Crd([t0,∞),R+
0 ).

In the past two decades, obtaining sufficient conditions for the oscillation and nonos-
cillation of solutions of second-order differential equations has attracted a great deal of
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attention, and one of the most powerful tools is the integral averaging technique. These
ideas may be traced back to the classical result due to Wintner in 1949 (see [17]), where

lim
t→∞

1

t

∫ t

t0

(t− s)A(s)ds =∞

is shown to be a sufficient condition for the oscillation of all solutions to (1.2). Later
on, in 1952, Hartman (see [8]) showed that the limit condition given above may not be
replaced by a lim sup condition. Specifically, it was shown that

−∞ < lim inf
t→∞

1

t

∫ t

t0

(t− s)A(s)ds < lim sup
t→∞

1

t

∫ t

t0

(t− s)A(s)ds ≤ ∞

implies that every solution of (1.2) is oscillatory.
In 1978, Kamenev (see [11]) improved the result of Wintner by showing that the

condition

lim
t→∞

1

tk

∫ t

t0

(t− s)kA(s)ds =∞ for some k ∈ N

is sufficient for the oscillation of all solutions to (1.2).
Analogous results have also been obtained for the second-order difference equation

∆2x(n) + A(n)x(n) = 0 for n ∈ [n0,∞)Z, (1.3)

where ∆ denotes the forward difference operator and {A(n)} is a nonnegative sequence.
It was shown that

lim
n→∞

1

nk

n−1∑
i=n0

(n− i)kA(i) =∞ for some k ∈ N (1.4)

is sufficient for the oscillation of all solutions of (1.3) (see the papers [15,18]). We note
also that

lim
n→∞

1

nk

n−1∑
i=n0

(n− i)kA(i) =∞ for some k ∈ N,

where tk := t(t−1) · · · (t−k+1) is the falling (factorial) function (see the book [16] by
Kelley and Peterson), is equivalent to (1.4). For additional results on integral averaging
see Erbe [6] and the references therein. In order to view our results in the time scale
setting as analogues of classical results, we shall use generalized polynomials instead
of the usual polynomials. The main motivation behind our paper is the paper [5] by
Džurina. Our results extend and generalize the results in [5] to arbitrary time scales.

The paper is organized as follows: In Section 2, we give some important results re-
quired in the sequel some of which are taken from [4]; in Section 3, we prove some
oscillation criteria for (1.1) when the order is even; in Section 4, we present some
Kamenev-type oscillation criteria for even-order delay dynamic equations with neutral
term; and finally in Section 5, we extend our results to neutral delay dynamic equations
of odd order.
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2 Auxiliary Results

The generalized Taylor monomials hk : T× T→ R, k ∈ N, are defined by

hk(t, s) :=

1, k = 0∫ t

s

hk−1(η, s)∆η, k ∈ N
(2.1)

for all s, t ∈ T. Note that these generalized Taylor monomials satisfy

∂

∆t
hk(t, s) =

{
0, k = 0

hk−1(t, s), k ∈ N
(2.2)

for all s, t ∈ T and k ∈ N0. Any finite linear combination of generalized Taylor mono-
mials is called a generalized polynomial.

Since the generalized Taylor monomials play a major role in this paper, we next give
some of their important properties.

Property 2.1 ( [13, Property 1]). Using induction and the definition given by (2.1), it
is easy to see that hk(t, s) ≥ 0 holds for all k ∈ N0 and s, t ∈ T with t ≥ s and
(−1)khk(t, s) ≥ 0 holds for all k ∈ N and s, t ∈ T with t ≤ s. In view of the fact
(2.2), for all k ∈ N, it is evident that hk(t, s) is increasing in t provided that t ≥ s,
and (−1)khk(t, s) is decreasing in t provided that t ≤ s. In addition, for all s, t ∈ T
and all k, l ∈ N0 with l ≤ k, hk(t, s) ≤ (t − s)k−lhl(t, s) holds when t ≥ s, while
(−1)khk(t, s) ≤ (−1)l(s− t)k−lhl(t, s) when t ≤ s.

Using L’Hôpital’s rule (see [4, Theorem 1.120]), we have the following corollary.

Remark 2.1. Let supT =∞. Then for any k ∈ N and fixed r, s ∈ T, we have

lim
t→∞

hk(t, r)

hk(t, s)
= 1.

With the following lemma, we are able to give an alternative equivalent formulation
of the generalized Taylor monomials.

Lemma 2.2. The generalized Taylor monomials hk : T× T→ R satisfy

hk(t, s) =

1, k = 0∫ t

s

hk−1(t, σ(η))∆η, k ∈ N
(2.3)

for all s, t ∈ T.
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Proof. By Taylor’s formula (see [4, Lemma 1.109, Theorems 1.111–1.113]), for any
k ∈ N1 and fixed r, s ∈ T, we have

hk(t, s) =
k−1∑
l=0

hl(t, r)h
∆l
t

k (r, s) +

∫ t

r

hk−1(t, σ(η))h
∆k
t

k (η, s)∆η

=
k−1∑
l=0

hl(t, r)hk−l(r, s) +

∫ t

r

hk−1(t, σ(η))∆η

for all t ∈ T, which gives (2.3) by letting r = s.

Corollary 2.3. For all s, t ∈ T and k ∈ N, we have

h∆s
k (t, s) = −hk−1(t, σ(s)).

In the sequel, we use the following two important lemmas.

Lemma 2.4 (Change of order of integration [12, Lemma 1]). Assume that s, t ∈ T and
f ∈ Crd(T× T,R), the∫ t

s

∫ t

η

f(η, ξ)∆ξ∆η =

∫ t

s

∫ σ(ξ)

s

f(η, ξ)∆η∆ξ.

Lemma 2.5 (Substitution [4, Theorem 1.93]). Assume that f ∈ C1
rd(T̃,R) and g ∈

C1
rd(T,R) such that g∆ > 0 on T and let T̃ := g(T) be a time scale. Then, (f ◦ g)∆ =

(f ∆̃ ◦ g)g∆ holds on T.

The following remark can be extracted from the proof of the one above.

Remark 2.6. Assume that g ∈ C1
rd(T,R) satisfies g∆ > 0 on Tκ, and that g([s, t]T) =

[g(s), g(t)]T holds for some fixed s, t ∈ T with t > s. Then for f ∈ C1
rd([g(s), g(t)]T,

R), we have (f ◦ g)∆ = (f∆ ◦ g)g∆ on [s, t]Tκ .

In general the chain rule for the time scale calculus is not the same as in the ordinary
calculus case. Remark 2.6 gives us conditions under which the chain rule for time scale
calculus coincides with the usual calculus on the real line.

One of the most powerful tools for higher-order dynamic equations (particularly for
difference and differential equations) is the following one, which is known as Kigu-
radze’s theorem.

Theorem 2.7 (Kiguradze’s Theorem [1, Theorem 5]). Let supT = ∞, n ∈ N and
f ∈ Cn

rd(T,R+). Suppose that f∆n 6≡ 0 is either nonnegative or nonpositive on T.
Then there exists m ∈ [0, n)Z such that (−1)n−mf∆n

(t) ≥ 0 holds for all sufficiently
large t. Moreover, both of the following conditions hold:

(i) 0 ≤ k < m implies f∆k

(t) > 0 for all sufficiently large t,
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(ii) m ≤ k < n implies (−1)m−kf∆k

(t) > 0 for all sufficiently large t.

In what follows, we prove the following lemma, which plays a crucial role in the
sequel.

Lemma 2.8. Let supT = ∞ and f ∈ Cn
rd(T,R+) (n ≥ 2). Moreover, suppose that

Kiguradze’s theorem holds with m ∈ [1, n)N and f∆n ≤ 0 on T. Then, there exists a
sufficiently large t1 ∈ T such that

f∆(t) ≥ hm−1(t, t1)f∆m

(t) for all t ∈ [t1,∞)T. (2.4)

Proof. Note that f∆m

is nonincreasing on T. We shall give the proof for the case when
m ∈ [2, n)N, since (2.4) holds trivially by the definition of generalized polynomials for
m = 1. Using the Taylor formula for f∆ centered at t1 ∈ T, Property 2.1 and the
eventually decreasing nature of f∆m

on T, we have

f∆(t) =
m−2∑
k=1

hk(t, t1)f∆k

(t1) +

∫ t

t1

hm−2(t, σ(η))f∆m

(η)∆η

≥
(∫ t

t1

hm−2(t, σ(η))∆η

)
f∆m

(t)

for all t ∈ [t1,∞)T (see [4, Lemma 1.109, Theorems 1.111–1.113]). An application of
Lemma 2.2 gives (2.4), and completes the proof.

The following important result may be found in [1].

Lemma 2.9 ( [1, Lemma 7]). Let supT = ∞, n ∈ N and f ∈ Cn
rd(T,R). Then the

following assertions hold:

(i) lim inft→∞ f
∆n

(t) > 0 implies limt→∞ f
∆k

(t) =∞ for all k ∈ [0, n)N0 .

(ii) lim supt→∞ f
∆n

(t) < 0 implies limt→∞ f
∆k

(t) = −∞ for all k ∈ [0, n)N0 .

Due to Kiguradze’s theorem and Lemma 2.9, we infer the following corollary.

Corollary 2.10. Let f be as in Kiguradze’s theorem. Then we have

lim
t→∞

f∆k

(t) = 0 for all k ∈ (m,n)N.

3 Oscillation Criteria for Even-Order Equations
In this section, we give some oscillation criteria for (1.1) for the even-order case.

We first introduce

B
(1)
k (t) :=

B(t)
[
1− A(α(t))

]
, k = n− 1

(−1)n−k−2

∫ ∞
t

hn−k−2(t, σ(η))B
(1)
n−1(η)∆η, otherwise

(3.1)
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for t ∈ [t0,∞)T. Here ·(1) represents an upper index. Our first main result reads as
follows.

Theorem 3.1. Assume that n ∈ 2N and A ∈ Crd([t0,∞)T, [0, 1]R), and that for every
k ∈ (0, n)2N−1, there exists a function ϕk ∈ C1

rd([t0,∞)T,R+
0 ) such that

lim sup
t→∞

∫ t

r

(
B

(1)
k (η)ϕk(η)−

(
ϕ∆
k (η)

)2

4ϕk(η)β∆(η)hk−1(β(η), s)

)
∆η =∞ (3.2)

for every sufficiently large but fixed r, s ∈ [t0,∞)T with β(r) > s. Then every solution
of (1.1) is oscillatory.

Proof. Without loss of generality suppose that x is an eventually positive solution of
(1.1). Then we may pick t1 ∈ [t0,∞)T such that x(t), x(α(t)), x(β(t)) > 0 for all
t ∈ [t1,∞)T. Set

yx(t) := x(t) + A(t)x(α(t)) for t ∈ [t1,∞)T. (3.3)

Then, yx(t) > 0 on [t1,∞)T. From (1.1), we have

y∆n

x (t) = −B(t)x(β(t)) ≤ 0 for all t ∈ [t1,∞)T. (3.4)

It follows from Kiguradze’s theorem that there exist a sufficiently large t2 ∈ [t1,∞)T
and an odd integer m ∈ [1, n)N0 such that for all t ∈ [t2,∞)T, y∆k

x (t) > 0 for all
k ∈ [0,m)N0 and (−1)m−ky∆k

x (t) > 0 for all k ∈ [m,n)N. In particular, we have
yx(t) ≥ x(t) > 0 and y∆

x (t) > 0 on [t2,∞)T. Because of α ◦ β ≤ β on [t2,∞)T, we
have

x(β(t)) =yx(β(t))− A(β(t))x(α(β(t)))

≥yx(β(t))− A(β(t))yx(α(β(t)))

≥
[
1− A(β(t))

]
yx(β(t)) (3.5)

for all t ∈ [t2,∞)T. Using Corollary 2.10, we get from integrating (3.4) over [t,∞)T ⊂
[t2,∞)T for a total of (n−m− 1) times and changing the order of integration from the
innermost integral to the outermost one, we have

(−1)n−m−1y∆m+1

x (t) =−
∫ ∞
t

∫ ∞
ηn−m−2

· · ·
∫ ∞
η2

B(η1)x(β(η1))∆η1 · · ·∆ηn−2∆ηn−m−1

=(−1)n−m−1

∫ ∞
t

hn−m−2(t, σ(η))B(η)x(β(η))∆η (3.6)

for all t ∈ [t2,∞)T. Substituting (3.5) into (3.6), and using the increasing nature of
yx ◦ β (both yx and β are increasing) and (3.1), we obtain

y∆m+1

x (t) +B(1)
m (t)yx(β(t)) ≤ 0 for all t ∈ [t2,∞)T. (3.7)
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We notice that the term (−1)n−m−1 disappears since (n−m− 1) is even. Now, define

Ym(t) :=
ϕm(t)y∆m

x (t)

yx(β(t))
> 0 for t ∈ [t2,∞)T. (3.8)

Using (3.8), the positivity of ϕm, the increasing nature of yx ◦ β and the decreasing
nature of y∆m

x , we obtain

ϕm(t)y∆m

x (β(t))

yx(β(t))
≥ Ym(t) ≥ ϕm(t)y∆mσ

x (t)

yx(β(σ(t)))
=
ϕm(t)Y σ

m(t)

ϕσm(t)
for all t ∈ [t2,∞)T.

(3.9)
Hence, from Remark 2.6, (3.7) and (3.8), we get

Y ∆
m (t) =

ϕm(t)y∆m+1

x (t)

yx(β(t))
+
y∆mσ
x (t)

[
ϕ∆
m(t)yx(β(t))− ϕm(t)

(
yx(β(t))

)∆
]

yx(β(t))yx(β(σ(t)))

=−B(1)
m (t)ϕm(t) +

(
ϕ∆
m(t)− ϕm(t)β∆(t)y∆

x (β(t))

yx(β(t))

)
Y σ
m(t)

ϕσm(t)
(3.10)

for all t ∈ [t2,∞)T. By Lemma 2.8, for some t3 ∈ [t2,∞)T, we have

y∆
x (t) ≥ hm−1(t, t3)y∆m

x (t) (3.11)

for all t ∈ [t3,∞)T. Using (3.9), (3.10) and (3.11), for all t ∈ [t4,∞)T, where β(t4) >
t3, we get

Y ∆
m (t) ≤−B(1)

m (t)ϕm(t) +

(
ϕ∆
m(t)− ϕm(t)β∆(t)hm−1(β(t), t3)

y∆m

x (β(t))

yx(β(t))

)
Y σ
m(t)

ϕσm(t)

≤−B(1)
m (t)ϕm(t) +

(
ϕ∆
m(t)− ϕm(t)β∆(t)hm−1(β(t), t3)

Y σ
m(t)

ϕσm(t)

)
Y σ
m(t)

ϕσm(t)

≤−B(1)
m (t)ϕm(t) +

(
ϕ∆
m(t)

)2

4ϕm(t)β∆(t)hm−1(β(t), t3)
, (3.12)

which yields by integrating over [t4,∞)T that∫ ∞
t4

(
B(1)
m (η)ϕm(η)−

(
ϕ∆
m(η)

)2

4ϕm(η)β∆(η)hm−1(β(η), t3)

)
∆η ≤ Ym(t4).

This contradicts (3.2), the proof is hence completed.

The next result follows from the previous one.

Corollary 3.2. Assume that n ∈ 2N and A ∈ Crd([t0,∞)T, [0, 1]R), and

lim sup
t→∞

∫ t

r

(
B

(1)
k (η)hk(η, s)−

hk−1(η, s)

4hk(β(η), s)

)
∆η =∞ (3.13)

for every k ∈ (0, n)2N−1 and every sufficiently large but fixed r, s ∈ [t0,∞)T with
β(r) > s. Then, every solution of (1.1) is oscillatory.
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Next, we have an illustrative example for the difference equation case.

Example 3.3. Consider the following even-order difference equation:

∆n
[
x(t) + a0x(t− α0)

]
+

b0

hn(t, 1− n)
x(t− β0) = 0 for t ∈ [1,∞)Z, (3.14)

where a0 ∈ [0, 1)R, α0 ∈ N0, b0 ∈ R+ and β0 ∈ N0. For s, t ∈ [1,∞)Z and k ∈ N, we
have

hk(t, s) =
(t− s)k

k!
.

It is easy to show that

∆

(
1

hk(t, s)

)
= − k

k + 1

1

hk+1(t, s− 1)

holds, and this implies

∞∑
η=t

1

hk(η, s)
=

k

k − 1

1

hk−1(t, s+ 1)

for all k ∈ [2,∞)N. Thus, for t ∈ [1,∞)Z, we can compute for k ∈ (0, n)2N−1 that

B
(1)
k (t) =

λ(n, k)b0(1− a0)

hk+1(t,−k)
, where λ(n, k) :=

n

k + 1
,

which yields

t−1∑
η=1

(
B

(1)
k (η)hk(η,−k)− hk−1(η,−k)

4hk(η − β0,−k)

)
≈
(
nb0(1− a0)− k

4

) t−1∑
η=1

1

η
.

By Corollary 3.2 and Remark 2.1, every solution of (3.14) oscillates, if

min
k∈{1,3,...,n−1}

{
nb0(1− a0)− k

4

}
= nb0 −

n− 1

4
> 0⇒ b0(1− a0) >

n− 1

4n

since (3.13) holds for every k ∈ (0, n)2N−1 and every sufficiently large s ∈ [1,∞)Z.

For the following theorem, we need to introduce

B
(2)
k (t) :=

B(t), k = n− 1

(−1)n−k−2

∫ ∞
t

hn−k−2(t, σ(η))B
(2)
n−1(η)∆η, otherwise

(3.15)

for t ∈ [t0,∞)T. Here ·(2) is an upper index.



Higher-Order Dynamic Equations 11

Theorem 3.4. Assume that n ∈ 2N and A ∈ Crd([t0,∞)T, [−1, 0]R) with lim inft→∞
A(t) > −1, and that for every k ∈ (0, n)2N−1, there exists a function ϕk ∈ C1

rd([t0,∞)T,
R+

0 ) such that

lim sup
t→∞

∫ t

r

(
B

(2)
k (η)ϕk(η)−

(
ϕ∆
k (η)

)2

4ϕk(η)β∆(η)hk−1(β(η), s)

)
∆η =∞ (3.16)

for every sufficiently large but fixed r, s ∈ [t0,∞)T with β(r) > s. Then every solution
of (1.1) oscillates or tends to zero asymptotically.

Proof. Without loss of generality suppose that x is an eventually positive solution of
(1.1) which does not tend to zero asymptotically. Let t1 ∈ [t0,∞)T and a0 ∈ [0, 1)R
satisfy x(t), x(α(t)), x(β(t)) > 0 and A(t) ≥ −a0 for all t ∈ [t1,∞)T. Let yx be
defined on [t1,∞)T by (3.3). From (1.1), we have (3.4) on [t1,∞)T. Then, for each
k ∈ [0, n)N0 , y∆k

x is of fixed sign on [t2,∞)T for some t2 ∈ [t1,∞)T. Hence, `y :=
lim
t→∞

yx(t) exists. Below, we shall show that `y > 0. First consider the case where x is

unbounded. Then we may pick an increasing divergent sequence {ξk}k∈N ⊂ [t2,∞)T
such that x(ξk) = maxt∈[t0,ξk]T{x(t)} for all k ∈ N and {x(ξk)}k∈N is increasing and
divergent. Then, we have yx(ξk) ≥ (1 − a0)x(ξk) for all k ∈ N, which yields ` = ∞
by letting k → ∞. Next consider the case where x is bounded. Then we may pick an
increasing divergent sequence {ξk}k∈N ⊂ [t2,∞)T such that limk→∞ x(ξk) = `x, where
`x := lim supt→∞ x(t). It is clear that lim supt→∞ x(α(t)) ≤ `x, and `x > 0 since x
does not tend to zero asymptotically. Then, we have yx(ξk) ≥ x(ξk) − a0x(α(ξk)) for
all k ∈ N, which yields `y ≥ (1−a0)`x > 0 by letting k →∞. In both cases, we obtain
yx > 0 on [t2,∞)T. Then it follows from Kiguradze’s theorem that there exists an odd
integer m ∈ [1, n)N0 such that for all t ∈ [t2,∞)T, y∆k

x (t) > 0 for all k ∈ [0,m)N0

and (−1)m−ky∆k

x (t) > 0 for all k ∈ [m,n)N. In particular, we have x ≥ yx > 0 and
y∆
x > 0 on [t2,∞)T. The remainder of the proof is very similar to that in the proof of

Theorem 3.1. So we obtain∫ ∞
t4

(
B(2)
m (η)ϕm(η)−

(
ϕ∆
m(η)

)2

4ϕm(η)β∆(η)hm−1(β(η), t3)

)
∆η ≤ Ym(t4),

where Ym is defined on [t2,∞)T by (3.8), for some fixed t4 ∈ [t3,∞)T with β(t4) > t3
and some fixed sufficiently large t3 ∈ [t2,∞)T. This contradicts (3.16) and completes
the proof.

The result below follows from the previous theorem.

Corollary 3.5. Assume that A ∈ Crd([t0,∞)T, [−1, 0]R) with lim inft→∞A(t) > −1,
and

lim sup
t→∞

∫ t

r

(
B

(2)
k (η)hk(η, s)−

hk−1(η, s)

4hk(β(η), s)

)
∆η =∞ (3.17)

for every k ∈ (0, n)2N−1 and every sufficiently large but fixed r, s ∈ [t0,∞)T with
β(r) > s. Then, every solution of (1.1) oscillates or tends to zero asymptotically.
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Another illustrative example for Theorem 3.4 is given below on the quantum set.

Example 3.6. Assume q > 1 and consider the following even-order q-difference equa-
tion:

Dn
q

[
x(t) + a0x(q−α0t)

]
+

b0

hn(t, q1−n)
x(q−β0t) = 0 for t ∈ [1,∞)qZ∪{0}, (3.18)

where a0 ∈ (−1, 0]R, α0 ∈ N0, b0 ∈ R+ and β0 ∈ N0. Here, for all s, t ∈ [1,∞)qZ∪{0}
and all k ∈ N0, we have

Dk
qx(t) :=


x(qt)− x(t)

(q − 1)t
, k = 1

DqD
k−1
q x(t), k ∈ [2,∞)N

and hk(t, s) :=
k−1∏
j=0

t− qjs∑j
i=0 q

i
.

For s, t ∈ [1,∞)qZ∪{0} and k ∈ N, it is not difficult to show that

Dq

(
1

hk(t, qs)

)
=

qk − 1

qk(qk+1 − 1)hk+1(t, s)
,

which implies ∫ ∞
t

1

hk(η, q−1s)
dqη =

qk−1(qk − 1)

(qk−1 − 1)hk−1(t, s)

for all k ∈ [2,∞)N. Therefore, for t ∈ [1,∞)qZ∪{0} and k ∈ (0, n)2N−1, we have

B
(2)
k (t) =

λ(n, k)b0

hk+1(t, q−k)
, where λ(n, k) :=

q
n(n−1)

2 (qn − 1)

q
(k+1)k

2 (qk+1 − 1)
.

For t ∈ [1,∞)qZ∪{0}, we have∫ t

1

(
B

(2)
k (η)hk(η, q

−k)− hk−1(η, q−k)

4hk(q−β0η, q−k)

)
dqη

=(q − 1)

∫ t

1

(
q
n(n−1)

2 (qn−1 − 1)b0

q
(k+1)k

2 (qk+1 − 1)2(η − 1)
− 1

4(qk − 1)(q−β0η − q−1)

)
dqη

≈(q − 1)

(
q
n(n−1)

2 (qn−1 − 1)b0

q
(k+1)k

2 (qk+1 − 1)2
− qβ0

4(qk − 1)

)∫ t

1

1

η
dqη.

for all k ∈ (0, n)2N−1. Due to Corollary 3.2 and Remark 2.1, every solution of (3.18) is
oscillatory provided that

min
k∈{1,3,...,n−1}

{
q
n(n−1)

2 (qn−1 − 1)b0

q
(k+1)k

2 (qk+1 − 1)2
− qβ0

4(qk − 1)

}
=

(qn−1 − 1)b0

(qn − 1)2
− qβ0

4(qn−1 − 1)
> 0

or equivalently
b0

qβ0
>

(qn − 1)2

4(qn−1 − 1)2
.

In this present case, one can see that (3.13) holds for every k ∈ (0, n)2N−1 and every
sufficiently large s ∈ [1,∞)qZ∪{0}.
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4 Kamenev-Type Oscillation Criteria for Even-Order
Equations

In this section, we give Kamenev type oscillation criteria for (1.1) for the even-order
case.

Theorem 4.1. Assume that n ∈ 2N andA ∈ Crd([t0,∞)T, [0, 1]R). Assume also that for
every k ∈ (0, n)2N−1, there exist a fixed nk ∈ N and a function ϕk ∈ C1

rd([t0,∞)T,R+
0 )

such that

lim sup
t→∞

1

hnk(t, r)

∫ t

r

hnk(t, σ(η))

(
B

(1)
k (η)ϕk(η)−

(
ϕ∆
k (η)

)2

4ϕk(η)hk−1(β(η), s)

)
∆η =∞

(4.1)
for all sufficiently large r, s ∈ [t0,∞)T with β(r) > s. Then, every solution of (1.1) is
oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, for all t ∈ [t1,∞)T ⊂ [t0,∞)T,
we get (3.10), where x is positive on [t1,∞)T and Ym is defined by (3.8) on [t1,∞)T.
Considering Property 2.1, Corollary 2.3, and integrating by parts, we get∫ t

t2

Y ∆
m (η)hnm(t, σ(η))∆η =

(
hnm(t, η)Ym(η)

)η=t

η=t2

−
∫ t

t2

Ym(η)h∆η
nm(t, η)∆η

=− hnm(t, t2)Ym(t2) +

∫ t

t2

Ym(η)hnm−1(t, σ(η))∆η

≥− hnm(t, t2)Ym(t2)

for all t ∈ [t2,∞)T, where β(t2) > t1. Using this, multiplying both sides of (3.12) with
t replaced by η by hnm(t, σ(η), and then integrating as η goes from t2 to t, we get∫ t

t2

hnm(t, σ(η))

(
B(1)
m (η)ϕm(η)

−
(
ϕ∆
m(η)

)2

4ϕm(η)β∆(η)hm−1(β(η), t1)

)
∆η ≤ hnm(t, t2)Ym(t2)

or equivalently, in view of Property 2.1, we have

1

hnm(t, t2)

∫ t

t2

hnm(t, σ(η))

(
B(1)
m (η)ϕm(η)

−
(
ϕ∆
m(η)

)2

4ϕm(η)β∆(η)hm−1(β(η), t1)

)
∆η ≤ Ym(t2),

which contradicts (4.1). The proof is completed.
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As a particular simple result, we have:

Corollary 4.2. Assume that n ∈ 2N and A ∈ Crd([t0,∞)T, [0, 1]R). And assume for
every k ∈ (0, n)2N−1 that

lim sup
t→∞

1

hnk(t, r)

∫ t

r

hnk(t, σ(η))

(
B

(1)
k (η)hk(η, s)

− hk−1(η, s)

4ϕm(η)β∆(η)hk−1(β(η), s)

)
∆η =∞

(4.2)

for some nk ∈ N and all sufficiently large but fixed r, s ∈ [t0,∞)T with β(r) > s. Then,
every solution of (1.1) is oscillatory.

Theorem 4.3. Assume that n ∈ 2N and A ∈ Crd([t0,∞)T, [−1, 0]R) with lim inft→∞
A(t) > −1. Assume also that for every k ∈ (0, n)2N−1, there exist a fixed nk ∈ N and a
function ϕk ∈ C1

rd([t0,∞)T,R+
0 ) such that

lim sup
t→∞

1

hnk(t, r)

∫ t

r

hnk(t, σ(η))

(
B

(2)
k (η)ϕk(η)−

(
ϕ∆
k (η)

)2

4ϕk(η)hk−1(β(η), s)

)
∆η =∞

(4.3)
for all sufficiently large r, s ∈ [t0,∞)T with β(r) > s. Then, every solution of (1.1)
oscillates or tends to zero asymptotically.

Now we give the following application of Theorem 4.3 to the case T = R.

Example 4.4. Consider the following even-order differential equation:[
x(t) + a0x(α0t)

](n)
+

b0

hn(t, 0)
x(β0t) = 0 for t ∈ [1,∞)R, (4.4)

where ·(n) denotes the usual n-th order derivative, a0 ∈ (−1, 0]R, α0 ∈ (0, 1]R, b0 ∈ R+

and β0 ∈ (0, 1]R. For s, t ∈ [1,∞)R and k ∈ (0, n)2N−1. We have

hk(t, s) =
(t− s)k

k!
and B

(2)
k (t) =

λ(n, k)b0

hk+1(t, 0)
, where λ(n, k) :=

n

k + 1
,

and
1

hnk(t, 1)

∫ t

1

hnk(t, σ(η))

(
B

(2)
k (η)hk(η, 0)− hk−1(η, 0)

4βhk(β0η, 0)

)
dη

≈
(
nb0 −

k

4βk+1

)
1

(t− 1)nk

∫ t

1

(t− η)nk

η
dη

for all t ∈ (1,∞)R, any nk ∈ N. Therefore, every solution of (4.4) is oscillatory, by
Corollary 4.2 and Remark 2.1 provided that

min
k∈{1,3,...,n−1}

{
nb0 −

k

4βk+1
0

}
= nb0 −

n− 1

4βn0
> 0⇒ βn0 b0 >

n− 1

4n
.

Notice that (4.3) is true for every k ∈ (0, n)2N−1 and every sufficiently large r, s ∈
[t0,∞)T with β0r > s.
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5 Kamenev-Type Oscillation Criteria for Odd-Order
Equations

In this section, we extend our results to odd-order neutral delay dynamic equations.

Theorem 5.1. Assume that n ∈ 2N−1 and A ∈ Crd([t0,∞)T, [0, 1]R) with lim supt→∞
A(t) < 1. Assume also that

(−1)n−1

∫ ∞
t0

hn−1(t0, σ(η))B(η)∆η =∞ (5.1)

holds, and for every k ∈ (0, n)2N, there exist a fixed nk ∈ N and a function ϕk ∈
C1

rd([t0,∞)T,R+
0 ) such that (4.1) holds for all sufficiently large r, s ∈ [t0,∞)T with

β(r) > s. Then, every solution of (1.1) oscillates or tends to zero asymptotically.

Proof. The proof makes use of similar arguments if Kiguradze’s theorem holds for m ∈
(0, n)2N and for yx defined by (3.3). And if m = 0, then we apply [13, Theorem 3.1]
since yx is bounded, and this implies boundedness of x. Then, we see that x tends to
zero asymptotically.

Theorem 5.2. Assume that n ∈ 2N−1 andA ∈ Crd([t0,∞)T, [−1, 0]R) with lim inft→∞
A(t) > −1. Assume also that (5.1) holds, and for every k ∈ (0, n)2N, there exist a fixed
nk ∈ N and a function ϕk ∈ C1

rd([t0,∞)T,R+
0 ) such that (4.3) holds for all sufficiently

large r, s ∈ [t0,∞)T with β(r) > s. Then, every solution of (1.1) oscillates or tends to
zero asymptotically.

Proof. The proof is similar to that of Theorem 5.1, and hence we omit it.
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