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Large-N Limit of Crossing Probabilities,

Discontinuity, and Asymptotic Behavior

of Threshold Values in Mandelbrot’s

Fractal Percolation Process

Erik I. Broman ∗† Federico Camia ‡§

Abstract

We study Mandelbrot’s percolation process in dimension d ≥ 2. The process generates ran-
dom fractal sets by an iterative procedure which starts by dividing the unit cube [0, 1]d in
Nd subcubes, and independently retaining or discarding each subcube with probability p or
1−p respectively. This step is then repeated within the retained subcubes at all scales. As p
is varied, there is a percolation phase transition in terms of paths for all d ≥ 2, and in terms
of (d − 1)-dimensional “sheets” for all d ≥ 3.
For any d ≥ 2, we consider the random fractal set produced at the path-percolation critical
value pc(N, d), and show that the probability that it contains a path connecting two oppo-
site faces of the cube [0, 1]d tends to one as N → ∞. As an immediate consequence, we
obtain that the above probability has a discontinuity, as a function of p, at pc(N, d) for all
N sufficiently large. This had previously been proved only for d = 2 (for any N ≥ 2). For
d ≥ 3, we prove analogous results for sheet-percolation.
In dimension two, Chayes and Chayes proved that pc(N, 2) converges, as N → ∞, to the
critical density pc of site percolation on the square lattice. Assuming the existence of
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the correlation length exponent ν for site percolation on the square lattice, we establish
the speed of convergence up to a logarithmic factor. In particular, our results imply that
pc(N, 2) − pc = ( 1

N )1/ν+o(1) as N → ∞, showing an interesting relation with near-critical
percolation .

Key words: Fractal percolation, crossing probability, critical probability, enhance-
ment/diminishment percolation, near-critical percolation.
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1 Introduction and First Results

In this paper we are concerned with a continuum percolation model, first introduced in [16],
which is known as Mandelbrot’s fractal percolation process and defined as follows. For any
integers d ≥ 2 and N ≥ 2, we start by partitioning the unit cube [0, 1]d ⊂ Rd into Nd subcubes
of equal size. Given p ∈ [0, 1] and a subcube, we then retain the subcube with probability
p and discard it with probability 1 − p. This is done independently for every subcube of the
partition. This gives us a random set C1

N = C1
N (d, p) ⊂ [0, 1]d. Consider any retained (assuming

that C1
N 6= ∅) subcube B in C1

N . We can repeat the described procedure on a smaller scale by
partitioning B into Nd further subcubes, discarding or retaining them as above. We do this for
every retained subcube of C1

N . This will yield a new random set C2
N ⊂ C1

N . Iterating the procedure
on every smaller scale yields an infinite sequence of random sets . . . ⊂ Ck+1

N ⊂ Ck
N ⊂ . . . ⊂ [0, 1]d.

It is easy to see that CN := ∩∞
k=1C

k
N is a well defined random object.

We denote by CR(CN ) the event that CN contains a connected component intersecting both the
“left-hand face” {0} × [0, 1]d−1 and the “right-hand face” {1} × [0, 1]d−1 of [0, 1]d (we will call
such a connected component a path or crossing). We can then define

θN,d(p) := Pp(CR(CN )). (1)

We could of course have used any two opposite faces in this definition. Furthermore, we define

pc(N, d) := inf{p : θN,d(p) > 0}.

By a standard coupling argument it is easy to see that θN,d(p) is non-decreasing in p for every
N .

Several authors studied various aspects of Mandelbrot’s fractal percolation, including the Haus-
dorff dimension of the limiting fractal set, as detailed in [10], and the possible existence of
paths [6; 11; 17; 7] and (d − 1)-dimensional “sheets” [7; 21; 18] traversing the unit cube be-
tween opposite faces. Dekking and Meester [11] proposed a “morphology” of random Cantor sets
comprising several “phases” in which a set can be.

Chayes and Chayes [5] considered the behavior of pc(N, 2) for large N , and proved that it
converges to the critical value for Bernoulli site percolation on the square lattice, as N → ∞.
This was generalized by Falconer and Grimmett [12; 13] to all dimensions d ≥ 3, where the
limiting value however is not the critical value of site percolation on the (hyper-)cubic lattice,
but that of site percolation on a related lattice (see Section 3). Orzechowski [21] proved an
analogous results for “sheet” percolation.

Falconer and Grimmett [12; 13] obtained their result as a consequence of proving that, for all
d ≥ 2, limN→∞ θN,d(p) = 1 for all p strictly larger than the relevant (depending on the dimension)
critical value. An interesting question, addressed in Theorem 1.1 below, concerns the large-N
limit of the path-crossing probability at pc(N, d). Let us try to motivate that question.

For the sake of this discussion, let us consider the model in two dimensions, where it is known [6;
11] that θN,2(p) is discontinuous at pc(N, 2) for all N . Analogously, if we tile the plane with
independent copies of the system, the probability that there exists an infinite path intersecting
the unit square [0, 1]2 has a discontinuity at pc(N, 2) for all N [6]. Such behavior prompted
the authors of [6] to call the phase transition in Mandelbrot’s fractal percolation first order or
discontinuous (although one of the authors later appeared to change his mind on the issue –
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see p. 130 of [8]). Regardless of the label, the discontinuity of θN,2(p) (and, more generally, of
θN,d(p) for d ≥ 2) is an important feature of the phase transition, and it is natural to ask what
happens to it as N → ∞.

We point out that the fact that limN→∞ θN,d(p) = 1 for all p strictly larger than the relevant
(depending on the dimension) critical value does not shed much light on the large-N limit of the
path-crossing probability at the critical point. Consider, for instance, the crossing probability
of a square in (ordinary) two-dimensional Bernoulli percolation in the scaling limit (i.e., as the
lattice spacing goes to zero) or equivalently in the limit of larger and larger squares. Such a
limit is needed to “see” the phase transition and produce a situation that can be compared to
the one in Mandelbrot’s fractal percolation. However, in Bernoulli percolation, in the scaling
limit or in the limit of larger and larger squares, the crossing probability of a square converges
to one above the critical point, to zero below it, and to a value strictly between zero and one at

the critical point, showing a behavior that differs from the one of the next theorem.

Theorem 1.1. We have that for any d ≥ 2,

lim
N→∞

θN,d(pc(N, d)) = 1.

When proving Theorem 1.1, in Section 4.1, we will use a result from [1] concerning“enhancement”
percolation (see also [14]). We will in fact need a slightly modified version of the result; in
particular, we will be looking at crossing probabilities in a “diminishment” percolation model
(to be defined precisely in Section 3).

The following corollary is an immediate consequence of the previous theorem. For d = 2 and all
N ≥ 2, an elegant and rather elementary proof of this fact can be found in [11].

Corollary 1.2. For any d ≥ 2, there exists an N0 = N0(d) such that the function θN,d(p) is

discontinuous at pc(N, d) for N ≥ N0.

Remark. For d = 3 and all N ≥ 2, a similar result had been proved in [7], but with the
probability of crossing a square replaced by that of crossing a 2 × 2 × 1 rectangle between the
2 × 2 faces. While the result in [7] is more satisfactory because it applies to all N ≥ 2, it is
limited to a three-dimensional system with a special geometry. On the contrary our result is
valid in all dimensions and, although we use the unit cube for simplicity, the choice of that
particular geometry is not important for our arguments.

When d ≥ 3, one can consider the existence of (d − 1)-dimensional “sheets” crossing the unit
cube [0, 1]d. We denote by SH(CN ) the event that CN contains a surface separating the faces of
[0, 1]d perpendicular to the first coordinate direction. We can then define

θ̃N,d(p) := Pp(SH(CN )). (2)

We could of course have used any two opposite faces in this definition. Furthermore, we define

p̃c(N, d) := inf{p : θ̃N,d(p) > 0}.

By a standard coupling argument it is easy to see that θ̃N,d(p) is non-decreasing in p for every
N .

Our next result concerns the large-N limit of the sheet-crossing probability at the critical point,
and is analogous to Theorem 1.1.
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Theorem 1.3. We have that for any d ≥ 3,

lim
N→∞

θ̃N,d(p̃c(N, d)) = 1.

When proving this theorem, in Section 4.2, we will again use a slight modification of a result
from [1] concerning enhancement percolation.

The following corollary is an immediate consequence of the previous theorem.

Corollary 1.4. For any d ≥ 3, there exists an Ñ0 = Ñ0(d) such that the function θ̃N,d(p) is

discontinuous at p̃c(N, d) for N ≥ Ñ0.

2 Asymptotic Behavior of pc(N, 2)

Our last result concerns the asymptotic behavior of pc(N, 2) as N → ∞. It is known [5] that, for
d = 2, pc(N, 2) tends to the critical density pc ≡ pc(Z

2, site) of (Bernoulli) site percolation (see
Section 3 for the exact definition) on the square lattice, as N → ∞. Assuming the existence of
the correlation length exponent ν for two-dimensional site percolation on the square lattice, we
give bounds on the speed of convergence.

There are several equivalent ways to introduce the concept of correlation length in percolation.
In this section we will assume that p > pc, since this is the only case we are interested in. Let
ϕN (p) be the probability that there is an open crossing in the first coordinate direction of an
N × N square in (Bernoulli) site percolation on the square lattice with density p of open sites
(see Section 3 for precise definitions). Following Kesten (see [15], [9], [19] and the references
therein), we define

Lδ(p) := min{N : ϕN (p) ≥ 1 − δ}. (3)

The δ in the definition is unimportant, since for any δ, δ′ ∈ (0, 1/2) we have [15; 19] that the
ratio Lδ(p)/Lδ′(p) is bounded away from 0 and ∞ as p → pc. In view of this, in what follows
we will consider δ to be a fixed number smaller than 1/2. Lδ(p) is believed to behave like
(p − pc)

−ν as p ↓ pc, with ν = 4/3 (see, e.g., [15] and references therein). More precisely, taking
δ < 1/2, we make the following assumption.

H1: There are two constants c1 = c1(δ) and c2 = c2(δ) such that c1(p − pc)
−4/3 ≤ Lδ(p) ≤

c2(p − pc)
−4/3 for all p ∈ (pc, 1].

Based on that assumption, the following theorem is proved in Section 5.

Theorem 2.1. Let d = 2, and assume that H1 holds. For any C < ∞, there exists an NC < ∞
such that for all N ≥ NC ,

pc(N, 2) ≥ pc + C

(

1

N

)3/4

. (4)

Furthermore, there exist constants D < ∞ and N1 < ∞ such that, for all N ≥ N1,

pc(N, 2) ≤ pc + D

(

log N

N

)3/4

. (5)
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The limit N → ∞ can be compared to the scaling limit ε → 0 in ordinary percolation on a
lattice with lattice spacing ε. The reason is that it removes the intrinsic scale of the system due
to the size of the largest subdivisions in the same way as the limit ε → 0 in ordinary percolation
removes the intrinsic scale of the system due to the lattice. Theorem 2.1 and its proof show an
interesting (and at first site maybe surprising) connection between the large-N limit of fractal
percolation and the “near-critical” scaling limit of ordinary percolation. The latter corresponds
to letting ε → 0 in a percolation model with lattice spacing ε and density of open sites (or
bonds) p = pc + λε3/4 for some fixed λ (see, e.g., [2; 3; 4; 20]).

To motivate the connection, roughly speaking, one can argue in the following way. Take N very
large, and consider a system with retention probability equal to pc. After the first iteration the
system looks critical, meaning that there is positive probability to see left-to-right crossings,
but that such crossings are tenuous and are not able to sustain the remaining iterations. This
is not surprising since we know that pc(N, 2) > pc for all N . On the other hand, if p > pc, for
N sufficiently large, a system with retention probability p looks very supercritical after the first
iteration (in other words, N ≫ Lδ(p)). Chayes and Chayes [5] used this fact to show that the
system has enough connections to sustain all further iterations. As a consequence, one obtains
that pc(N, 2) becomes arbitrarily close to pc as N → ∞. But what is the speed of convergence?
As N → ∞, pc(N, 2) must be getting close to pc at the right speed: not too fast, or else after
the first iteration the system would look “too critical,” and not too slowly, or else it would look
“too supercritical.”As Theorem 2.1 and its proof show, the right speed is related to near-critical
percolation.

Remark. Although H1 is widely believed to hold (at least) for site and bond percolation on
regular lattices, it has so far not been proved for any percolation model. However, a weaker
result has been proved [22] for site percolation on the triangular lattice. With the notation
introduced above, the latter can be stated as follows.

H2: Lδ(p) = (p − pc)
−4/3+o(1) as p ↓ pc.

Assuming H2 instead of H1, our results can be easily adapted to obtain pc(N, 2) − pc =
( 1

N )3/4+o(1).

Remark. The definition of correlation length we use in this paper is equivalent to other standard
definitions (see, e.g., [15; 9; 19]), including the one that comes from considering the probability

τ f
p (x) that the origin and x belong to the same finite p-open cluster. The correlation length ξ(p)

related to τ f
p (x) is defined by

ξ(p)−1 := lim
|x|→∞

{

−
1

|x|
log τ f

p (x)

}

.

In particular, for every δ > 0, there are two constants, c′1 = c′1(δ) and c′2 = c′2(δ), such that
c′1Lδ(p) ≤ ξ(p) ≤ c′2Lδ(p) for all p > pc (see, e.g., the Appendix of [9]).

Remark: In light of Theorem 2.1, we find the concluding remarks of [5] unclear. On p. L505
of [5], the authors claim that: “In the large-N regime, our proof demonstrates that if N is a
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huge (but fixed) multiple of the correlation length of the density-p site model, then p > pc(N).”
However, if one accepts hypothesis H1, this would imply that, for N large enough, pc(N, 2) <
pc + const

N3/4 , which contradicts the first statement of Theorem 2.1. If one instead accepts H2, then
it is not clear what a multiple of the correlation length means.

3 Enhancement and Diminishment Percolation

In this section we introduce and discuss a particular example of enhancement percolation [1], and
a closely related example of “diminishment” percolation (see the comment after Theorem 3.16
on p. 65 of [14]). Both models will be used later in the proofs of the main results, where they
will be compared (or more precisely, coupled) to the fractal percolation model.

Before we can proceed we need to introduce the two graphs on which the enhancement and
diminishment percolation models will be defined. For d ≥ 2, let Ld be the d-dimensional lattice
with vertex set Zd and with edge set given by the adjacency relation: (x1, . . . , xd) = x ∼ y =
(y1, . . . , yd) if and only if x 6= y, |xi − yi| ≤ 1 for all i and xi = yi for at least one value of i. Let
Md be the d-dimensional lattice with vertex set Zd and with edge set given by the adjacency
relation: (x1, . . . , xd) = x ∼ y = (y1, . . . , yd) if and only if x 6= y and |xi − yi| ≤ 1 for all i.
For d = 2, L2 coincides with the square lattice and M2 with its close-packed version, obtained
by adding diagonal edges inside the faces of the square lattice. For d ≥ 3, Md contains Ld as a
strict sublattice, which in turns contains the (hyper-)cubic lattice as a strict sublattice.

We consider Bernoulli site percolation on Ld and Md with parameter p ∈ [0, 1]: each site is
declared open (represented by a 1) with probability p and closed (represented by a 0) with
probability 1 − p, independently of all other sites. For any N ≥ 2, consider the box Λd

N :=
{1, . . . , N}d ⊂ Zd.

For d ≥ 2, we denote by CR(Λd
N , Ld) the event that there is an open path in Ld crossing Λd

N

in the first coordinate direction. An open path in Ld is a sequence of open sites such that any
two consecutive elements of the sequence are adjacent in Ld. If CR(Λd

N , Ld) occurs, we say that
there is an open crossing of Λd

N . Analogous definitions hold for d ≥ 3 with Ld replaced by Md.

For d ≥ 2, we define
ϕd

N (p) := Pp(CR(Λd
N , Ld)) (6)

and
pc(L

d) := inf{p : lim
N→∞

ϕd
N (p) > 0}.

As before, we could of course have considered crossings in any direction.

Analogously, for d ≥ 3, we define

ψd
N (p) := Pp(CR(Λd

N , Md)) (7)

and
pc(M

d) := inf{p : lim
N→∞

ψd
N (p) > 0}.

In [13] it is proved, for all d ≥ 2, that pc(L
d) ≤ pc(N, d) for all N , and that

lim
N→∞

pc(N, d) = pc(L
d).
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(The same conclusions had been reached earlier in [5] for d = 2.) Similar results are obtained
for the sheet percolation problem in dimension d ≥ 3 in [21], where it is shown that p̃c(N, d) ≥
1 − pc(M

d) for all N , and that

lim
N→∞

p̃c(N, d) = 1 − pc(M
d).

In fact, the above results were stated for a different definition of pc(M
d) and pc(L

d), defined
using the probability of the existence of an infinite cluster. However, it is a standard result from
percolation theory (see, e.g., [14] and references therein) that the latter definition is equivalent
to the one given above using limits of crossing probabilities.

We are now ready to define our (stochastic) enhancement percolation model with density s of
enhancement. We start by performing Bernoulli site percolation with density p ∈ [0, 1] on Md.
For a site x = (x1, . . . , xd) ∈ Md, if (x1 +1, x2, . . . , xd) and (x1−1, x2, . . . , xd) are both open, we
make x open with probability s, regardless of its state before the enhancement. Note that this
has the effect of “enhancing”the percolation configuration by changing the state of some sites
from closed to open. We denote by Penh

p,s the resulting probability measure.

It is immediate to see that our enhancement is essential in the language of [1] (i.e., there exist
configurations that do not have doubly-infinite open paths but such that a doubly-infinite open
path [the union of two disjoint, infinite open paths starting at neighboring sites] is generated if
the enhancement is activated at the origin).

For s > 0 fixed, we define
ψd

N (p, s) := Penh
p,s (CR(Λd

N , Md)).

Note that the enhancement breaks the symmetry of the original percolation model, and recall
that CR(·) is the event that there is a crossing in the first coordinate direction. In contrast to
similar definitions above, choosing the first coordinate direction here is important. Note also
that ψd

N (p, 0) = ψd
N (p), where the right hand side was defined in (7).

The next lemma follows easily from the proof of Theorem 1 of [1].

Lemma 3.1. Let d ≥ 3. For fixed s > 0, there exists δ1 = δ1(s) > 0 so that, for every p such

that 0 < pc(M
d) − p ≤ δ1,

lim
N→∞

ψd
N (p, s) = 1.

The proof of Theorem 1 of [1] is based on a differential inequality. In order to use the same
strategy to prove Lemma 3.1, we would need the following differential inequality:

∂

∂s
ψd

N (p, s) ≥ fd(p, s)
∂

∂p
ψd

N (p, s) (8)

with fd(p, s) continuous and strictly positive on (0, 1)2. This can be easily obtained by applying
(a straightforward generalization of) Russo’s formula (see [1] and [14]) and the proof of Lemma 2
of [1] to the event CR(Λd

N , Md). Lemma 2 of [1] concerns a different event, namely the existence
of an open path connecting the origin to the boundary of the cube of side length 2N (say).
However, the key ingredient of the proof of the lemma is a local rearrangement of a percolation
configuration that involves changing the state of at most a bounded number of sites, and is
therefore not sensitive to the “global geometry” of the event.

987



We do not give a proof of (8) here, since it would look almost identical to the proof of (1.7)
of [1], but for the reader’s convenience, we explain how to obtain Lemma 3.1 from (8). The
latter shows that ψd

N (p, s) is a nonincreasing function of t when (p, s) ≡ (p(t), s(t)) satisfies

d

dt
(p, s) = (fd(p, s),−1).

In particular, since fd is strictly positive, for any s0 > 0 there is some p0 < pc(M
d) such that

the forward orbit from (p0, s0) crosses the segment {p = pc(M
d), s ∈ [0, 1]} and reaches some

point (p′, s′) with p′ > pc(M
d). Then, using the monotonicity in s, ψd

N (p0, s0) ≥ ψd
N (p′, s′) ≥

ψd
N (p′, 0) = ψd

N (p′), which implies the lemma.

Next, we define our (stochastic) diminishment percolation model with density s of diminishment.
We start by performing Bernoulli site percolation with density p ∈ [0, 1] on Ld. For a site
x = (x1, . . . , xd) ∈ Ld, if all neighbors of x, except possibly the ones with coordinates (x1 ±
1, x2, . . . , xd), are closed, we make x closed with probability s, regardless of its state before
the enhancement. Note that this has the effect of “diminishing” the percolation configuration by
changing the state of some sites from open to closed. We denote by Pdim

p,s the resulting probability
measure.

It is immediate to see that our diminishment is essential in the sense that there exist configu-
rations that have a doubly-infinite open path but such that a doubly-infinite open path is not
present after the enhancement is activated at the origin.

For s > 0 fixed, we define
ϕd

N (p, s) := Pdim
p,s (CR(Λd

N , Ld)).

As above note that the diminishment breaks the symmetry of the original percolation model so
that again it matters that we consider crossings in the first coordinate direction. Note also that
ϕd

N (p, 0) = ϕd
N (p), where the right hand side was defined in (6).

The next lemma can again be proved using arguments from [1].

Lemma 3.2. Let d ≥ 2. For fixed s > 0, there exists δ2 = δ2(s) > 0 so that for every p such

that 0 < p − pc(L
d) ≤ δ2,

lim
N→∞

ϕd
N (p, s) = 0.

The lemma can be proved using the following differential inequality:

∂

∂s
ϕd

N (p, s) ≤ −gd(p, s)
∂

∂p
ϕd

N (p, s), (9)

with gd(p, s) continuous and strictly positive on (0, 1)2.

Once again, we do not give a proof of (9), since it would look almost identical to the proof
of (1.7) of [1]. To obtain Lemma 3.2 from (9), we can use the same strategy as before. From (9)
we see that ϕd

N (p, s) is a nondecreasing function of t when (p, s) ≡ (p(t), s(t)) satisfies

d

dt
(p, s) = (−gd(p, s),−1).

In particular, since gd is strictly positive, for any s0 > 0 there is some p0 > pc(L
d) such that

the forward orbit from (p0, s0) crosses the segment {p = pc(L
d), s ∈ [0, 1]} and reaches some

point (p′, s′) with p′ < pc(L
d). Then, due to the monotonicity in s, ϕd

N (p0, s0) ≤ ϕd
N (p′, s′) ≤

ϕd
N (p′, 0) = ϕd

N (p′), which implies the lemma.
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4 Proofs of Theorems 1.1 and 1.3

4.1 Proof of Theorem 1.1

We will use the results from [5] and [12; 13] (for d = 2 and d ≥ 3, respectively) cited in Section 3
and stated in the theorem below for convenience.

Theorem 4.1 ([5],[12; 13]). For all d ≥ 2, we have that pc(N, d) ≥ pc(L
d) for every N ≥ 2.

Moreover, limN→∞ pc(N, d) = pc(L
d).

With this, we are now ready to present the actual proof.

Proof of Theorem 1.1. Consider Mandelbrot’s fractal percolation process with retention
parameter p. Let Ak denote the event that there is complete retention until level k (as pointed
out in [5], “a minor miracle”), i.e., Ck

N = [0, 1]d. Trivially, for any k ≥ 1,

θN,d(p) ≤ Pp(CR(CN ) | Ak).

Assume that Ak−1 has occurred. We will couple level k of the fractal percolation process,
conditioned on Ak−1, to a diminishment percolation process on Ld with density of diminishment
s = 1 − θN,d(p). We now explain how the coupling works.

If Ak−1 occurs, at the next level of the fractal percolation process, the unit cube [0, 1]d is
divided in Ndk subcubes of side length 1/Nk. We identify the subcubes with their centers

{(x1−1/2
Nk , . . . , xd−1/2

Nk ), 1 ≤ x1, . . . , xd ≤ Nk}. Each subcube is retained with probability p and
discarded with probability 1 − p, independently of all other subcubes.

Recall that Λd
N = {1, . . . , N}d ⊂ Zd. In our diminishment model, sites in Zd \ Λd

Nk are declared

closed, while a site x = (x1, . . . , xd) ∈ Λd
Nk is declared open if the cube (x1−1/2

Nk , . . . , xd−1/2
Nk ) is

retained at level k of the fractal percolation process, and closed otherwise. This means that the
states of sites in Λd

Nk are determined by the fate of the level k subcubes in the fractal percolation
process, while all other sites are closed.

On this percolation model we now perform a diminishment according to the following rule. If a
site x = (x1, . . . , xd) ∈ Λd

Nk is open and all its Ld-neighbors except possibly (x1 ± 1, x2, . . . , xd)
are closed, we look at the effect of the fractal percolation process within the subcube
(x1−1/2

Nk , . . . , xd−1/2
Nk ). If the fractal percolation process inside that subcube does not leave a

connection between its two faces perpendicular to the first coordinate direction, we declare site
x closed. The result is that, due to the scale invariance of the fractal percolation process, each
open site x = (x1, . . . , xd) ∈ Λd

Nk such that all its Ld-neighbors except possibly (x1±1, x2, . . . , xd)
are closed is independently declared closed with probability 1− θN,d(p). Sites that were already
closed simply stay closed. This is obviously a diminishment in the sense of Section 3. We denote
by Qdim

p,1−θN,d(p) the probability measure corresponding to the diminishment percolation process

just defined (with initial configuration chosen as described above, i.e., with all sites outside Λd
Nk)

closed).

We now make three simple but crucial observations. First of all, recalling the definition of the
diminishment percolation model of Section 3 and of the corresponding measure Pdim

p,s , it is clear
that, due to the difference in the initial configurations before activating the enhancement,

Qdim
p,s (CR(Λd

Nk , Ld)) ≤ Pdim
p,s (CR(Λd

Nk , Ld)) = ϕd
Nk(p, s)
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(where in our case s = 1 − θN,d(p)).

Secondly, note that any two retained level k subcubes of the fractal percolation process that touch
at a single point (a corner) will eventually not touch at all. The reason for this is that at every
subsequent step j > k of the fractal construction, the corner at which the two subcubes touch
has probability uniformly bounded away from zero to vanish because all the level j subcubes
that share that corner are discarded. This means that, if we are interested in the connectivity
properties of CN , any two level k subcubes that touch at a corner can effectively be considered
disconnected. (This is the reason why the lattice Ld is relevant in this context.)

Lastly, from topological considerations and the previous observation, one can easily conclude that
(conditioning on Ak−1) the absence of a crossing of Λ(Ld, Nk) in the first coordinate direction
in the diminishment percolation process described above implies the absence of a left to right
crossing of [0, 1]d by the fractal set CN . (Otherwise stated, if Ak−1 happens, then “CR(CN ) ⊂
CR(Λd

Nk , Ld),” where the event on the left concerns the fractal percolation process and that on
the right the diminishment percolation process, and the inclusion should be interpreted in terms
of the coupling between the two processes.)

From the previous discussion we can conclude that

θN,d(p) ≤ Pp(CR(CN ) | Ak−1)

≤ Qdim
p,1−θN,d(p)(CR(Λd

Nk , Ld))

≤ Pdim
p,1−θN,d(p)(CR(Λd

Nk , Ld))

= ϕd
Nk(p, 1 − θN,d(p)). (10)

We will next use (10) to show that, for any ǫ > 0, there exists an N1 = N1(ǫ) such that, for
every N ≥ N1, θN (pc(N, d) + τ) > 1 − ǫ for all τ > 0. To do this, we set s = ǫ in Lemma 3.2,
obtain δ2 = δ2(ǫ) > 0, and then use Theorem 4.1 to find an N1 = N1(δ2) such that

0 ≤ pc(N, d) − pc(L
d) < δ2/2

for all N ≥ N1.

Assume now, by contradiction, that

θN̂,d(pc(N̂ , d) + τ̂) ≤ 1 − ǫ,

for some N̂ ≥ N1 and some τ̂ which, because of the monotonicity of θN,d(p) in p, we can assume
without loss of generality to be smaller than δ2/2. Using the obvious monotonicity in s of
ϕd

Nk(p, s), from (10) we obtain

θN̂,d(pc(N̂ , d) + τ̂) ≤ ϕd
N̂k(pc(N̂ , d) + τ̂ , ǫ). (11)

Noting that, for any τ < δ2/2,

0 ≤ pc(N̂ , d) + τ − pc(L
d) < δ2,

we can let k → ∞ in (11) and use Lemma 3.2 to obtain

θN̂,d(pc(N̂ , d) + τ̂) = 0. (12)
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This however is an obvious contradiction, from which it follows that for every N ≥ N1,

θN,d(pc(N, d) + τ) > 1 − ǫ (13)

for all τ > 0, as claimed above.

We are now ready to conclude the proof. It is easy to see from the construction of CN = ∩∞
i=1C

i
N

that the function θN,d(p), being the limit of decreasing continuous functions, is right-continuous.
Thus, letting τ → 0 in (13), we obtain

θN,d(pc(N, d)) ≥ 1 − ǫ

for all N ≥ N1. Since ǫ was arbitrary, this concludes the proof. QED

4.2 Proof of Theorem 1.3

We will use the following result from [21] cited in Section 3 and stated in the theorem below for
convenience.

Theorem 4.2 ([21]). For all d ≥ 3, we have that p̃c(N, d) ≥ 1 − pc(M
d) for every N ≥ 2.

Moreover, limN→∞ p̃c(N, d) = 1 − pc(M
d).

With this, we are now ready to present the actual proof.

Proof of Theorem 1.3. Consider Mandelbrot’s fractal percolation process with retention
parameter p. Let Ak denote the event that there is complete retention until level k, i.e., Ck

N =
[0, 1]d. Trivially, for any k ≥ 1,

θN,d(p) ≤ Pp(CR(CN ) | Ak).

Assume that Ak−1 has occurred. We will couple level k of the fractal percolation process,
conditioned on Ak−1, to an enhancement percolation process on Md with density of enhancement
s = 1 − θ̃N,d(p) in a way similar to the proof of Theorem 1.1, as explained below.

If Ak−1 occurs, at the next level of the fractal percolation process, the unit cube [0, 1]d is divided
in Ndk subcubes of side length 1/Nk. Like in the proof of Theorem 1.1, we identify the subcubes

with their centers {(x1−1/2
Nk , . . . , xd−1/2

Nk ), 1 ≤ x1, . . . , xd ≤ Nk}. Each subcube is retained with
probability p and discarded with probability 1 − p, independently of all other subcubes.

Contrary to the proof of Theorem 1.1, in our enhancement model, sites in Zd \Λd
Nk are declared

open, while a site x = (x1, . . . , xd) ∈ Λd
Nk is declared closed if the cube (x1−1/2

Nk , . . . , xd−1/2
Nk ) is

retained, and open otherwise. Once again, the states of sites in Λd
Nk are determined by the fate

of the level k subcubes of the fractal percolation process. This time however, all sites outside
Λd

Nk are open.

On this percolation model we now perform an enhancement according to the following rule. If a
site x = (x1, . . . , xd) ∈ Λd

Nk is closed and (x1+1, x2, . . . , xd) and (x1−1, x2, . . . , xd) are both open,

we look at the effect of the fractal percolation process within the subcube (x1−1/2
Nk , . . . , xd−1/2

Nk ).
If the fractal percolation process inside that subcube does not leave a (d−1)-dimensional surface
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separating its two faces perpendicular to the first coordinate direction, we declare site x open.
This time the result is that each closed site x = (x1, . . . , xd) ∈ Λd

Nk such that its two neighbors
(x1 + 1, x2, . . . , xd) and (x1 − 1, x2, . . . , xd) are both open is independently declared open with
probability 1 − θ̃N,d(p), while sites that were already open simply stay open. This is obviously
an enhancement in the sense of Section 3. We denote by Qenh

1−p,1−θ̃N,d(p)
the probability measure

corresponding to the enhancement percolation process just defined (with initial configuration
chosen as described above, i.e., with all sites outside Λd

Nk open).

We now make two simple but crucial observations. First of all, recalling the definition of the
enhancement percolation model of Section 3 and of the corresponding measure Penh

p,s , it is clear
that

Qenh
1−p,s(CR(Λd

Nk , Md)) ≥ Penh
1−p,s(CR(Λd

Nk , Md)) = ψd
Nk(1 − p, s)

(where in this case s = 1 − θ̃N,d(p)).

Secondly, from topological considerations one can easily conclude that (conditioned on the event
Ak−1) the presence of an open crossing of Λd

Nk in the first coordinate in the enhancement

percolation process described above implies the absence of a sheet crossing of [0, 1]d by the
fractal set CN separating the two faces perpendicular to the first coordinate direction. (Otherwise
stated, if Ak−1 happens, then “SH(CN ) ⊂ CR(Λd

Nk , Md)c,” where the event on the left concerns
the fractal percolation process and that on the right the enhancement percolation process, the
inclusion should be interpreted in terms of the coupling between the two processes, and CR(·)c

denotes the complement of CR(·).)

From the previous discussion we can conclude that

θ̃N,d(p) ≤ Pp(SH(CN ) | Ak−1)

≤ 1 − Qenh
1−p,1−θ̃N,d(p)

(CR(Λd
Nk , Md))

≤ 1 − Penh
1−p,1−θ̃N,d(p)

(CR(Λd
Nk , Md))

= 1 − ψd
Nk(1 − p, 1 − θ̃N,d(p)). (14)

As in the proof of Theorem 1.1, (14) can be used to show that, for any ǫ > 0, there exists
an N2 = N2(ǫ) such that, for every N ≥ N2, θ̃N (p̃c(N, d) + τ) > 1 − ǫ for all τ > 0. To do
this, we set s = ǫ in Lemma 3.1, obtain δ1 = δ1(ǫ) > 0, and then use Theorem 4.2 to find an
N2 = N2(δ1(ǫ)) such that

0 ≤ p̃c(N, d) − (1 − pc(M
d)) < δ1/2,

or equivalently,
0 ≤ pc(M

d) − (1 − p̃c(N, d)) < δ1/2,

for all N ≥ N2.

From here, the proof can be concluded in essentially the same way as the proof of Theorem 1.1,
with the difference that one needs to use Lemma 3.1 instead of Lemma 3.2. We leave the details
to the reader. QED
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5 Bounds for pc(N, 2).

In this section, we consider only two-dimensional fractal percolation, and for simplicity we will
not indicate the dimension in the notation.

Recall the definition of correlation length from Section 2:

Lδ(p) := min{N : ϕN (p) ≥ 1 − δ},

for any p > pc = pc(L
2) = pc(Z

2, site) and any 0 < δ < 1/2.

Proof of Theorem 2.1. We start by proving (4). One can easily show (see [5]) that θN (pc) = 0.
Since θN (pc(N)) > 0 for every N ≥ 2, we deduce that pc(N) > pc for every N ≥ 2. Assume, by
contradiction, that there exists a C0 < ∞ such that

pc(N) < pc + C0

(

1

N

)3/4

(15)

for all N ≥ 2. Fix δ > 0; by assumption H1 and (15), we have Lδ(pc(N)) ≥ c1(δ)(pc(N) −

pc)
−4/3 > c1(δ)C

−4/3
0 N , or equivalently, N < c′Lδ(pc(N)) for all N ≥ 2 and some constant

c′ = c′(δ). It then follows from Theorem 26 of [19] applied to the square lattice (see also
Theorem 1 of [15]), together with the Russo-Seymour-Welsh theorem, that ϕN (pc(N)) is bounded
away from 1 uniformly in N . (Roughly speaking, Theorem 1 of [15] and Theorem 26 of [19] state
that crossing probabilities at p 6= pc are comparable to crossing probabilities at pc, provided that
one considers crossings of domains that are not much larger than the correlation length at p — see
Section 8 of [19] concerning the applicability of such results to various regular lattices.) However,
that leads to a contradiction since ϕN (pc(N)) ≥ θN (pc(N)) and limN→∞ θN (pc(N)) = 1 by
Theorem 1.1.

We now proceed to prove (5). Take N ≥ 3m for some m, let Rm be a 3m/N × m/N rectangle,
and denote by B1 the event that Rm contains a left-to-right crossing by C1

N , and both the left
and the right third of Rm contain a top-to-bottom crossing by C1

N (see Appendix A for more
motivation on why we consider this event, and its relation with the functions fN,m and gN,m that
will be introduced below). For any δ1 > 0, one can choose δ0 > 0 so small that the probability
of the event B1 for any p > pc is at least 1 − δ1 when m is chosen to be Lδ0(p). To see this
note that, letting m = Lδ0(p), we have ϕm(p) ≥ 1 − δ0. The claim then follows from standard
arguments using the Russo-Seymour-Welsh theorem and the Harris-FKG inequality. Observe
that the choice of δ0 is only dependent on δ1.

For any N ≥ 2, let

pN := pc + D

(

log N

N

)3/4

, (16)

where D is a constant yet to be determined. Furthermore, we will let m = Lδ0(pN ), for a δ0 > 0
to be chosen later. The definition of pN and hypothesis H1 imply that

m ≤
c2(δ0)

D4/3

N

log N
. (17)
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Following [5], we now introduce the functions

fN,m(y) :=
c3

y(1 − gy1/4)
N2(gy1/4)N/2m

and

gN,m(y) :=
c4

y(1 − gy1/4)

N

m
(gy1/4)N/2m =

c4

c3

1

Nm
fN,m(y)

where c3, c4 > 0 are finite constants and g ≤ 3. The role of these two functions will be clear
soon. For completeness and the reader’s convenience, their derivation is presented in Appendix
A.

Fix a y0 > 0 such that gy
1/4
0 < 1, let δ1 = y0/2, and choose δ0 > 0 so that Pp(B

1) ≥ 1 − δ1 for
any p > pc. Choose D in the definition of pN large enough so that

hN (y) :=
c5

y
N2(gy1/4)

D4/3

2c2(δ0)
log N

→ 0, ∀ 0 < y ≤ y0 as N → ∞,

where c5 = c3

1−gy
1/4
0

. Recalling that m = Lδ0(pN ), we can then use (17) to conclude that, for all

y ≤ y0,
fN,m(y) ≤ hN (y). (18)

Since for y > 0, hN (y) is a positive, continuous function, and hN (y) → 0 as N → ∞, ∀y ∈ (0, y0],
it is easy to see that for N sufficiently large, the equation

y = δ1 + hN (y) (19)

has a solution y2(N) which converges to δ1 as N → ∞. Moreover, (18) implies that, when-
ever (19) has a solution y2(N),

y = δ1 + fN,m(y) (20)

has a solution y1(N) such that y1(N) ≤ y2(N). We pick N1 such that, for all N ≥ N1, (19) has
a solution and hN (y) is increasing in y.

We can now use a bound from [5], rederived in Appendix A (see (23) there), to show that

PpN (CR(Ck
N )) ≥ 1 − gN,m(δk)

= 1 −
c4

c3

1

Nm
fN,m(δk)

≥ 1 −
c4

c3

hN (δk)

N
, (21)

where {δk}k≥2 is some sequence that satisfies the iterative inequality

δk ≤ δ1 + fN,m(δk−1). (22)

In order for (21) to hold, it suffices that PpN (B1) ≥ 1 − δ1, which is satisfied for our choice of
pN and m(= Lδ0(pN )). When (20) has a solution y1, the sequence {δk}k∈N must have a limit
δ∗ ≤ y1.
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For N ≥ N1, letting k → ∞ on both sides of (21), and using (19) and the fact that δ∗ ≤ y1 ≤ y2

and hN (y) is increasing in y, we obtain

θN (pN ) ≥ 1 −
c4

c3

hN (δ∗)

N

≥ 1 −
c4

c3

hN (y2)

N

= 1 −
c4

c3

(y2 − δ1)

N
.

Since limN→∞ y2(N) = δ1, as remarked above, we can conclude that there exists an N1 (possibly
larger than required before) such that

θN (pN ) ≥ 1 −
c4

c3

(y2 − δ1)

N
> 0

for all N ≥ N1, which concludes the proof. QED
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Appendix A

For completeness and for the reader’s convenience, following [5], in this appendix we present the
derivation of the functions fN,m and gN,m used in the proof of Theorem 2.1 (note that gN,m is
not given a name in [5]).

Let m be a fixed number much smaller than N , and denote by Hm(x1, x2) the 3m/N × m/N
rectangle {y = (y1, y2) ∈ R2 : x1 ≤ y1 ≤ x1 + 3m/N, x2 ≤ y2 ≤ x2 + m/N}, and by Vm(x1, x2)
the m/N × 3m/N rectangle {y = (y1, y2) ∈ R2 : x1 ≤ y1 ≤ x1 + m/N, x2 ≤ y2 ≤ x2 + 3m/N}.
If at level k of the fractal percolation process Hm(x1, x2) contains a left-to-right crossing by Ck

N ,
and both the left and the right third of Hm(x1, x2) contain a top-to-bottom crossing by Ck

N ,
we say that the event Hk(x1, x2) happens. Analogously, if at level k of the fractal percolation
process Vm(x1, x2) contains a top-to-bottom crossing by Ck

N , and both the top and the bottom
third of Vm(x1, x2) contain a left-to-right crossing by Ck

N , we say that Vk(x1, x2) happens.

We can partially cover the unit square [0, 1]2 using rectangles Hm(x1, x2) and Vm(x1, x2) with x1

taking values 0, 2m/N, 4m/N, . . . and x2 taking values 0, 2m/N, 4m/N, . . . . We call R the set of
overlapping rectangles used for this partial covering of the unit square, and assume for simplicity
that N/m is an odd integer (see Figure 1). The readers can easily convince themselves that this
assumption can be safely removed in the arguments below. The probabilities of the crossing
events Hk(·, ·) and Vk(·, ·) are equal and are the same for all rectangles in R. We therefore
denote them πk.
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We identify the m/N × m/N squares where the rectangles from R overlap with the sites of a
portion of the square lattice (see Fig. 1). On this portion of the square lattice, we consider a
family of bond percolation models indexed by k = 1, 2, . . . . In the k-th member of the family, we
declare a horizontal bond between two adjacent sites open if the event Hk(x1, x2) happens, where
(x1, x2) is the bottom-left corner of the m/N ×m/N square corresponding to the leftmost of the
two adjacent sites. Analogously, we declare a vertical bond between two adjacent sites open if
the event Vk(x1, x2) happens, where (x1, x2) is the bottom-left corner of the m/N ×m/N square
corresponding to the lower site. Note that we obtain a family of dependent bond percolation
models with densities πk, k = 1, 2, . . . , of open bonds, and that a left-to-right crossing in the
k-th bond percolation process implies a left-to-right crossing of the unit square by Ck

N . Note
also that for k = 1, the event H1(·, ·) (resp., V1(·, ·)) is simply a crossing event for Bernoulli site
percolation on a 3m × m (resp., a m × 3m) rectangular portion of the square lattice.

Figure 1: The unit square is partially covered by overlapping 3m/N × m/N and m/N × 3m/N
rectangles like the shaded ones shown in the bottom-left corner. The centers of the squares
where the rectangles overlap, indicated by dots, are the sites of an associated portion of the
square lattice whose bonds are indicated by broken segments.

Let us now consider for definiteness a given rectangle Rm from R. We denote by Bk the relevant
crossing event (either Hk(·, ·) or Vk(·, ·)) inside Rm at the k:th step of the fractal percolation
process. We have Pp(B

k) = πk. Let us assume that π1 ≥ 1 − δ1 for some fixed δ1. Assuming
that B1 happens, we are going to obtain a lower bound for Pp(B

2) in terms of δ1 (see Fig. 2).

After the second step of the fractal percolation process, Rm is split into 3m2 × N2 squares of
side length 1/N2. We can partially cover Rm using rectangles Hm/N (·, ·) and Vm/N (·, ·) in the
same fashion as we did for the unit square. Each such rectangle contains 3m2 squares of side
length 1/N2. If Rm/N is a rectangle contained inside a 1/N × 1/N square that was retained in
the first step of the fractal percolation process, the probability to see inside Rm/N a scaled copy
of the event B1 is exactly π1 because of the scale invariance of the fractal percolation process.
More generally, as we did above inside the unit square, we can couple step k + 1 of the fractal
percolation process inside the retained portion of Rm to a dependent bond percolation process
with density of open bonds πk.

We will now use the bond percolation process coupled to the second level of the fractal percolation
process to obtain a lower bound for Pp(B

2 | B1) in terms of δ1. One way to ensure the occurrence
of B2 is by a string of open bonds in the coupled bond percolation process. The event that such
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Figure 2: A 3m/N × m/N rectangle where the event B1 happens but B2 does not. The larger
squares are of size 1/N × 1/N . Squares with a cross are not retained. Retained squares are
divided in smaller squares of size 1/N2 × 1/N2. Here, m = 3 and N = 4.

a string is not present is by duality equivalent to the presence of a string of closed dual bonds,
where a dual bond is perpendicular to an ordinary bond and is declared closed (resp., open) if
the (unique) ordinary bond it intersects is closed (resp., open). By simple worst-case-scenario
counting arguments, one can give an upper bound for the probability of such a string of closed
dual bonds, as explained below. Note that we are considering a dependent bond percolation
model, but that the dependence range is finite (and in fact very short). We can certainly assume,
as in [5], that finding a string consisting of l closed dual bonds implies at least l/4 independent
trials.

By using trivial upper bounds for the number of strings of length l, we obtain

Pp(B
2 | B1) ≥ 1 − 3m2

(

4N

m

)

∑

l≥ N
2m

−1

glδ
l/4
1

≥ 1 − c′3Nm
(gδ

1/4
1 )N/2m

gδ
1/4
1 (1 − gδ

1/4
1 )

≥ 1 − c3N
2 (gδ

1/4
1 )N/2m

δ1(1 − gδ
1/4
1 )

where g ≤ 3 is an upper bound on the number of possible choices for attaching the next bond
to a growing string, and c′3, c3 > 0.

Note that in the first line of the above equation, the factor 4N
m comes from the fact that the string

of closed dual bonds must start at one of the four sides of a retained 1/N × 1/N square, while
3m2 is a trivial upper bound on the number of retained 1/N × 1/N squares, which can certainly
be no bigger than the total number of 1/N × 1/N squares in Rm (see Fig. 2). The summation is
over values of l large enough so that a string of length l can prevent the event B2. Introducing
the function fN,m(y) := c3

y(1−gy1/4)
N2(gy1/4)N/2m, we can write Pp(B

2 | B1) ≥ 1 − fN,m(δ1).

Defining δ2 via the equation π2 = Pp(B
2) = 1 − δ2, from the discussion above we have

1 − δ2 = Pp(B
2 | B1)Pp(B

1) ≥ (1 − fN,m(δ1))(1 − δ1) ≥ 1 − δ1 − fN,m(δ1).

Next, we are going to obtain a lower bound for Pp(B
3 | B1) in terms of δ2.

One way to ensure the occurrence of B3 is by a string of open bonds in the dependent bond
percolation process coupled to the third step of the fractal percolation process inside the portion
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of Rm retained after the first step of the fractal percolation process. The density of open
bonds is now π2. We can then repeat exactly the same arguments as above, but with π2

instead of π1 as density of open bonds. This obviously gives us Pp(B
3 | B1) ≥ 1 − fN,m(δ2) and

1−δ3 ≥ 1−δ1−fN,m(δ2), where δ3 is defined via the equation π3 = Pp(B
3) = 1−δ3. Proceeding

by induction, we obtain the iterative inequality 1 − δk+1 ≥ 1 − δ1 − fN,m(δk), i.e.,

δk+1 ≤ δ1 + fN,m(δk).

A way to ensure a left-to-right crossing of the unit square by Ck
N is by a left-to-right crossing of

open bonds in the dependent bond percolation process coupled to step k of the fractal percolation
process inside the unit square. Therefore, using arguments analogous to those used above, one
can obtain a lower bound for the probability of a left-to-right crossing of the unit square by Ck

N

in terms of δk (or πk = 1 − δk). Counting arguments and approximations analogous to those
used before give

Pp(CR(Ck
N )) ≥ 1 − gN,m(δk), (23)

where gN,m(y) := c4
y(1−gy1/4)

N
m(gy1/4)N/2m, with c4 a positive constant.
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