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Abstract

We consider Gibbs distributions on finite random plane trees with
bounded branching. We show that as the order of the tree grows to
infinity, the distribution of any finite neighborhood of the root of the tree
converges to a limit. We compute the limiting distribution explicitly and
study its properties. We introduce an infinite random tree consistent with
these limiting distributions and show that it satisfies a certain form of the
Markov property. We also study the growth of this tree and prove several
limit theorems including a diffusion approximation.

1 Introduction

Various kinds of random trees have been studied in the literature. In
this note we consider simply generated random (plane rooted) trees also
known as branching processes conditioned on the total population (CBP),
see [AId9TD]. Our initial motivation was a study of the secondary struc-
ture statistics for large RNA molecules, see [BH0S8a] and [BH08D]. Hence
we prefer the language of statistical mechanics, so that we treat these dis-
tributions as Gibbs ensembles on trees, see the description of the setting
in Section

The first goal of this paper is to prove that as the order of the tree
grows to infinity, the distribution induced by the Gibbs measure converges
to that of an infinite discrete tree that we explicitly describe in detail (Sec-
tions 2 to B)). The computation of this “thermodynamic limit” belongs
to the category of discrete limits of CBP according to the terminology
introduced in [AId91b], and our result (as well as the limiting object)
appears to be new. In particular, it does not involve any rerooting proce-
dures like the one introduced in [Ald91a]. We prove the result above for
the bounded branching (or out-degree) case, although it should hold true
under less restrictive assumptions.

The limiting infinite discrete tree is a more sophisticated object than
a classical Galton—Watson tree. In particular, it dies out with zero proba-
bility and the progenies of distinct vertices are not independent. However,
it turns out that the limit tree is Markov in a natural sense, and the the
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Markov transition probability is explicitly computed in Section[Bl In Sec-
tion [6] we notice that the number of vertices at a given distance n from
the root also form a Markov chain if n is understood as a time param-
eter. We prove that under linear scaling this Markov chain satisfies a
limit theorem with the limit given by a gamma distribution. In Section [7
we strengthen this result and show that a functional limit theorem holds
with weak convergence to a diffusion process on the positive semi-line with
constant drift and diffusion proportional to the square root of the space
coordinate. Since this process (under the name of local time for Bessel(3)
process) also serves as a scaling limit of the “height profile” for CBP it-
self, see [Ald91b| Conjecture 7] and [Git98], we can say that the infinite
Markov random tree that we construct belongs to the same universality
class as the original CBP.

There are several natural and interesting problems arising in connec-
tion with our results. One is, obviously, strengthening them to give an
alternative to [Git98] proof of the scaling limit in Aldous’s Conjecture 7.
Another one is to use our approach to study finer details of the random
tree rather than the height profile. Our heuristic computation (see Sec-
tion [§]) shows that the limit can be described as a solution of an SPDE
w.r.t. to a Brownian sheet.

2 The setting and first results on ther-
modynamic limit

Let us recall that plane trees (or, ordered trees) are rooted trees such that
subtrees at any vertex are linearly ordered. In other words, two plane
trees and are considered equal if there is a bijection between the vertices
of the two trees such that it preserves the parent — child relation on
the vertices and preserves the order of the child subtrees of any vertex.
Figure [Ml shows all plane trees on 4 vertices.

We fix D € N and introduce Ty = Tn (D), the set of all plane trees on
N vertices such that the branching number (i.e. the number of children)
of each vertex does not exceed D. Since we are going to consider a Gibbs
distribution on Tx, we have to assign an energy value to each tree. We
assume that an energy value E; € R is assigned to every i € {0,...,D},
and the energy of the tree T is defined via

D
E(T) = Z Edeg(v) = ZXZ(T)E“

veV(T) i=

where V(T') denotes the set of vertices of the tree T', deg(v) denotes the
branching number of vertex v, and x;(7") is the number of vertices of
degree i in T.

Now we fix an inverse temperature parameter § > 0 and define a
probability measure yun on Tx by

T e BE(T)
MN{ } = TN’



Figure 1: Four different plane trees of order 4.

where the normalizing factor (partition function) is defined by

In= Y e PHD,

TETN

First, we are going to demonstrate that the above model admits a
thermodynamic limit, i.e. the sequence of measures (un)ven has a limit in
a certain sense as N — oo. Secondly, we study several curious properties
of the limiting infinite random trees.

For each vertex v of a tree T' € Ty its height h(v) is defined as the
distance to the root of T, i.e. the length of the shortest path connecting v
to the root along the edges of T'. The height of a finite tree is the maximum
height of its vertices.

Let n € N. For any plane tree, 7,1 denotes the neighborhood of the
root of radius n, i.e. the subtree of T spanned by all vertices with height
not exceeding n.

For any n and sufficiently large IV, the map m,, pushes the measure un
on Ty forward to the measure ,u;wr;l on Sp, the set of all trees with
height n.

Theorem 1 For each n € N, the measures unm,*

total variation, as N — oo, to a measure P,.

on Sy converge in

A proof of this theorem will be given in Section[3l At this point we prefer
to introduce more definitions that will allow us to describe the limiting
measures P".

We define
D D
A= {p: (po,-..,pp) €[0,1]°F": Zpi =1, Zipi = 1}7
i=0 i=0
and let
J(p) = —H(p)+BE(p), pEA.
where

D
H(p)=—> pilnp;
=0

is the entropy of the probability vector p € A, and

D
E(p) = ZpiEi
i=0



is the associated energy.

The function J is used to construct the rate function in the Large
Deviation Principle for large plane trees, see [BH0S8al,[BHOSD].

It is strictly convex and its minimum value on A is attained at a unique
point p*. Using Lagrange’s method, we find that

Inp; +1+BE;+A+iu=0, i=0,1,...,D,
where A and p are the Lagrange multipliers. So we see that
pr=Ce PFipt i=0,1,...,D, (1)
where C' = e~ !7* and p = e *. In particular,
p; >0, i=0,1,...,D. (2)

Notice that p can be characterized as a unique solution of

D _ D _
i=0 i=0
and C may be defined via
1 D . D )
T S S @
i=0 i=0

We denote J* = J(p*) and 0 = e’". For a tree T € S,,, we introduce

E(T)= Y Edeso)- (4)
veV(T)
h(v)<n
Notice that the summation above excludes the highest level of the tree.

Theorem 2 For any n € N, the limiting probability measure P, is given
by _

Pu{r} = Qukp"o™e PP ()
where the tree T € Sy is assumed to have k wvertices of height n and m
vertices of height less than n. The constant Qn is a normalizing factor.

We give a proof of Theorems [Tl and [2] in the next Section Bl In Section (]
we compute the value of @, explicitly. In Section [6l we shall see that
our convergence results may be interpreted as convergence to an infinite
random tree.

3 Proof of Theorems [I and

For both theorems it is sufficient to check that for any n and any two trees
T1,T2 € Sp, _
- IJ«Nﬂ';l{Tl} _ klefﬁff(fl)pklg"bl
N—o0 ,U‘Nﬂ—'gl{TZ} kae*ﬁE@?)kag'mQ )

(6)



where we assume that 71 has k1 vertices of height n, and mi vertices of
height less than n; 7 has k2 vertices of height n, and ms vertices of height
less than n.

The energy of each tree T" with 7,7 = 71 is composed of contribu-
tions from the vertices of the tree m,—171 (we call this contribution E(Tl),
see ([)) and the contribution from the plane forest on N — m; vertices
with ki connected components. The same applies to 2.

Let us recall (see e.g. Theorem 5.3.10 in [Sta99]) that the number of
plane forests on N vertices with k components and ro,71,...,7rp vertices
with branching numbers, respectively, 0,1,...,D is

k N
N ro, 1y «-., D

ifro+...+rp=N,r1+2r2+...+ Drp = N — k, and 0 otherwise.
Therefore,

_ _BE(r k N—m _BE(r
MNWnl{Tl} _ € ) ZTEA(Nvmlvkl) N*bn (7"()» r1, 1; 7"D)e ™)
—1 = T _3E(~ kg N—m _BE(r
HNTn {TQ} e~ PE(T2) ZrEA(N,mg,kl) N—mqg (7“0, T, 2, rD)e BE(r)
B e PETO L (N) )
T e BE(M) [L(N)'

Here
AN,mk)={rezZl™: ro+...4+rp=N—-m,
ri1+2r2+...+ Drp =N —m — k},

and Z4 = NU{0}.
Fix any € > 0 and define

r *
A(N7m,k,s)—{T€A(N7m7k:). ’N—m_p <5}.
We claim that
Ii(N)=1i(N,e)(1+0(1)), N — oo, (8)

where

k1 N —m —BE(r)
Ii(N,e) = N '
1( 76) Z N —mq <7‘07 Ty, « vy TD>6

r€A(N,mq,kq,€)

In fact, using Stirling’s formula we see that if ; # 0 for all i =0, ..., D,

k1 N —my —BE(r)
—_ e
N—mi\ro, 71, ..., TD

1 IN—my Orq orp
k(N — ml)melfgefﬁE(?")e 12(N=mq) 12rg ' 12rp
- D oty Dty
(2m)=zr, ...Tp
ON—m, Org orp
k.le*(N*ml)J(ijl) e TN —mp) ~T2rg T T2rp
= - D o
(N —=ma)ro...TD)?2 (2m)=2



with 0 < §; < 1 for all 5 € N, and it is clear that due to the strong
convexity of J, the terms corresponding to the values of +—— that are
close to its minimum p* grow exponentially faster (as N — oo) than the
terms corresponding to elements of A(N,mi, k1) \ A(N,m1,k1,e), and
there are polynomially many elements in the latter set. This argument
can be easily extended to the case where r; = 0 for some ¢, which completes
the proof of our claim (§).
Let us now introduce

ka N —my —BE(r)
I>(N,e) = _ e .
TE%’E) N —ma\r0, 71, ..., TD

Here A’(N,¢) is the image of A(N, m1, k1, ¢e) under the map
b: A(N,mi,k1,e) = A(N, ma, k2)
defined by
b(r) = (ro+ (k2 — k1),m1 — (k2 — k1) — (m2 — ma),r2,73,...,7D).

Notice that b establishes a bijection between A(N,m1, k1,¢) and A'(N,¢)
for sufficiently small £ and sufficiently large N.
Using exactly the same reasoning as for I, we see that

I(N) = I2(N,e)(1 + 0o(1)), N — oc. 9)
Equations (@), ), @) imply now that

pnm, H{m} e PETOL (N, e)
,LLNﬂ'»;l{TQ} - efﬁE(TQ)IQ(N, 6)

(1+0(1))

k —BE(m1) > , ai,r
_ 1€ = . re€A(N,mq,kq,€) (1—|—O(1))7 N — o0,
ko PE(2) 3 A (Nyma ko) @2
(10)
where
N — _ .
ail,r = < m >6 ﬁE(T)7
ro, 1, ..., TD

and

az,r = N —ma o~ BEMr).
’ ro + (k2 — k1),71 — (k2 — k1 + ma —ma),r2,..., 7D

Assuming that k1 > k2 and mi > mo (all the other cases can be
treated in the same way), we get
ai,r ((r1 — (k2 = k1) — (m2 —mq))...(r1 + 1)

tar  (N—ma) . (N —m1 £1)) (o (ro F (b — k) 1)) 10

where

R = R(k1,m1, ka,ms) = P (Fo—E1)(k2—k1)=BE1(m2—m1)
) ) ) .



Due to the definition of A(N,m,k,¢),

& < ((pt + 5)(N — ml) — (kg — kl) —_ (m2 _ ml))*(k2*k1)*(m2fm1) R
aar = N = ma) = (g = ) (N — ) + (ks = )

so that

* —(k2—Fk1)
limsup  sup 2T < (pf 4e) T (p—i +E> R
N—oco reA(N,m,k,e) @2,r Py —¢€

e~ BB\ 2™ (ph — E)eﬁ(EO*El) ka—k1
pl+e pT+e

(11)

IN

In the same way,

—BE1\ M27™M1 * B(Eo—E1) \ k27F1
Hminf  inf O > ( ) (M>
N—oo reA(N,m,k,e) Q2 r Py —¢€ Py —¢€
(12)

Since the choice of € is arbitrary, relations (I0),(]), and (2] imply
that

- IJ«Nﬂ';l{Tl} _ kle—ﬁ}%(‘rl) <efﬁE1)7n2*m1 (pgeﬁ(EoEl))kzkl .
N—o0 MNW’EI{TZ} k2e*5E(72) pT pT
(13)
Using (), we see that
* B(Eo—E1) 1
pOeT == (14)
1
A direct computation based on () implies
H(p") = —In(Cp) + BE(p").
Therefore,
—BE
i S P (15)
pi Cp o
Now, (@) is an immediate consequence of ([3)),([I4), and (IH). O

4 Consistency and the precise value of (),

We begin with the following consistency property:

Theorem 3 The family of measures (Pn)nen is consistent, i.e. for any
n and any T € Sy,
P.{r} = Z P {r'}.

‘I',Esn+1

’
T T =T



PROOF: This theorem is a direct consequence of the limiting procedure in
Theorem [Il However, it is interesting to derive it from the specific form
of P, provided by Theorem

Let us assume that 7 € S, and 7 has n vertices of height k¥ and m of
height less than n.

Z Pn+1{7'

T ESE+1
D 7 . .
= Qni1 Z e*B(E(T)+Ei1+m+Ei,C)(i1+"'_~_ik)p11+m+lk0m+k
0150050 =0
— D . .
= Quire PFDgmEE Z e PTGy i) plt Tt
cig=0
D D
E(r) _m+k BE; is_—BE; in —BE;
= Quye BT kz npte B 3 (e B L Y (e B
i1=0 =0 i, =0
k-1
_ —BE(T) _m+k 1 1
= Qniie o k= = .
Qni1 c (C)
In this calculation we denoted by i1,.. ., the branching numbers of the

vertices of height n. We used the definition of P, in the first identity. The
second identity is just a convenient rearrangement. The third one follows
from the symmetry in the factor (i1 4+ ...+ ix). In the last identity we
used (@) and the fact that p* € A. Identity (3] implies

2 (16)

Ql=

so that

> Penlr} = Quane FOom kot = Sip iy (i)

T ESn+1

T T=T

Since this holds true for all 7 € S,,, we can conclude that Q. = Qn+t1
which completes the proof. O

Identity (I7) means that the constant @ = @, in Theorem [2]is the
same for all n. Choosing n =1 we can compute it using (&):

D QO’
1:szeiﬁEkpkO'1:7
k=1

A more precise version of Theorem [2] easily follows:

Theorem 4 Let C be defined by B). For each n, the limiting probability
measure P, is given by

P {r} = C’k:eiﬁE(T)pkamfl7

where the tree T € Sy is assumed to have k wvertices of height n and m
vertices of height less than n.



5 The limiting random tree

Let So be the set of infinite plane trees with branching number bounded
by D. Theorem [3 along with the classical Daniell—Kolmogorov Consis-
tency theorem (see [Bil99]) allows us to introduce a measure Pso 0n Soo
consistent with measures P, for all n. Intuitively this is clear, but to make
it precise we need to introduce a coding of plane trees. We have chosen
one of several possible coding schemes.
Let T be a plane tree (finite or infinite) with branching bounded by
D. Then T has a finite number r, < D" of vertices of any given height
n. Let us say that all vertices of the same height n form the n-th level
of the tree. The vertices of n-th level are naturally ordered and can be
enumerated by numbers from 1 to r, (except for the case when there are
no vertices at n-th level at all). Each of r, vertices of the n-th level has
a parent at the level n — 1. Denote the number received by the parent of
l-th vertex of the n-th level under the described enumeration by g ;. If
rn < 1 < D™ we set gn,; = 0. Then the n-th level n can be encoded by a
vector
n—1yD"
gn = (gn,1y---,gn,pn) € {0,1,..., D"} |

and the whole tree can be identified with the sequence of levels

(917927“-) ceX= 1_[{0717”'7‘D7L71}D"7

n=1

so that the space T of all plane trees (finite or infinite) with branching
bounded by D can be identified with a subset of X.

Theorem 5 There is a unique measure Pss on T such that it is consistent
with measures P":
—1
Pom, = P".
This measure is concentrated on Soo.

PROOF: The first statement follows from Theorem [3] and the Consistency
theorem. The second statement is a consequence of the fact that for each
n € N, P, is concentrated on trees with positive number of vertices at
n-th level. (]

The space X is compact in the product topology. Therefore, the con-
vergence of finite-dimensional distributions established in Theorem [I] and
the classical Prokhorov theorem (see e.g. [Bil99]) imply the following re-
sult:

Theorem 6 As N — oo, measures Py viewed as measures on X converge
weakly to Pss in the product topology.

This statement shows that there is a limiting object for the random trees
that we consider. This object is an infinite random tree. For any n € N,
the first n levels of this random tree are distributed according to P,.

Let us now embed the space X into X = (ZY )%+ filling up all the unused
coordinates with zeros. The measure P can be treated as a measure on
X thus generating a le-valued process (Xn)peo with discrete time. This
process along with the associated random tree is visualized on Figure
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Figure 2: A realization of the process (X,,) and the associated random tree

For any n, X,, describes how the n-th level of the tree is built upon the
n — 1-th one.

For a level g € ZY, we denote by |g| the number of non-zero entries in
g (i-e. the number of vertices at the level). We also introduce

E(g) = ZE#{jZ gj=i}s
i=1

the energy induced by level g at its parent level. Notice that the sum
in the r.h.s. is in fact finite. For two levels g and g’ we write g < ¢’ if
max; gi < |g|.

Theorem [ immediately implies the following result:

Theorem 7 The process (Xn) defined above is Markov with transition
probability

\9_’\(;ﬁff’z“(g’)p\g’Hg\a\g\7 g<d,

P Xn =g Xn: = ls]
{Xnt1 =49 g} {07 otherwise.

6 A limit theorem for the size of n-th
level

Let us introduce Y, = |X»/|, the random number of vertices at n-th level.

The following statement is a direct consequence of Theorem [ or Theo-
rem [T}

10



Theorem 8 The process (Yn)neo is Markov with transition probability

kK _B(E; )
P(Yorr = k| Yo =k} = Mgt bk 7 Bty
k ) ‘
0<iy,...,ix <D
P14ty =k
The next theorem shows that in fact Y, grows linearly in time. Let
w= DBy —1, (18)
where
D
i=0
Then p > 0 being the variance of p*, a nondegenerate distribution.
Theorem 9

Yn g Li}w F7

noop
where I' is a random variable with density

(t) = te™t, t>0
P =10, t<0

PROOF: Let us find the Laplace transform of the distribution of Y;,:
Ln(s) = Ee*™, s<0,

(this definition differs from the traditional one by a sign change of the
argument) and prove that for any = < 0,

lim Ly (%) - @ —: Loo(), (19)

the r.h.s. being the Laplace transform of

4t _2t
p(t) = —€e 1,
112
the density of the r.v. £T".This will imply the desired result, see e.g. [Kal86)
Appendix 5] for various statements on Laplace transforms.
Theorem [ and ([I6) imply

sk’ 1.1
ko _B(E, )
E [esy"“|Yn _ k] _ Z e - pk k ok Z e BEi ++Eiy)
k/

0<iq,...,ig <D

i1 ip=k
k
ag . . i i s(i i _ . .
= ToF E (G1+...+ zk)pll+"'+l’“eé(lﬁ'"“’“)e BB+ By
P 0<iy,...,ix <D
k—1
= w(s)v(s)" ",
where
D D
’U(S) _ p;fesz _ szefﬁEiesl7
i=0 =0

11



and

w(s) =Y ipfe”

D
= ZCipiefﬁEieSi ='(s)
1=0 =0
Therefore,

Luia(s) = Ew(s)o(s)™ ' = %Eel"““”’" — A()La(f()),  (20)
where
and

f(s) =1nv(s),

(21)
z(s :w(s): "(s
that

Both z and f are analytic functions. An elementary calculation shows

and

f(s)=s+ gf +1(s),

In z(s) = ps +q(s),
where p = w’(0) — 1 was introduced in () and

()] < elsl?,

for some ¢ > 0 and all s <0.

la(s)| < cfs|? (22)
From now on, z < 0 is fixed. Using (20) and the obvious identity

Lo(s) = €°,
we can write

b (5)=2() =0 () (7 ()
e ffay=fof..

k
so that we have to study the numbers (Zn,k)nen,k=o0,...,n defined by

x
T = fF (—) .
n
We shall compare (Zn,k)neN,k=o0,...,n t0 (
1

For fixed n, both sequences (x, %) and (y, k) are negative and increas-
ing in k. Therefore

x
ekl < frnol = 2,
and
x
Y.kl < lyn,ol = le],
n

12



Let us prove that for sufficiently large n and any k between 0 and n,

2 T 3
Yk — o] < K (HZ + c) (%) . (23)

This is certainly true for £k = 0. For the induction step, we write

|yn,k - xn,k| S |yn,k: - f(yn,kfl)| + |f(yn,k:71) - f(xn,kfl)| = Il + IZ-

A straightforward computation based on (ZII) shows that

(50 ()

Since |f'(s)| < 1 for all sufficiently small s, we see that

MQ 2
\L] = |y k—1Yns +7(Yns-1)

|I2| S |yn,k71 - xn,k71|.

Combining these estimates we see that
2 3
x
[Yn.k — Tnk] < <% + C) <%) + Ynk—1 — Tnk—1l,
and our claim (23] follows. It immediately implies that

C

for some K = K(x), sufficiently large n and all k. We can now write

i
1

InLy (E) = Inz(znk) + Tnn
n k=0

n—1 n—1

= Z UTn ke + Z q(xn,k) + ZTn,n
k=0 k=0
n—1 n—1 n—1

= Z UYn.k + Z Tk — Yn,k) + Z q(Zn,k) + Tnn

—0 k=0 k=0

I
~

1+ 1o+ I3+ 14

It is straightforward to see that lim,— o I2 + I3 + I4 = 0. The first term

n—1 1 1n71 1
Lh=p) g =Hoo Y T T
k=0 © 2 k=0 2 n

can be viewed as a Riemann integral sum, so that

1
oy o (2) = [ -0 = - (1= 157),
n— o0 n 0 - 5u 2

which immediately implies (I9)). O

13



7 A functional limit theorem

In this section we prove the following theorem on diffusion approximation
for the process Y:

Theorem 10 Let
Yin
Zn(t) = %, neNteRy.

Then, as n — oo, the distribution of Z, converges weakly in the Sko-
rokhod topology in D[0,c0) to the unique nonnegative weak solution Z of
the stochastic Ité equation

dZ(t) = pdt + / pZ(t)dW (t),
Z(0) =0.

PROOF: Since the initial point Z(0) = 0 is an “entrance and non-exit”
singular point for the positive semi-axis (see the classification of singular
points in [IM74] ), the exitence and uniqueness of a solution nonnegative
for all positive times is guaranteed. Let us define

b(z) =, anda(z)=u(xzVv0), zecR,
and extend the equation above to the negative semi-axis by

dZ(t) = b(Z(t))dt + \/a(Z(t))dW (t).

An obvious argument shows that there is no solution starting at 0 and be-
ing negative for some ¢ > 0. Therefore the weak existence and uniqueness
in law hold for (7]). According to Section 5.4B of [KS98|, this existence and
uniqueness is equivalent to the well-posedness of the martingale problem
associated with b and a.

We will use Theorem 4.1 from [EK86l Chapter 7] on diffusion approx-
imation. The coefficients a, b were defined on the whole real line so as the
theorem applies directly, with no modification. We proceed to check its
conditions.

We must find processes A, and B, with the following properties:

1. Trajectories of A, and B, are in D[0, c0).
2. A, is nondecreasing.

3. M, = Z, — B, and Mz — A,, are martingales with respect to the
natural filtration generated by Z,, A, Bn.

4. For every T > 0 the following holds true:

lim Esup|Zn(t) — Zn(t—)|* = 0, (25)
n—oo 4T

lim Esup|An(t) — An(t—)| =0, (26)
n—oo 4T
lim Esup |B,(t) — B.(t—)|*> =0, (27)

n—oo LT

t
sup | Bn () —/ b(Zn(s))ds 20, n— oo, (28)
t<T 0

t
sup |An(t) —/ a(Zn(s))ds 20, n— oo (29)
t<T 0

14



We shall need the following lemma:

Lemma 1

EYjnlY; = k] =p + K,

ENV71|Y; = k] =Bs +3(k = 1)Bz2 + (k — 1)(k — 2),

E[Y/,1|Y; = k| =Ba + 4(k — 1)Bs + 6(k — 1)(k — 2) Bz + 3(k — 1) B
+ (k= 1)(k = 2)(k - 3),

E[Y;41]Y; = k] =Bs 4 5(k — 1) By + 10(k — 1)(k — 2) B3 + 10(k — 1) B3 B2
+15(k — 1)(k — 2) B3 + 10(k — 1)(k — 2)(k — 3)(k — 4).

PROOF: For the first of these identities, we write

EVinl Vi =k = 2p S (b +ia)?p e B
P 0<iq,...,ipy <D

D

D k-1
1 . i1 — . i — .
E|:k:<§ i1Cp'e BEI)(E Cp*e BE’2>

i1=0 ip=0

D 2 D k—2
swon (B (o)’

i1=0 ip=0

- %(k32+k(k—1)):32+k—1
= p+k,
where we used the symmetry of the terms (z% + ... zi), i199 + 193 + ...+

ix—11x and (I6). Next,

o_k

EVFal Vi =k = D0 (o rig)ph Tt At
0<i1,.0nyifg <D

1

E@&HﬁMk—n&+kw—nm—m)
=Bs+3(k—1)B2+ (k—1)(k — 2),

and the other two identities in the statement of the lemma can be obtained

in a similar way. O

Returning to the proof of the functional limit theorem, let us find the
coefficient By (t) first. The process Z, is constant on any interval of the
form [j/n, (j + 1)/n). Due to Lemma[I]

E [Zn <t n l) ‘ Zn (t)] — Zu(t) + p 1, (30)
n n
so that we can set B, (t) = u|[nt]/n to satisfy the martingale requirement
on M, = Z, — B,. Notice that with this choice of By, relations (27
and ([28) are easily seen to be satisfied. Lemma [I] also implies
) 1
e |2 (143)] 2.0
n
_ Bs +3(nZn(t) = 1)Bs + (nZn(t) — 1)(nZn(t) — 2)

- .6
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so that forte%Z7
el (e+ 1) - a2 zow| = Luzoty + LBy — B2 — By + 1)
n n n n *n,ul n n2 3 2 2 .

Therefore we can set

An(t) = ) (gzn(g) [nt](BS—Bz Bz+1))7

jid<t

n =

to satisfy the martimgale requrement on M2 — A. Notice that A, is
nondecreasing since

Y

1 1 2 1 1 2
EILLZn(t)—Fm(B:;—BQ—BQ—Fl) F(Bz—l)—km(B;g—Bg—Bz—Fl)

1

Vv

where the last inequality follows from the Cauchy—Schwartz inequality
and B1 = 1. So properties 1-3 are satisfied, and (29) follows from the
definitions of a and A, and the convergence

hmsupz Bz—l —|—L(B3—B§—Bz—|—1):0.
gd<e

n—00 ¢t
To prove (28) we use the definition of A to write

Esup |An(t) — Au(t—)| < ZE sup Z, (%) + %(33 ~B}-Ba+1)

¢<T noicr
<

so it suffices to prove that Esup; _,. Zn (%) is bounded. The definition
of M,, Lyapunov’s inequality and Doob’s maximal inequality for sub-
martingales imply that for some ¢ > 0:
E sup Z, ( )<uT—|—Esup M, <i)‘
J <T n J <T n

< uT + c/EM2(T)
< pT 4 e/2(EZ2(T) 4 p2T?).

Lemma [ implies that EZ2(T) has a limit, as n — oo, so that (28) is
verified.
A lengthy but elementary calculation based on Lemma [Il shows that

E[(Yi1 — ) Ya] < e(Y)' +1)
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for some constant ¢ > 0, so that we can write

- 1/2
Esup(Za(t) — Zn(t—)) < |Esup(Za(t) - Zn<t—>>4}
t<T | t<T
- 1/2
1 4
v E(Yj+1 —Yj)
siL<r

IN

- 1/2

¢ 2
< | D B0+
j<nT

Since Lemma [Tl implies that for some constant c¢; > 0,
E(Y/+1) <aj’, jEN,

we conclude that

Esup(Zn(t) — Zn(t—))* < % ‘n-cin?2T? -0, n — oo,
t<T Vn

and the proof of the theorem is complete. O

8 Diffusion limit for finer structure of the
random tree

In this section we present a non-rigorous and sketchy description for the
diffusion limit of the infinite Markov random tree itself rather then its
width given by Y, at time n. Let us fix any time no and divide all Yy,
vertices into r nonempty disjoint groups. For any m > no denote the
progeny of i-th group at time n by V; .

We want to study the coevolution of (Vi n,..., V). Though each V; »
is not a Markov process, it is elementary to see that the whole vector is
a homogeneous Markov process. We would like to compute the diffusion
limit for this vector under an appropriate rescaling:

1
E(Vl,[nt]v R )]

We need to find the local drift and diffusion coefficients for the limiting
process. Let 71 + ...+ j- = k. Then computations similiar to Lemma [I]
produce

Vimer  Ji] 1 1, . ) Ji/nl
E|l—— —=| =(Vijneps s Vi) = =(J1, -, Jr) | = —
[ . | (Vi nt]) = (s Jr) | = 1

so, by symmetry, the local limit drift is

(%

bi(v) = p———mm.
() Hm—l—...—i—vr
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Similarly, the diagonal terms for local diffusion:

Vi 1\? 1 1. .
E <M_‘7_1) ‘ E(‘/l,[nt]w"a‘/r',[nt]):E(]lv"?]’ﬁ)

n n

_ j_11+ 3373k32+2
n n ’
and
aii(v) = pv;.

For the off-diagonal terms a computation produces

E[(‘/l,erl - jl)(‘/2,m+1 - ]2)' ‘/1,m = j17 ) ‘/T',m = JM] = 07

so that
Q5 = O, 7 76 j
So, the limiting equations are
Vi(t)

avi(t) dt + /Vi(t) 1y, >0 dWi(1).

= Mi
> Vi)

Let us introduce cumulative counts

Ui=Vi+...+Vj;.

Then Z(t) = Ur(t), and

U.
de = Hij.dt + \/,U,Ull{U1>0}dW1 + ...

oAU — Uj—l)l{Uj—Uj,1>O}de (32)

Then, for each 0 < u; < ... < u,, we can solve this equation with initial
data
(U(to), ., Un(to)) = (ua, . ),

which gives a random nondecreasing map
D =Dy, i u— (U)o (33)

Here u runs through the set {ui,...,u,}. It is clear though that if we
insert another point ' between 0 and u* = w.., then solving the stochastic
equation above for the modified set of initial points, we see that the the
new solution map is a monotone extension of the old one. Adding points
of a countable dense set one after another, we can extend the solution
map onto u € [0,u*]. So, for each u* > 0 we are able to define a random
monotone continuous maps @ : [0, u*] — R[f”oo).

Our last point is to represent these solution maps via stochastic inte-
grals w.r.t. a Brownian sheet (W (z,t))t,2>0, i.e. a continuous Gaussian
random field with zero mean and

COV(W(xl,tl),W(xz,tz)) = (:171 AN :l?z)(tl AN tz), T1,x2,t1,t2 > 0.

18



Equations ([32)) imply that ®(u,t), t > to, u € [0,u"] is equal in law to
the solution of the following SPDE:
P(u, t)
<I>(u*,t) dt + /IER 1[07W]W(d$ X dt),

D(u,to) =u, u€[0,u"].

d®(u,t) =p

A rigorous treatment of the limiting solution ®, and a precise convergence
statement will appear elsewhere.
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