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Abstract

We define analogues of Brownian motion on the triadic Cantor set by

introducing a few natural requirements on the Markov semigroup. We

give a detailed description of these symmetric self-similar processes and

study their properties such as mixing and moment asymptotics.

1 Introduction

In a recent paper [PB08], the authors use noncommutative geometry to describe
an analogue of the Riemannian structure for ultrametric Cantor sets. This
eventually leads them to a definition of a certain family of operators that play
the role of the Laplace–Beltrami operators for Cantor sets. It is natural to treat
these operators as infinitesimal generators of Markov semigroups on Cantor
sets and call the associated Cantor-set-valued stochastic processes to be the
analogues of the Brownian motion.

The goal of this note is to provide an alternative definition of Brownian
motion on the classical triadic Cantor set. We use the axiomatic method and
describe several natural requirements, most important of which are isometry
invariance and scale invariance, that should hold for a reasonable analogue of
Brownian motion on the Cantor set. Then we give a complete description of
Markov processes satisfying these requirements. We call these processes sym-
metric self-similar (SSS).

The parametrization of SSS processes involves two degrees of freedom. One
of these is responsible just for uniform time changes, so that effectively this
family of SSS processes is parametrized by one parameter of scaling, or self-
similarity. Since we are basing our approach on scaling properties, the SSS
processes are, in fact, analogous to symmetric stable Lévy processes in R. All
processes on the tridaic Cantor set described in [PB08] are SSS, but the converse
is not true.

Our approach is somewhat similar to Schramm’s celebrated characterization
of SLE via conformal invariance and Markov property, see e.g. [Law05, Chapter
6].
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It is worth mentioning that random walks on self-similar fractals have been
studied in the literature, see e.g. [BN98]. However, to the best of our knowledge,
our results for a disconnected ultrametric Cantor set are new. We also stress
that our approach can be easily implemented for other Cantor sets with rich
self-semilarity properties. However, it is not clear how it can be used for a
general Cantor set.

The paper is organized as follows. In Section 2 we introduce the setting
by a description of the geometry of the Cantor set. In Section 3, we give
our main result, a complete characterization of SSS Markov processes on the
Cantor set, and discuss the relationship with the processes studied in [PB08]. In
Section 4 we describe an explicit construction of SSS processes and study their
jump statistics. The role of the Laplacian on the Cantor set is played by the
generators of SSS processes, and in Section 5 we describe some of their spectral
properties. In Section 6, we prove that the Bernoulli measure on C is a unique
invariant measure for any SSS process. We also prove that it is exponentially
attracting. In Section 7, we study the asymptotics of displacement moments of
SSS processes for small transition times.

Acknowledgements. The author is grateful to Jean Bellissard and John
Pearson for introducing him to their work on the geometry of Cantor sets and for
several stimulating discussions that led to writing this paper. He is also grateful
to NSF for partial support of this research via CAREER award DMS-0742424.

2 The ultrametric structure on the triadic Can-

tor set

A Cantor set is a topological space that is non-empty, compact, perfect, totally
disconnected and metrizable. In this paper, we study a classical example, the
triadic Cantor set

C =

{

x : x =
∞∑

k=1

2xk

3k
, xk = 0, 1, for all k ∈ N

}

.

In many situations it is natural to identify x ∈ C with the sequence (xk)k∈N

which in turn may be identified with an infinite simple path on the infinite
rooted binary tree.

For every x, y ∈ C we define

d(x, y) = 3−c(x,y),

where
c(x, y) = min{k ∈ N : xk 6= yk}.

(We agree that c(x, x) = ∞ and d(x, x) = 0 for any x ∈ C.) It is easy to see
that d is equivalent to the Euclidean metric:

1

3
|x− y| ≤ d(x, y) ≤ |x− y|, x, y ∈ C.
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It is also easy to see that d is an ultrametric, i.e. it satisfies the strong triangle
inequality:

d(x, y) ≤ max{d(x, z), d(z, y)}, x, y, z ∈ C.

The metric space (C, d) has rich structure that involves self-similarity prop-
erties and a rich group of isometries. Let us denote

πnx = (x1, . . . , xn), x ∈ C, n ∈ N.

Then, for every n ∈ N, the set C may be decomposed into a disjoint family
of 2n sets:

[v] = {x ∈ C : πn = v}, v ∈ Ln,

where Ln = {0, 1}n.
Each of these sets is similar to C with scaling coefficient 3n. One of the

similarity maps is given by

(v1, v2, . . . , vn, xn+1, xn+2, . . .) 7→ (xn+1, xn+2, . . .).

In particular, these sets are isometric to each other and have diameter 3−n−1.
This leads to the following complete description of all isometries. Let g be an
isometry. Then for each n ∈ N, g permutes sets [v], v ∈ Ln, i.e. for every
v ∈ Ln, there is v′ ∈ Ln such that

g([v]) = [v′],

which we shall abbreviate as
gn(v) = v′.

Obviously,
gn(v) = v′ ⇒ gn−1(πn−1v) = πn−1v

′, (1)

where we used the notation

πm(v1, . . . , vn) = (v1, . . . , vm), m ≤ n, v ∈ Ln,

and one can easily show that a sequence of bijections gn : Ln → Ln satisfying
the consistency condition (1) generates an isometry.

3 Markov processes, the main characterization

theorem

Our aim is to obtain an analogue of the Brownian Motion (or symmetric stable
Levy process) on (C, d). Since C is completely disconnected, there is no hope
that a nontrivial Markov process will have continuous trajectories. So we shall
relax the continuity requirement, and consider stochastically continuous Markov
processes with càdlàg (right-continuous and with left limits) trajectories. Let us
recall that a homogeneous Markov processes with transition probability function

P (t, x,B), t ∈ [0,∞), x ∈ C, B ∈ B(C, d),

3



where B(C, d) is the Borel σ-algebra on (C, d), is called stochastically continuous
if for any open set U and any point x ∈ U ,

lim
t↓0

P (t, x, U) = 1.

Transition probability function P (·, ·, ·) is called Feller if the space C(C) of
continuous real-valued functions on C is invariant under the semigroup (St)t≥0

generated by P (·, ·, ·) and defined via:

(Stf)(x) =

∫

C

f(y)P (t, x, dy). (2)

(We refer to Chapter I of [Lig85] for a concise exposition of the necessary back-
ground on Markov semigroups.)

Let (Px)x∈C be a Markov family compatible with P (·, ·, ·), i.e. for each x, Px

is a measure on the space of càdlàg C-valued trajectories on [0,∞) such that
for the canonical process X , Px{X(0) = x} = 1 and, under Px, X is a Markov
process with transition probabilitiy P (·, ·, ·).

We are going to impose restrictions on P (·, ·, ·) one by one and show that
these restrictions together lead to a concise analytic description of the generator
of (St)t≥0 allowing for a parametrization of the set of allowed processes by two
parameters. Then, for any choice of these two parameters, we construct a unique
process with required properties.

We say that P (·, ·, ·) is invariant under isometries if for any isometry g,

P (t, g(x), g(B)) = P (t, x,B), t ∈ [0,∞), x ∈ C, B ∈ B(C, d).

Lemma 1 Let (Xt)t≥0 be a homogeneous Markov process with transition func-
tion P (·, ·, ·) invariant under isometries. Then (πnXt)t≥0 is also a homogeneous
Markov process.

Proof: We notice that the isometry invariance straightforwardly implies

P{πnX0 = v0, πnXt1 = v1, . . . , πnXtm
= vm}

=

∫

[v0]

ν(dx0)

∫

[v1]

P (t1−t0, x0, dx1)

∫

[v2]

P (t2−t1, x1, dx2) . . .

∫

[vm]

P (tm−tm−1, xm−1, dxm)

= ν([v0])Pn(t1 − t0, v0, v1) . . . Pn(tm − tm−1, vm−1, vm),

where ν is the distribution of X0, and the quantities

Pn(s, u, v) = P (s, x, [v]), πnx = u,

are well-defined due to the isometry invariance.
Since πn(Xt) takes finitely many values, we conclude that πnX is a Markov

chain with transition matrix Pn(s, v, u). �
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The process πnX inherits the stochastic continuity from X . Since it takes
finitely many values, the transition rates

q(u, v) = lim
t↓0

Pn(t, u, v) − δuv

t
,

are well-defined, where δuv is the Kronecker symbol, see e.g. [Chu67][Theorem 5,
Section II.2]. If v, u ∈ Ln for some n, then for any x ∈ u, we set q(x, v) = q(u, v).

Let us introduce

d(u, v) = d([u], [v]) = inf{d(x, y) : x ∈ [u], y ∈ [v]}.

Due to the isometry invariance, q(u, v1) = q(u, v2) if d(u, v1) = d(u, v2), so
that qn(u, v) is actually a function of d(u, v), and we can write

q(u, v) = q(d(u, v)).

If n ≤ m and v ∈ Ln then

q(x, v) =
∑

w∈Lm

πnw=v

q(x,w), x ∈ C.

If, moreover, x /∈ [v], then considering the family of isometries that leave x fixed
and permute points w in the above summation, we can conclude that all the
terms q(x,w) coincide. Therefore, in this case,

q(x, v) = 2m−nq(x,w), w ∈ Lm, πnw = v. (3)

For any x ∈ C and n ∈ N, we define qn = q(x, vn(x)), where

vn(x) = (x1, . . . , xn−1, 1 − xn). (4)

For any n, qn does not depend on x due to the isometry invariance. Using (3),
we see that all rates q(x, v) can be expressed in terms of qn. Namely, for v ∈ Ln

and x /∈ [v],
q(x, v) = 2−(n−c(x,v))qc(x,v), (5)

where c(x, v) = min{k : xk 6= vk}. We conclude that the distribution of X
under Px is completely determined by the family of jump rates (qn)n∈N.

Let us recall that the infinitesimal generator for the semigroup (St)t≥0 de-
fined in (2) is given by

Af = lim
t↓0

Stf − f

t
(6)

for f ∈ D(A), where D(A) is the domain of A, i.e., set of all functions f such that
the r.h.s. of (6) is well-defined as a uniform limit. If f is a cylindric function,
i.e., f(x) = h(πnx) for some function h : Ln → R, then f ∈ D(A) and

Af(x) =
∑

v∈Ln

q(x, v)(h(v) − h(πnx)). (7)
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The next property we would like to require is self-similarity, or scale invari-
ance. Let us recall that for any n and any v ∈ Ln, [v] is similar to C. So
we shall require that the distribution of the Markov process X confined to [v]
coincides with the appropriately scaled distribution of the unrestricted process
on the entire C.

To make this precise, we need to introduce confinements of Markov processes.
For any T > 0, n ∈ N, v ∈ Ln, x ∈ [v] and consider the conditional measure

P v,T
x

{
X[0,T ] ∈ ·

}
= Px

{
X[0,T ] ∈ · | Xt ∈ [v], t ≤ T

}
,

where X[0,T ] denotes the restriction of the canonical process X onto the time
interval [0, T ].

Lemma 2 For any T > 0, n ∈ N, v ∈ Ln, x ∈ [v], the canonical process
X is Markov under measure P v,T

x on [0, T ]. Moreover, these distributions are
consistent for different values of T .

Proof: Choose any n′ > n, l ≥ 1, and u1, . . . , ul ∈ Ln′ such that [uk] ⊂ [v] for
all k, and 0 < t1 < . . . < tl = T . Then

Px

{
Xt1 ∈ [u1], . . . , Xtl

∈ [ul] | Xt ∈ [v], t ∈ [0, T ]
}

=
b

a
. (8)

Here

a = Px{Xt ∈ [v], t ≤ T } = lim
m→∞

Px

{

Xt ∈ [v], t =
T

m
,
2T

m
, . . . ,

mT

m

}

= lim
m→∞

P

(
T

m
, v, v

)m

= exp{q(v, v)T },

(we used the right-continuity of trajectories for the first identity, the isometry
invariance plus for the second, and the definition of qn for the third one), and

b = Px{Xt1 ∈ [u1], . . . , Xtl
∈ [ul]; Xt ∈ [v], t ∈ [0, T ]}

= lim
m→∞

∑

P

(
t1
m
, [πnx], [w

1
1 ]

)

P

(
t1
m
, [w1

1 ], [w
1
2 ]

)

. . . P

(
t1
m
, [w1

m−1], [u1]

)

× P

(
t2 − t1
m

, [u1], [w
2
1 ]

)

P

(
t2 − t1
m

, [w2
1 ], [w

2
2 ]

)

. . . P

(
t2 − t1
m

, [w2
m−1], [u2]

)

. . .

× P

(
tl − tl−1

m
, [ul−1], [w

l
1]

)

P

(
tl − tl−1

m
, [wl

1], [w
l
2]

)

. . . P

(
tl − tl−1

m
, [wl

m−1], [ul]

)

= exp{t1Q}πnx,u1
exp{(t2 − t1)Q}u1,u2

. . . exp{(tl − tl−1)Q}ul−1,ul
,

where Q = (Qz1,z2
)z1,z2∈Ln

is the matrix given by

Qz1,z2
= q(z1, z2)1[z1],[z2]⊂[v].

6



Therefore, the l.h.s. of (8) equals

P v(t1, πnx, u1)P
v(t2 − t1, u1, u2) . . . P

v(tl − tl−1, ul−1, ul),

where

P v(s, z1, z2) = exp(q(v, v)s) exp{sQ}z1,z2
, z1, z2 ∈ Ln, [z1], [z2] ⊂ [v]. (9)

Clearly, P v(s, z1, z2) is a Markov transition matrix, and it does not depend on
T which completes the proof of the lemma. �

The lemma above means that our Markov process conditioned on the fact
that it stays within [v] up to time T is also a Markov process with transition
probabilities that do not depend on T . Therefore, we can consistently define
this process up to infinite time. We denote the resulting measure on infinite
paths in [v] by P v

x . The collection of these measures for all x ∈ C is a Markov
family.

Let us now give a precise notion of self-similarity. We say that the Markov
family (Px)x∈C is self-similar, if for any n there is a number αn such that for
every v ∈ Ln and every x ∈ [v], and any map h realizing the similarity between
[v] and C,

P v
x {Xt1 ∈ B1, . . . , Xtl

∈ Bl} = Ph(x){Xαnt1 ∈ h(B1), . . . , Xαntl
∈ h(Bl)}.

(10)
We shall say that a Markov family (as well as the associated Markov process,

transition function, and semigroup) on C is SSS (symmetric and self-similar) if
it is stochastically continuous, Feller, isometry invariant, self-similar, and the
trajectories of the associated Markov process are a.s.-càdlàg.

Suppose that the Markov family Px is SSS. Let h be a similarity map be-
tween [v] and C. Then under P v

x , h(X) is a Markov process that inherits the
stochastic continuity, Feller property and isometry invariance from the original
Markov family. Therefore, all the above reasoning for the Markov family (Px)
applies to h(X). In particular the distribution of h(X) under (P v

x ) is completely
determined by rates qv

n that are defined for h(X) under (P v
x ) in the same way

as the rates qn are defined for X under (Px) (these rates do not depend on T
as well).

Due to (9), the jump rates for the confined process X under (P v
x ) are

qv(z1, z2) = lim
t↓0

P v(t, z1, z2) − δz1,z2

t
= q(z1, z2) + δz1,z2

q(v, v). (11)

This means that the process confined to [v] can be viewed as the original process
except the jumps out of [v] are prohibited or ignored. Taking v = (0) and the
left 1-shift on sequences (0, x2, x3 . . .) for h, we get for the jump rates of h(X)
under (P v

x ):
q(0)n = qn+1, n ∈ N. (12)

By the self-similarity hypothesis we must have

q(0)n = α1qn, n ∈ N. (13)
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Comparing (12) and (13), we see that

qn+1 = α1qn, , n ∈ N,

so that
qn = αn−1

1 q1, n ∈ N. (14)

Theorem 1 Suppose a Markov family on (C, d) is SSS. Then there are numbers
θ, γ ≥ 0 such that for every cylindric function f = h ◦ πn, the generator Af is
given by

Af(x) = γ

n∑

k=1

θk(〈h〉n,k,x − h(πnx)), (15)

where
〈h〉n,k,x = 2−(n−k)

∑

v∈Ln:c(x,v)=k

h(v).

Proof: Set θ = α1, γ = q1/α1 (γ = 0 if α1 = 0), and use (7), (5), and (14).
�

Let us recall that a linear operator A defined on a vector subspace D of C(C)
is called a Markov pregenerator (see [Lig85, Chapter 1, Definition 2.1]), if

1. 1 ∈ D and A1 = 0.

2. D is dense in C(C).

3. If f ∈ D, µ ≥ 0 and f − µAf = g, then

min
x∈C

f(x) ≥ min
x∈C

g(x).

Lemma 3 The operator A defined on cylindric functions via (15) is a Markov
pregenerator.

Proof: First two properties are obvious, and the third one follows from [Lig85,
Chapter 1, Proposition 2.2] since A satisfies the following easily verifiable con-
dition: if f ∈ D and f(x∗) = minx∈C f(x), then Af(x∗) ≥ 0. �

Lemma 3 implies that the closure of A denoted by Ā is also a well-defined
closed Markov pregenerator, see [Lig85, Chapter 1, Proposition 2.5].

Lemma 4 The operator Ā is a Markov generator, i.e., it is a closed Markov
pregenerator satisfying

R(I − µA) = C(C), for all µ > 0. (16)

Proof: We need only to show (16). It is easy to see that for any cylindric
function h, there is a cylindric function f such that f − µĀf = h (this can
be derived from the fact that πnx is a Markov process for every n, and the
one-to-one correspondence between Markov semigroups and Markov generators
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given by the Hille–Iosida theorem). The lemma follows since the set of cylindric
functions is dense, and R(I − µĀ) is closed (see [Lig85, Chapter 1, Proposition
2.6]). �

We can now summarize the above.

Theorem 2 If a Markov family (Px)x∈C is SSS, then the generator of the as-
sociated Markov semigroup coincides with the closure of the operator A defined
on cylindric functions via (15) for some γ, θ ≥ 0.

Proof: The result follows now from the Hille-Iosida theorem (see e.g. [Lig85,
Chapter 1, Theorem 2.9]) which establishes a one-to-one correspondence be-
tween Markov generators and Markov semigroups. �

Theorem 2 gives a necessary condition for a Markov semigroup to be SSS.
The next result shows that this condition is, in fact, sufficent.

Theorem 3 For any γ, θ ≥ 0 there is a unique Markov family with Markov gen-
erator coinciding with A defined on cylindric functions via (15). That Markov
family is SSS (with scaling parameter given by αn = θn, n ∈ N).

Proof: The existence-uniqueness and the Feller property follows from the
Hille–Iosida theorem. The isometry invariance follows from that of A. The
stochastic continuity follows from

P (t, x, [v]) = 1 − tγ

n∑

k=1

θk + o(t), t→ 0,

for any n ∈ N, any v ∈ Ln, and any x ∈ [v]. In particular, a càdlàg version of
the canonical process exists.

For the self-similarity, we must take any n ∈ N, v ∈ Ln, x ∈ [v], and consider
the process X emitted from x under the condition that it stays within [v]. Due
to Lemma 2, the conditioned process is Markov, and so is h(X) under P v, where
h is a similarity map between [v] and C. Computing the transition probabilities
and jump rates for this process:

qv
k = qn+k = γθn+k = θnγθk = θnqk,

so that h(X) under P has the same distribution as X under P v and time change
t→ θnt. The proof is complete. �

Theorems 2 and 3 give a complete characterization of SSS processes, the
analogues of the Wiener process on (C, d) via their Markov generators. SSS
processes are naturally parametrized by γ and θ. We shall write SSS(γ, θ) to
denote the SSS process with parameters γ, θ. It is clear that γ is responsible for
uniform time changes, and it is often sufficient to study the case γ = 1, since by
a simple time rescaling one can obtain the process with any given γ. However,
the self-similarity parameter θ is essential, and there are qualitative differences
between processes with different values of θ.

9



Our scaling factor θ is equal to 3s0+2−s in the notation of [PB08], where only
values of s ≥ s0 = ln 2

ln 3 (the box dimension of C) were considered. Therefore, our
approach extends the class of symmetric self-similar processes on C by removing
the constraint θ ≤ 9.

Since SSS processes on the Cantor set play the role of symmetric diffusion,
the generators A play the role of the Laplacian. We shall study spectral prop-
erties of A in Section 5.

4 Explicit construction and jump statistics

We begin with an explicit construction of SSS(γ, θ). Let (ξkj)
∞
k,j=1 be a family

of independent random variables such that for each k ∈ N, (ξk1, ξk2, . . .) are
exponentially distributed with parameter γθk. Let Skn = ξk1+. . .+ξkn. Clearly,
Nk(t) = max{n : Skn ≤ t}, t ≥ 0, is a càdlàg Poisson process with intensity
γθk−1. We shall say that there is a jump at level k at time τ if Nk(τ) =
Nk(τ−)+1. Let Ñk(t) = N1(t)+ . . .+Nk−1 be the Poisson process that counts
the jumps of Poisson processes at all levels below k, i.e. at levels 1, 2, . . . , k− 1.

To define our Markov process X we shall also need a family of i.i.d. 1
2 -

Bernoulli random variables (κkj)
∞
k,j=1 independent of the Poisson processes de-

scribed above.
We set X(0) = x = (x1, x2, . . .) and let the evolution of the k-th coordinate

Xk to be defined by the following rules:

1. Xk stays constant while the processes Nk and Ñk are constant.

2. If at time τ the process Nk makes a jump, Xk also makes a jump so that
Xk(τ) = 1 −Xk(τ−).

3. If at time τ the process Ñk makes a jump, thenXk(τ) = κkÑk(τ) no matter

what the value of Xk(τ−) was.

In other words, when a jump occurs at a level k, X1, . . . , Xk−1 do not change,
Xk gets flipped, and (Xk+1, Xk+2, . . .) are re-initialized according to the 1

2 -
Bernoulli product measure. We exclude the event of probability 0 on which two
jumps happen at the same time. The process (X1, . . . , Xn) makes finitely many
jumps in finite time for any finite n.

It is easy to see that this procedure uniquely defines a Markov process with
pregenerator described in the last section.

We see that the value θ = 1 is critical. If θ < 1 then with probability 1,
X makes finitely many jumps in a finite time. However, if θ ≥ 1, then with
probability 1, X makes infinitely many jumps in a finite time.

The value θ = 1 is also special due to the following: if θ = 1 then for any
n ∈ N and any v ∈ Ln, the distribution of the restricted process h(X) under P v

coincides precisely with that of X (no time change is needed). Notice also that
in terms of this model our conditioning means that the process Ñn +Nn makes
no jumps.

10



5 Spectral structure of the generator

In this section we fix the values of θ > 0 and γ = 1 and study eigenvalues and
eigenvectors of the infinitesimal operator A. The eigenvectors will be given by
Haar function that we proceed to introduce. For any n and any v ∈ Ln, we
define

ψv = 2n/2(χv0 − χv1),

where χu = χ[u] denotes the characteristic function (or indicator) of [u] for any
u. Notice that ψ with no indices denotes χ0 − χ1.

Theorem 4 1. Eigenvalues of A are given by λ0 = 0, and

λn = −

n−1∑

k=1

θk − 2θn, n ∈ N

(

= −
2θn+1 − θn − θ

θ − 1
if θ 6= 1

)

.

2. The unique (up to a multiplicative constant) eigenfunction associated to
λ0 is 1. For n ∈ N, λn has multiplicity 2n−1, and its eigenspace is spanned
by Mn = {ψv : v ∈ Ln−1}.

3. The eigenfunctions described above form a complete basis in C(C) and L2(C).
This basis is orthonormal in L2(C, b), where b is the 1/2-Bernoulli mea-
sure on C (also known as the Cantor measure).

4. If θ < 1, A is bounded with spectral radius equal to

r(A) =

∞∑

k=1

θk =
θ

1 − θ
.

Moreover, A+ r(A)I is compact where I is the identity operator, so that
A is a compact perturbation of a multiple of the identity.

5. If θ ≥ 1 then A has compact resolvent.

This theorem is a result of straightforward computations and arguments. We
omit the proof.

6 Unique ergodicity, exponential mixing

Theorem 5 1. For any γ, θ > 0, the 1
2 -Bernoulli product measure b = µN

on C is a unique invariant measure for SSS(γ, µ).

2. There are constants K, ν > 0, such that for any point x ∈ C,

|P (t, x, ·) − b(·)|TV ≤ Ke−νt,

where | · |TV denotes the total variation norm.
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Proof: The Bernoulli measure b is clearly invariant for SSS since it is invariant
under isometries. The uniqueness of the invariant measure follows from the
second statement of the theorem. The latter can be proved by exploiting the
spectral gap provided by Theorem 4, but we choose another simple method
instead.

Let us work with the explicit model introduced in Section 4. It is easy to
see that for every N ≥ 1, the distribution of X(t) conditioned on {N1(t) = N}
is given by δ(N+x1)(mod 2) × b. This implies that for any set B,

P (t, x,B) =
∞∑

N=1

P{N1(t) = N}(δ(N+x1)(mod 2) × b)(B) + β(t, B)

=(δ(x1+1)(mod 2) × b)(B)e−γθt
∞∑

m=1

(γθt)2m−1

(2m− 1)!

+ (δx1(mod 2) × b)(B)e−γθt
∞∑

m=1

(γθt)2m

(2m)!
+ β(t, B)

=(δ(x1+1)(mod 2) × b)(B)e−γθt sinh(γθt)

+ (δx1(mod 2) × b)(B)e−γθt(cosh(γθt) − 1) + β(t, B)

=
1

2
(δ(x1+1)(mod 2) × b)(B)(1 − e−2γθt)

+
1

2
(δx1(mod 2) × b)(B)(1 + e−2γθt − 2e−γθt) + β(t, B),

=b(B) −
1

2
(δ(x1+1)(mod 2) × b)(B)e−2γθt

+
1

2
(δx1(mod 2) × b)(B)(e−2γθt − 2e−γθt) + β(t, B),

where
0 ≤ β(t, B) ≤ P{N1(t) = 0} = e−γθt.

So the second statement of the theorem follows with K = 3
2 , ν = γθ. �

7 Displacement moments

In this section we study the behavior of the moments of displacement of the
process X given by

Mr(t) = Exd
r(x,X(t)) =

∞∑

k=1

3−rkPx(c(x,X(t)) = k),

as t → 0. Due to the isometry invariance it is sufficient to consider x = 0̄ =
(0, 0, . . .).
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Theorem 6 Let r > 0.

1. If 3r > θ, then

Mr(t) =

∞∑

k=1

3−rkθk(t+ o(t)), t ↓ 0.

2. If 3r < θ, then

0 < lim inf
t↓0

Mr(t)

t
ln 3
ln θ

r
≤ lim sup

t↓0

Mr(t)

t
ln 3
ln θ

r
<∞.

Remark 1 It is shown in [PB08] that if 3r = θ, then Mr(t) behaves as t ln(1/t)
as t→ 0.

Proof of Theorem 6: For any k ∈ N,

P (x, t, [vk(x)]) =

∫

y 6=x

χ[vk(x)](y)P (x, t, dy)

= Stχ[vk(x)](x)

= 〈χ[vk(x)], 1〉χ[vk(x)](x) +

k−1∑

i=0

eλi+1t
∑

u∈Li

〈χ[vk(x)], ψu〉ψu(x),

where 〈·, ·〉 denotes the inner product in the Hilbert space L2(C, b). The first
term in the r.h.s. is 0, and for each i in the sum above, the only nonzero contri-
bution in the sum comes from

〈χ[vk(x)], ψπix〉 =

{

2
i

2
−k, i < k − 1

−2−
k+1

2 i = k − 1,

so that

P (x, t, [vk(x)]) =

k−2∑

i=0

eλi+1t2
i

2
−kψ̄i(0̄) − eλkt2−

k+1

2 ψ̄k−1(0̄),

where
ψ̄i = ψ00...0

︸︷︷︸
i

.

Since ψi(0̄) = 2i/2, we obtain

P (x, t, [vk(x)]) =
k−2∑

i=0

2i−keλi+1t − 2−1eλkt,

and

Mr(t) =

∞∑

k=1

3−kr

(
k−2∑

i=0

2i−keλi+1t − 2−1eλkt

)
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If 3r > θ, then the series

∞∑

k=1

3−kr

(
k−2∑

i=0

λi+12
i−keλi+1t − 2−1λke

λkt

)

converges uniformly in t ≥ 0. Therefore, it represents ∂tMr(t). Evaluating this
series at 0 produces

d+

dt
Mr(t) =

∞∑

k=1

3−kr

(
k−2∑

i=0

λi+12
i−k − 2−1λk

)

.

One can show by induction that

k−2∑

i=0

λi+12
i−k − 2−1λk = θk, k ∈ N,

so that in this case
d+

dt
Mr(t) =

∞∑

k=1

3−rkθk,

and the first statement of the theorem follows.
Let now θ > 3r > 1. Consider a sequence tn = Rnθ

−n, n ∈ N with Rn ∈
[1, θ].

We have

Mr(tn) =

∞∑

k=1

ak,n =

∞∑

m=−n+1

an+m,n, (17)

where

ak,n = 3−kr

(
k−2∑

i=0

2i−keλi+1tn − 2−1eλktn

)

> 0.

Taking k = m+ n, we obtain

am+n,n

t
ln 3
ln θ

r
=

3−(n+m)r

R
ln 3
ln θ

r
n 3−nr

(
n+m−2∑

i=0

2i−(n+m)eλi+1Rnθ−n

− 2−1eλn+mRnθ−n

)

= R
− ln 3

ln θ
r

n 3−mr

(
n+m−1∑

l=1

2−1−leλn+m−lRnθ−n

− 2−1eλn+mRnθ−n

)

,

where we used a change of variables l = n+m− 1 − i. Therefore, for m ≥ 0,

am+n,n

t
ln 3
ln θ

r
≤ 3−mr

(
n+m−1∑

l=1

2−1−l + 2−1

)

≤ 3−mr. (18)

If m ≤ 0, then we use another estimate:

am+n,n

t
ln 3
ln θ

r
≤ 3−mr

(

1 − eλn+mRnθ−n
)

. (19)
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Since

|λn+mRnθ
−n| ≤

2θn+m+1 − θn+m − θ

θ − 1
θ−n+1 ≤ K1θ

m,

for some K1 > 0, all n > 0, −n+ 1 ≥ m ≤ 0, inequality (19) can be continued
as

am+n,n

t
ln 3
ln θ

r
≤ K23

−mrθm, (20)

for some K2 > 0 and all m ≤ 0. The upper estimate in the theorem follows now
from (18) and (20). To prove the lower bound, take m = 0:

Mr(t)

t
ln 3
ln θ

r
≥

an,n

t
ln 3
ln θ

r
≥ R

− ln 3
ln θ

r
n

(
n−1∑

l=1

2−1−leλn−lRnθ−n

− 2−1eλnRnθ−n

)

,

Notice that

λn−lθ
−n = −

2θ−l+1 − θ−l − θ1−n

θ − 1
→ −νθ−l, n→ ∞, (21)

where ν = 2θ−1
θ−1 . So,

Mr(t)

t
ln 3
ln θ

r
≥ θ−

ln 3
ln θ

r

(
n−1∑

l=1

2−1−le−Rnνθ−l

− 2−1e−Rnν

)

+ θ−
ln 3
ln θ

r

(
n−1∑

l=1

2−1−l(eλn−lRnθ−n

− e−Rnνθ−l

) − 2−1(eλnRnθ−n

− e−Rnν)

)

.

Due to (21), the second sum converges to zero, and we have

lim inf
n→∞

Mr(t)

t
ln 3
ln θ

r
≥ θ−

ln 3
ln θ

r inf
R∈[1,θ]

(
∞∑

l=1

2−1−le−Rνθ−l

− 2−1e−Rν

)

> 0,

and the proof is completed. �
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