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BOOLEAN ALGEBRA 

5. Plot the following functions on a Kamaugh map and hence determine whether 
they are or are not symmetric. 

(a) /= (iiinxnji)u(iiinynz)u(iiinxnynz)u(w("IXnji(u) 
(b) /= (iiinxnynz)u(iiinji)u(xnjillz)u(wnz) 
(c) / = (iiinx)u(ynz)u(iiilly)u(iiinxnz)u(xIlYllz)U(WIlXIlYIlZ) 

6. By the consideration of possible spheres in n-space, examine the symmetry of the 
functions given: 

(a) /= 2u4u7u8ullu13 
Cb) /= Ou9ul0u12u23u24 
Cc) / = Qu 3 u 5 u IOu 12u 15 u 18 u 20u23 u 30u 34u 36 u 39 u46u 54u 57 
(d) /= 3u5u6u8u9ulOu15 

7. Obtain the switching functions in terms of joins of meets for each of the following; 

(a) M(OhU(vnwnxllynz) 

(b) M(OhU(vnwnxnynzt) 
(c) M(Oh.3U{iiinxnjinz) 
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9.1 Introductory 

The geometrical representation of switching functions in n-space 
rapidly loses its value as a suitable vehicle for minimization processes 
when the number of variables involved exceeds four. Even in the case 
of the four-cube, much of the simplicity of the method has disappeared. 
Much the same can be said of Karnaugh maps. Tabulation processes 
are also subject, though to a lesser degree, to a considerable increase in 
complexity as the number of variables becomes large. Some of these 
methods are to be preferred to others, but even the best can become 
excessively tedious for the minimization of functions of more than a 
dozen variables or so. It was therefore natural that investigations 
should be made into the possibility of extending the concepts of Boolean 
algebra to include matrices which have Boolean components. It is this 
extension of Boolean algebra which will form the basis of the con­
siderations of this and a subsequent chapter. Basic definitions and the 
trivial case of the Karnaugh map as a matrix will be considered first 
and will then be followed by a survey of the algebra of matrices repre­
senting switching circuits. Applications of matrices to problems both 
of analysis and of synthesis will also be discussed. 

9.2 Basic Considerations 

A matrix is defined as a set of pq components a,. arrayed in prows 
and q columns which is subject to certain rules of combination with 
other similar such sets. A Boolean matrix may, in the first instance, 
be defined as such an array the components of which are all elements 
of a Boolean algebra, B. It is possible to arrive at such matrices in 
more than one way. 

First, the entries upon a Karnaugh map may be considered as form­
ing a Boolean matrix within the compass of the definition just given. 
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9. 2 BOOLEAN ALGEBRA 

In this case, the components a rs will each take either the value 1 or the 
value 0 accordingly as the minimal polynomials represented are 
present or absent in the function concerned. Every switching function 
will be represented by 2 n components in a square or a rectangular 
array. The meet of m such matrices, representing the series connection 
of m switching circuits, will be represented by a further matrix, the 
components of which are obtained by taking the meet of all corres­
ponding components within the m matrices. Thus, if A = [a,s], 
B = [b rs), . . .  are the matrices representing the m switching functions 
which are in series connection, then the overall transmission function 
is given by 

where 

and 

F=AnBn ... nM 

F = [frsJ 
ffs = arsnb,.n ... nmrs 

In performing such an operation, it is clearly necessary that each of 
the m matrices should be of the same form. Thus, in the case of two 
elements the matrices must be either 4 x 1 or 2 x 2 in each case, and for 
four elements they must be either 16 x 1 or 8 x 2 or 4 x 4. 

\ {X-Z}L�IZ} 
r--z �x-----z 

'/ '2 

FIG. 9. 2. 1 

As an example, consider the two switching circuits shown in figure 
9.2.1. The corresponding Boolean functions are: 

flex, y, z) = (xnz)u(ynz) 
fix, y, z) = (xnynz)u(xnz)u(jinz) 

When these two circuits are placed in series, the matrix of the overall 
transmission function 

is given by 

[� i � �J n[6 0 � iJ 
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if the Karnaugh map is as shown in figure 9.2.2. The elements in the 
matrix of f are obtained by the application of 

OnO = 0 
On l= lnO=O 

and 1n l = 1 

to corresponding terms in the matrices of f1 and 12' 

'---v---" 
Z 

FIG. 9.2. 2 

In a similar manner, the parallel connection of m switching circuits 
yields an overall transmission matrix, 

where 
and 

F= AuBu . . . uM 
F = [frs] 

The matrix for the transmission of the parallel connection of the circuits 
of figure 9.2.1, for example, is given by 

[1 1 0 1J [1 0 0 
o 1 0 0 u 0 1 1 

1J 
= 
[1 1 0 1J 

1 0111 
Here the elements of the matrix of f = f1 ufl are obtained by the 
application of 

and 

OuO = 0  
Ou l= luO=1 
lu! = 1 

to corresponding terms in the matrices of f1 and f2' 
It is possible to perform the cap and cup operations with matrices 

representing circuits having different numbers of variables. In such 
cases the functions with fewer variables have to be expanded so that n 
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9.2 BOOLEAN ALGEBRA 

is the same for all functions considered. As an example, consider the 
two functions represented by 

f1(Y, z) = (yr.z)vy 
fiw, x, y, z) = (yr.z)v(xr.yr.z)v(wr.yr.z) 

The former is represented by 

Fl = G �J 
and the second function, with y and z of the Karnaugh map in the 
same relative positions, is given by [1 1 0 0] 1 1 0 0 

F2 = 1 0 1 1 1 000 
In order to perform the cap or cup operations for the series or parallel 
connection of the circuits, Fl has to be expanded into a matrix for four 
variables. Such expansion yields 

which represents 

[1 1 0 0] 1 1 0 0 1 1 1 1 1 1 1 1 
fleW, x, y, z) = (yr.z)vy 

The matrix for the series connection now becomes [1 1 0 0] 1 1 0 0 101 I 1 000 
Since this is identical to F2, it is demonstrated that the connection in 
series of the circuit of f1 to that of f2 leaves the overall transmission 
function unchanged. Similarly, the matrix for parallel connection 

[; 1 !fJ 
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which is identical to the expanded form of F1, demonstrates that the 
transmission function f1 Vf2 is equal to the transmission function f1 
alone. 

{:�3-
FIG. 9.2.3 

As a second example, consider the circuits shown in figure 9.2.3. 
The matrices for these circuits are 

and 

F1= [� n 
F2= G � � bJ 

with the Karnaugh maps as shown in figure 9.2.4. 

FIG. 9.2.4 

Upon expansion to three variables, becomes 

[� � � �J 
The matrix for the series connection of the two circuits is therefore 

r.F2= [� � � �J 
yielding the circuit of figure 9.2.5. 

6 1� (H 711) 



9.2 BOOLEAN ALGEBRA 

The matrix for the parallel connection of the two circuits is 

[1 1 0 1J uF2 = 1 0 1 1 

yielding the circuit of figure 9.2.6. 
The join of m matrices of the type just considered corresponds to 

matrix addition in the usual algebra of matrices with the Boolean 
operation of cup replacing the simple additive process. The meet of {�-Y-'} 

x-y-z 

FIG. 9.2.5 

t- ,-Z_l _ y_T-z 
FIG. 9.2.6 

m such matrices does not, however, correspond to matrix multiplication 
in the usual algebra of matrices, and also, unlike normal matrix multi­
plication, the operation is commutative. 

A second way in which a Boolean matrix may arise can be seen if 
the following set of Boolean equations in two variables is considered: 

zluz2=11 
(Zl nz2) U(Zl nzz) = 12 

These can be expressed with the terms expanded into minimal poly­
nomials as follows: 

(1 nZl nzz)u(l nZ1 nz2)u(Onzl nZ2)u(1 nZl nZ2) = 11 
(0 nZl nz2) U ( l  nZ1 nz2) U (1 nZl nzz) U (Onzl nzz) = 12 

Adopting a matrix representation similar to that for ordinary algebraic 
simultaneous equations yields 

[1 1 0 IJ [�lJ = [11J o 1 1 0 "2 Iz 

It can easily be seen that each row of the matrix of coefficients is the 
same as could be obtained by plotting the corresponding function on a 
1 x 2n Karnaugh map. The manipulation of matrix equations of this 

type has been described by Campeau/ and together with examples of 
their application will form the subject matter of chapter 10. 
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A third way of obtaining a Boolean matrix representing a switching 
circuit is to form a matrix P = [Prs], where each component represents 
the path between node r and node s of the circuit. For example, con-

I 

�--�--;--- u� 
.J 

FIG. 9.2.7 

sider the circuit of figure 9.2.7, which has been arranged with the nodes 
forming a regular polygon. The matrix, composed by the method just 
described, is 

1 0 s t 0 0 
0 1 0 0 x z 
s 0 1 w u 0 
t 0 w 1 0 v 
0 x u 0 1 Y 
0 z 0 v y 1 

It should be noticed that since the connection of a node with itself 
can always be regarded as a short circuit, all the P rs for r = s are 
unity. Also, whenever bi-directional devices such as relay switches are 
employed, Prs will equal Pm i.e. the matrix will be symmetrical. It is 
clear that this will not be the case for electronic circuits in general. 

It is desirable to distinguish between the matrix in which the com­
ponents represent the circuit connection between pairs of nodes and 
the matrix in which they represent coefficients of minimal polynomials. 
The former type will therefore be termed switching matrices, and the 
latter will be termed Boolean matrices. 
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9.3 BOOLEAN ALGEBRA 

9.3 The ",n,,,,'"'' of Switching Matrices 

For the set of switching matrices to which X = [xrs], Y = [Yrs} 
Z = [Z '5]' . . . belong, the following definitions are postulated: 

Equality: 

Y = Z if and only if Y rs = Z r5 for all rand s 

Meet: 

Y nZ = [Y'5nZrs] 
Join: 

YuZ = [Yrsuzrs] 
Complementation: 

Z = [frs] except for r = 8 

Inclusion: 

Y � Z if and only if Y rs � Z rs for all rand 8 

Universal matrix, I: 

The universal matrix has all components equal to unity 

Zero matrix, 10: 
The zero matrix has components equal to zero for r =fo s, and 
equal to unity for r = 8 

Matrix product: 

YZ = LQIYrknzks} where Y is of order pxm and Z is of 

order mxq 

Transpose: 

zt = [zsrJ 
Scalar product: 

xn Y = Z = [zrs], where Zrs = xnYrs for r =/:.8, and Zrs = 1 
for r = s. 

It is shown by Lunts2 that with respect to the meanings of equality and 
inclusion and the operations of meet, join and complementation, 
switching matrices as here described constitute a Boolean algebra. If 
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a null matrix, 0, is included in which an components are zero and also 
the operation of forming the matrix product, then it is shown by 
Birkhoff3 that the set of switching matrices forms a lattice-ordered 
semigroup with zero. The following theorems therefore follow from 
the definitions already postulated, and these should be compared with 
the theol'ems for switching algebra given in chapter 5: 

ZulO=Z 
ZnI=Z 
ZuI= I 
Zn0 = 0 
ZuZ=Z 
ZnZ=Z 
Z=Z 
ZuZ = I 
ZnZ = 0 
YuZ =Zu Y 
YnZ=ZnY 
Zu(YnZ) = Z 
Zn(YuZ) = Z 
Zu(YnZ) = YuZ 
Zn(YuZ) = YnZ 
Xu YuZ = Xu(YuZ) = (Xu Y)uZ 
Xn YnZ = Xn(YnZ) = (Xn Y)nZ 
(Xn Y)u(XnZ) = Xn(YuZ) 
(Xu Y)n(XuZ) = Xu(YnZ) 
(Xn Y)u(YnZ)u(ZnX) = (Xn Y)u(ZnX) 
(Xu Y)n(YuZ)n(ZuX) = (Xu Y)n(ZuX) 
(Xu Y)n(XuZ) = (XnZ)u(Xn Y) 
(YuZ) = ¥nZ 
(YnZ) = ¥uZ 
In general YZ =f: Z Y 
X (YuZ) = XYvXZ 
X (YnZ) � XYnXZ 
(Xu Y)Z = XZu YZ 
(Xn Y)Z � XZn YZ 
X (YZ) = (XY)Z 
OuZ=Z 
o nZ = OZ = ZO = 0 
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9.3 BOOLEAN ALGEBRA 

0Z = Z0 = Z 
( YuZ)t = ytu z t 

( YnZ)t = y t nZ t 
( YZ)t = Z t y t 

(zty = Z 
II = I 

ZI = IZ = I 
(zt) = zt 

00 = 0 
(ZP)q = zpq 
zpzq = zp+q 

It will be noticed that approximately the first half of the above 
theorems apply to switching matrices because these constitute a 
Boolean algebra. The remainder follow froJ:11wthe introduction of a 
null matrix and the operation of Boolean matrix multiplication. The 
following order relations must also apply: 

o � Z � I for all Z 
Z �Z 

Y � Z and Z � Y if and only if Y = Z 
X � Y and Y � Z implies X � Z 

Y � Z if and only if Yu Z = Z 
Y � Z if and only if Y n Z = Y 

X � Y implies XZ � YZ and ZX � Z Y  for all Z 
o �Z �I for allZ 

The formal definition of symmetry may be carried over direct from 
ordinary matrix theory. Thus, a switching matrix is said to be sym­
metric if 

However, if the matrix is skew-symmetric then 

Symmetry is invariant under the operations of meet, join and com­
plementation, but skew-symmetry is invariant under the meet operation 
only. Any switching matrix can be uniquely decomposed into a join 
of a symmetric matrix and a skew-symmetric matrix. 
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If the inverse of a matrix, where it exists, is denoted by Z-1 then 
the matrix is said to be orthogonal if 

Z-1 = zt 
A switching matrix has an inverse if and only if it is orthogonal. 

if a switching matrix is both symmetric and orthogonal then 
it immediately follows that it is involutory, that is 

ZZ = Z 2 = 0 

One further useful theorem, which is due to Lunts,2 states that if Z 
is any switching matrix of order m, then there exists a positive integer 
q � m-I, such that 

Z �Z 2 � . .. �zq = Zq+l = . . .  

Using the theorems listed above, it is now possible to consider the 
application of the algebra of switching matrices to problems of circuitry. 

9.4 Types of Switching Matrices 

Consider first the circuit having n inputs, x, y, z, . . . and t outputs 
in which the state of the connection between any two output terminals 
depends only upon the values of all or some of the input variables. 
This can be written 

Since 
irs = irs( x , y, Z, ... ) 

irs = 1 for r = s 

the t2 functions can be used as components of a t x t switching matrix, 
termed the output matrix of the given circuit. As an example, consider 
the circuit shown in figure 9.4.1. The output matrix is obtained by x�z 

<Y�x> 
4f. 

FIG. 9.4.1 
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9.4 BOO LEAN ALGEBRA 

considering all possible paths between every pair of nodes, and, 
after minimization of each individual function comprising an element 
of the matrix, is 

F = 
[�u(ynz) 

zU(iny) 
xuyuz 

xu(ynz) 
1 
(xnz)u(xny) 
xuy 

zu(xny) 
(xnz)u(xny) 
1 
iuyuz 

XUYUZ ] 
xuy 
xuyuz 
1 

Circuits with the same output matrix are termed equivalent. 
Next, within a given circuit a number of non-terminal nodes, t+ 1, 

t+2, . . .  , can be so chosen that between any two nodes there appears 
at most a single element-state or a group of single element-states in 

FIG. 9.4.2 

parallel, and also so that every element in the network is included in 
the connection between some pair of nodes. If there are k non-terminal 
nodes, then a matrix, P, is obtained having order t+k and in which 
P rs has the value 0 if there is no direct connection between node rand 
node s, the value 1 jf there is a short circuit between nodes rand s, 
or represents a single element-state or a join of element-states. Such 
a matrix, P, is termed a primitive connection matrix. 

As an example, consider the circuit shown in figure 9.4.2. In this 
circuit node 4 is non-terminal. This is indicated by the small circle 
representing the node being filled in, whereas the terminal nodes are 
shown open. The primitive connection matrix is 

p

= [��� 
x 0 
y x z 
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whereas the output matrix can be seen to be 

F= ny 
u(ynz) 

xny 
1 
xnz 

xu(yn 
xnz 
1 

9.5 

Yet a third type of switching matrix can be envisaged, namely one 
in which the components are switching functions connecting pairs of 
nodes, terminal and non-terminal, but where the number of non-

terminal nodes may be insufficient to give a primitive connection 
matrix, though all elements are accounted for. Such a matrix has been 
described by Semon4 simply as a connection matrix. 

As an example, consider the circuit of figure 9.4.3. The connection 
matrix for this circuit is 

c= [y:� { yn(wuz) 
xnz 

9.5 The Y-Ll Transformation 

x 
yn(wuz) 
1 
z 

As in electrical network theory of linear networks, it is possible to 
carry out what is in effect a Y-Ll transformation. Figure 9.5.1 illus­
trates this transformation. 

The two circuits have the same output matrix, namely 

F = [�ny 
xnz 

xny 
1 
ynz 
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9.5 BOOLEAN ALGEBRA 

and hence are equivalent. It should be noticed that the transformation 
has removed the non-terminal node present in the Y-circuit. The 
transformation from the Ll-circuit to the Y-circuit is the dual of that 
from Y to Ll. 

FIG. 9. 5. 1 

The Y-Ll transformation may be extended to junction points with 
more than three legs, in which case it is usually known as the star-mesh 
transformation. An example with four legs is shown in figure 9.5.2. 

The two circuits are equivalent, their common output matrix being 

F = 
[:nx 
wny 
wnz 

wnx wny 
1 xny 
xny 1 
xnz ynz 

wnz] 
xnz 
ynz 
1 

Again, the transformation from mesh to star is the dual of that from 
star to mesh, but in certain circumstances it is not possible to effect 
this transformation. 
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9.6 using Switching Matrices 

In settion 9.5 it was shown that the Y-Ll or star-mesh transformation 
can dispose of a node which is non-terminal. By formalizing this 
transformation it is possible to reduce a given connection matrix to 
one representing a circuit in which no non-terminal nodes remain. 

The procedure in the case of some non-terminal node u is to replace 
each component c rs of the connection matrix C by its join with the 

FIG. 9.6.1 

meet of the component c ru in row r and column u of C and the com­
ponent Cus in row u and column s of C. Row and column u are then 
deleted. This process is then repeated until no non-terminal nodes 
remain. The resulting t x t connection matrix is termed a reduced 
connection matrix and is denoted by Co. The matrix obtained from C 
by the removel of node u only is denoted by C _ u unless it is itself the 
reduced connection matrix. 

As an example consider the circuit shown in figure 9.6.1. The 
primitive connection matrix is [� � � ; �l 

p= y 0 1 0 ZJ Y z 0 1 z 
o y Z z 1 

Row and column 5 can be eliminated by replacing each P rs by 

Prsu(PrSnpSs) 

Thus, P12 = 0 is replaced by P12 U(P15 npS2) = Ou(Onji) = 0, i.e. in 
this instance it remains unchanged. Similarly, it will be found that 
P13' P14' and P21 are unchanged. However, P23 = 0 is replaced by 
OV(jinz) = (ynz) and P32 must also be replaced in the same way. 

:1.55 



9.6 BOOLEAN ALGEBRA 

Clearly, since the join of 1 with any function is 1, all Prs with r = s 
will remain unchanged. When the process has been completed and row 
and column 5 deleted, there remains the matrix 

C = 
[� � ;nz YoZ

1
-] 

-5 Y jinz 1 ji z 0 
Reference to figure 9.6.1 shows that this is indeed the connection 
matrix for the circuit with node 5 removed. effect of such removal 
is to permit a direct path between nodes 2 and 3 represented by (ji n z) 

FIG. 9.6. 2 

1\ �p-L:i 
4 

FIG. 9. 6.3 

but the other possible new direct path, that between nodes 3 and 4, 
remains 0 since it is not possible to transmit through an element-state 
and its complement. 

The process is now continued in its next stage in order to eliminate 
row and column 4. Since no non-terminal nodes remain, the resulting 
matrix is also the reduced connection matrix Co. This is 

jinz Y 
1 jin 
jinz 1 

Co represents the circuit shown in figure 9.6.2 which has no non­
terminal nodes. 

If figure 9.6.2 is investigated closely, it will be apparent that it could 
equally well have resulted from removing the node 4 from the circuit 
shown in figure 9.6.3. The primitive connection matrix for this 
circuit can be obtained directly from Co above, the common factor 
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ji of (jinz) and (jinz) giving the clue to the procedure. The matrix 
is 

p= 
i � ;] o 1 z 
ji z 1 

It is thus possible to perform the operation of node-insertion directly 
upon a suitable matrix. 

The main problem of analysis is to obtain the corresponding output 
matrix from a given connection matrix. The relationship was first 
derived by Lunts2 and later generalized by Hohn and Schissler;5 it 
may be stated thus: 

If C is any connection matrix of a t -terminal circuit, Co the 
corresponding reduced connection matrix, and F the output 
matrix, then there exists an integer k between 0 and t such that 
Cot-k = F .  

Reference t o  the matrix Co for the circuit of figure 9.6.2, for example, 
shows that it is in fact the output matrix of the circuit since Co = C02• 

The generalized form of the relationship as stated above can be 
justified by reference to the theorem due to Lunts stated at the end of 
section 9.3. From this theorem it is seen that there exists an integer k 
between 0 and t such that Cot-k= cot-Ui = . .. ; it is therefore 
only necessary to demonstrate that Co 1-1 = F. If the components of 
Co are denoted by C rs' then the component of Co 2 in row r and column 
s is 

(CrlnCls)U(Cr2nC2s)U'" u(crtncts) 

This function is equal to unity for r =1= s only if the input variables are 
in a condition such that there is a direct path from node r to node s 
or else a path via one intermediate node. In a similar manner, the 
component of Co 3 in row r and column s is unity only when there is 
either a direct path from node r to node s, or a path via one intermediate 
node or via two intermediate nodes. Since no path can require more 
than t-2 intermediate nodes, the component of Cot-1 in row rand 
column s is unity only when the input variables are in a condition 
which interconnects nodes rand s. Hence 

Cot-1 =F 

It now immediately follows that the reduced connection matrix of a 
two-terminal circuit is the output matrix, and also that the component 
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9. 6 BOOLEAN ALGEBRA 

of an output matrix F in row r and column s may be determined by 
considering a circuit as a two-terminal circuit connecting nodes rand s 
with an other nodes removed. Further, a necessary and sufficient 
condition for a symmetric switching matrix C to be an output matrix 
is that C2 = C. 

It is sometimes possible to detect and remove redundant elements 
directly from a switching matrix. As an example consider a case where 
two identical elements appear in the same row together with a third 
identical element in one of the same columns. Such is the case in the 
matrix yuz 

1 
XUZ 

The term z in component 12 is redundant as there is a path from node 
1 to node 2 via node 3 whenever z is operated. The term can therefore 
be omitted together with the z in component 21. Alternatively, one of 
the z's appearing in components 13 and 23 could be omitted together 
with its symmetrical appearance. 

As a second example, consider the matrix 

xuy 
1 [�Uy 

xv(yru) z 
Here the factors of the term (y n z) appearing in row 1 column 3 also 
appear elsewhere in row 1 and column 3. There is thus a path from 
node 1 to node 3 via node 2 whenever both y and z are operated, and 
hence the term (ynz) can be omitted from components 13 and 31. 

Again, consider the matrix 

y 1 
y 

Here the element-state y in component 13 is redundant since there is 
a path from node 1 to node 3 whenever z is operated regardless of the 
state of y. In effect, removal of an element-state is equivalent to re­
placing it by 0 in the parallel case and by 1 in the series case. This 
follows simply from the two theorems 

and 
zuO = z 
znl = z 
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It is important that this process should be carried out in individual 
succes�ve steps since each operation may alter the conditions for 
redundancy of other terms. 

In addition to the process just described, it is frequently useful to 
replace elements of a connection matrix by switching functions other 
than 0 and 1. However, before considering the conditions under which 
given components can be replaced without changing the overall output, 
it is necessary to examine the significance of the determinant of a 
switching matrix. 

9.7 The Determinant of a Switching Matrix 

The determinant of a switching matrix Z with components Zrs is 
defined as the join of the m! meets of the components of Z in which 
each row subscript and each column subscript is represented once only 
in each meet. For example, if 

then 

Z = [Zl1 Z12] 
Z21 Z22 

The coefficients of Z,1, Z,2" • •  , Zrm may be collected, giving 

det Z = (Zr1nZrl)V(Zr2nZrZ)U ... v(Z,mnzrm) 

Each term of det Z involves each row and each column only once; 
hence Zrs is obtained from Z by deleting row r and column s. Thus 
an expansion by minors exists analogous to that for ordinary deter­
minants. 

In addition to the expansion by minors, a number of other pro­
perties of ordinary determinants hold good for the determinant of a 
switching matrix. Two rows or columns may be interchanged without 
changing the value of a determinaht, but in general the term by term 
join of two rows or columns will change its overall value. The deter­
minant of the transpose of a matrix is equal to the determinant of the 
original matrix. If Z is formed from Y by the meet of each component 
of a row or column of Y with an element x, then 

det Z = xndetY 
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The Laplacian expansion by minors of a selected set of rows or columns 
is also valid. On the other hand, the fact that Z has two identical rows 
or columns does not imply that det Z = O. 

Consider now the connection matrix C representing some switching 
network. If the row and column of a component C rs are deleted, then 
the determinant of the contracted matrix so obtained is the switching 
function representing an output taken across nodes rand s; that is to 
say, it is the component!,. of the output matrix F of the circuit. As an 
example, the connection matrix for the iiwitching network of figure 
9.4.1 is 

c� [� x z � 1 0 
0 1 
y x 

Deletion of row 1 and column 2 yields 

� 0 �] x 

the determinant of which is equal to 

[xn(l ux)]u{yn [(xnz)uy]) = xu(ynz) 

which is the component !12 of the output matrix F of the circuit as 
given in section 9.4. Deletion of row 2 and column 3 yields 

x 
o 
y 

the determinant of which is equal to 

�] 
{I n [Ou(xny)J} u{xn [(xny)uz]) u{yn [(ynz)uOJ} 

which in turn simplifies to 
(xny)u(xnz) 

the component !23 of the output matrix. A detailed analytical proof of 
this work has been given by Semon.4 

It is possible to extend the connection matrix of a circuit to include 
components representing particular outputs and also to include a 
power supply. As an example, consider the circuit of figure 9.7.1 .  
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The connection matrix is 

x y Y 
1 y 0 0 

c= y 1 z 0 Z F2 0 F1 F2 1 
It should be noticed that the supply direction has been allowed for 
in that C15 of: CS1' To obtain the switching function for a particular 
output it is necessary to cross out the row and column containing the 

I 
I i i I l-Y+Z�4 Et I Fj Fz 

1 1 
S 

FIG. 9. 7. 1 

positive sense of the generator and the row and column containing 
the required output Fi• The determinant of the resulting minor is the 
required switching expression for Fj• Thus, in the example being 
considered, the switching expression for Fl is 

y 
y 
z �] 

After expansion and simplification, this is seen to be 

yuz 

Similarly, the expression for F2 is 

which simplifies to 

det [! y 
Y 
1 

yuz 
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9.8 Further Analysis using Switching Matrices 

Section 9.7 concluded with a reference to replacing the components 
of a connection matrix by switching functions other than 0 and 1. It 
is now possible to obtain the conditions for such a substitution which 
leaves the overall output unchanged. 

Suppose that component C rs of C is to be replaced. It is possible to 
evaluate the component F or Jrs by the method described in section 
9.7, expressing it in the form (anz)ub. Clearly, for the output to 
remain unchanged 

(anz)ub = (ancr.)ub 

This will be so if and only if both 

and 
anbn crsnz = 0 
anbnc",n:f = 0 

These two conditions imply 

(anbncrs) � z �(iiubucr.) 

Hence, provided that z satisfies this order relation, it may replace the 
component c rs' 

There are some special cases which are of sufficient interest to be 
considered separately. 

First, if a � b then anb = 0 and iiub = 1. Hence any z whatso­
ever may be substituted for c rs without altering F. 

Secondly, if a = (2' nao) u (z n a1) and b = (2' n bo) u (z n bi), then 
Cr. may be replaced by 1 for ao � bo and by 0 for al � bI• 

Thirdly, if c rs = 0, then b = Jrs and the order relation for z becomes 

o �z � (aub) 

Fourthly, if Cr. = 1, then the order relation becomes 

(anb)� z � l  

For a first example, consider the circuit illustrated in figure 9.8.1. 
The connection matrix for this circuit is 

�t. � '" (",-/'" 

c� li 
. 0 

E+ 

y 
1 
y 
0 
0 

0 0 

n y 0 
1 x 
x 1 
0 F 
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By stri4;ing out the row and column containing F and the row and 
column containing E +, the value of F is obtained as 

det ��] 
1 x 

Replacing the components y by z yields 

det ;�] 
= xnynz 

Thus a = xny and b = 0, and any z can be substituted provided that 
it satisfies the order relation 

(xnynl ny) � z � (xuyuOuy) 
that is 

O�z �(xuy) 

Hence y may be replaced by an open circuit as figure 9.8.1 clearly 
shows. 

I 2 

ry " 

E! 
1 F 
s 

FIG. 9.8.1 

- :1 

Yi 
x 

1 
4 

tztWi 
y y x 

w-l ! 
cS 2 4 

FIG. 9. 8. 2 

Next, consider the circuit of figure 9.8.2. The connection matrix is 

1 0 0 0 x y 
0 1 0 1 Y W 

C= 
0 0 1 x w 0 
0 1 x I 0 0 
x y w 0 1 1 
Y w 0 0 1 1 

It should be noted here that both the power source and a component 
representing the output have been omitted in the circuit illustration 

163 



9.8 BOOLEAN ALGEBRA 

and in the matrix. Clearly, the output is to be taken across nodes 1 
and 2. Striking out row 2 and column 1 yields 

[ 
0 0 x 

rl 
x w 

x 1 0 
w 0 1 
0 0 1 

the determinant of which represents the output. This simplifies to 

[xn(y u w)]U (xnji) 

If z is now substituted for the switching function between nodes 1 and 5, 
the output becomes 

[(xuyuw)nzJu [jin(xuw)J 
Hence 

and 
a = (xuyuw) 
b = jin(xuw) 

and the condition for substitution is given by the order relation 

(xny) �z �(xuy) 

It is therefore permissible to substitute z provided that it is equal 
either to (x ny) or to (xu ji), since the only other term within the 
limits given is x, the original C15 for which z was substituted. K-v 71 

x w x y 

1 "\Lw-l 
4 2 S 

FIG. 9.8.3 

For a third example, consider the circuit 
connection matrix in this ca�e is 

C� r� 
x v 0 

�] 
1 w 1 
w 1 x 
1 x 1 

y w 0 0 
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giving for the output between nodes 1 and 2 

v 0 
1 
x 
o 

x 
1 
o 

9. 8 

If z is now inserted into the short-circuit between nodes 2 and 4, the 
output becomes 

det r: 
l: 

v 

x 
o 

o 
x 
1 
o �l 

which, when expanded and simplified, becomes 

[(vnx)nz]u [xu(vnw)u(wny)] 
Thus 

a = vnx 

and b = [xu(vn w)u(wny)] 

Since substitution has been made for a short-circuit, this is one of the 
special cases. The order relation for z is 

(anb) � z � 1 

giving, after substitution and simplification, 

(vnwnx) � z � 1 

Thus the short-circuit between terminals 2 and 4 may be replaced by 
any of the 127 functions which contain (v () W n x), the output between 
nodes 1 and 2 being unaltered. 

If a minimized circuit is considered, then it is clear that it is not 
possible to replace a component not already 0 or 1 by an open- or a 
short-circuit without altering the output. Were it so possible, then a 
network would have been produced with fewer switching elements and 
the original could not have been minimal. It is not true, however, that 
a circuit for which replacement limits of 0 and 1 do not occur is neces­
sarily minimal. 

It is possible to break up a network into sub-circuits by direct 
operation upon its connection matrix. For example, consider the 
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network shown in figure 9.8.4. Here no attempt has been made to 
distinguish between terminal and non-terminal nodes, since such dis-
tinction is not relevant to the present problem. 

f 2 

rWi 
x y 

, 1-y "- // 
� __ � v Z-f �x 

x " 
7 e 

w I Y 

w�x-lo 
FIG. 9.8.4 

9, " 

The connection matrix is 

1 w 0 x 0 0 0 0 0 
w 1 0 0 y 0 0 0 0 
0 0 1 Y 0 0 z 0 0 
x 0 y 1 0 0 0 0 w 

c= 
0 y 0 0 z x 0 0 
0 0 0 0 Z 1 0 0 0 
0 0 z 0 X 0 1 x 0 
0 0 0 0 0 0 x W 

0 0 0 w 0 0 0 W 1 
0 0 0 0 0 y 0 0 x 

0 
0 
0 
0 
0 
y 
0 
0 
x 

1 

Suppose that it is desired to disconnect the sub-circuits 4125 and 56109 
as indicated in the figure. Then, each row and column for each of the 

r�x kx w x " w-4 
4 S 15 

FIG. 9.&.5 
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nodes thus divided must be replaced by two or three rows and columns, 
according to the number of separate sub-circuits containing such 
nodes. Rows and columns 4 and 9 are thus each replaced by two 
rows and columns, and row and column 5 are replaced by three rows 
and columns. The resultant matrix is 

w 0 0 x 0 0 0 0 0 0 0 0 0 
w 1 0 0 0 0 y 0 0 0 0 0 0 0 
0 0 1 Y 0 0 0 0 0 z 0 0 0 0 
0 0 y 1 0 0 0 0 0 0 0 w 0 0 
x 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 x 0 0 0 0 

c= 
0 y 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 Z 0 0 0 0 0 
0 0 0 0 0 0 0 z 0 0 0 0 y 
0 0 z 0 0 x 0 0 0 x 0 0 0 
0 0 0 0 0 0 0 0 0 x 1 W 0 0 
0 0 0 w 0 0 0 0 0 0 W 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 x 

0 0 0 0 0 0 0 0 y 0 0 0 x 1 

The nodes are now renumbered to give three separate circuits shown in 
figure 9.8. 5. 

The rearranged matrix now becomes 

Y 0 z 0 
y 1 0 0 0 
0 0 1 x 0 
z 0 X x 

0 x 

0 0 0  
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[� o 
B 
o �] 

where A, B, C are the connection matrices of the three sub-circuits, 
and 0 denotes a rectangular null matrix. 

I 

T 
z 

1 
2 

l-xTx-l 
y 

fr--y--1-z--e 
6 1 8 

FIG. 9.8.6 

9 y 10 

�xl 
"l 

11 

This immediately suggests the possibility of the reverse process. 
Consider, therefore, the circuits of figure 9.8.6. The matrix for the 
overall circuit with the sub-circuits disconnected is 

If it is now desired to join up the sub-circuits by terminals 1-3, 2-6, 
4-9, 5-10, and 8-11, all that is necessary is to contract the matrix, 
replacing row 1 by the join of row 1 and row 3, and column 1 by the 
join of column 1 and column 3, and so on. This yields the new matrix 

1 Z x 0 0 0 
Z 1 0 0 y 0 
x 0 1 
o 0 xuy 
o y y 
o 0 x 

xuy 
1 
0 
Z 

168 

y x 
0 Z 
1 z 
z 

MATRICES WITH BOOLEAN COMPONENTS-I 9.9 

which reptesents the overall circuit with sub-circuits connected up and 
terminals renumbered as shown in 9.8.7. 

An alternative method of obtaining a matrix when the sub-circuits 
are connected up has been suggested by Semon.4o In this method, in 
order to connect any node r to any node s, where rand s are in different 

sub-circuits, the zero components C rs and Csr are replaced by 1. This 
retains a matrix of the same order as the original matrix for the dis­
connected circuits, and a contraction process has to be applied. The 
method suggested by the author,6 already described, leads immediately 
to a matrix of order m-k, where m is the order of the disconnected 
circuit matrix and k is the number of terminals absorbed when the 
sub-circuits are connected up. 

9.9 Synthesis Ilsing Switching Matrices 

If the required output of an n-terminal circuit is given in the form 
of a truth table, then the output matrix F may readily be obtained. For 
example, consider the circuit specified by table 9.9.1. 

y Z 112 ID 114 123 124 134 
0 0 1 0 1 0 1 0 
0 1 0 1 0 0 0 0 
I 0 0 0 1 1 0 0 
1 1 0 0 0 1 0 0 

TABLE 9.9.1 

First, it is necessary to test the required conditions for consistency. 
This is done, row by row, by checking that wherever a path is in-
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dicated both from node r to node s and from node s to node t, there 
is also a path indicated from node r to node t. That is to say, if 

frs =f.t = 1 
then 

f,t = 1 
Thus in the first row of table 9.9.1, f12 = f24 = 1; it is therefore neces­
sary to check thatf14 = 1. It will readily be found that all the rows of 
the table given are consistent. The output matrix may now be written 
down since, from the various columns of the table, 

Hence 

f12 = ynz 
f13 = ynz 
f14 = (ynz)u(ynz) = Z 
f23 = (ynz)u(ynz) = y 
f24 = ynz 
f34 = 0 

II ynz 

F = 
�nz 1 
ynz y 
z ynz 

ynz 
y 1 
o 

Since there is a path from node 1 to node 4 if z = 1, and from node 4 
to node 2 jf both y and z = 1, the termsf12 andf21 are redundant and 
may be replaced by 0 representing an open circuit between nodes 1 and 2 
direct. The matrix now becomes [� � �nz �nz] 

ynz y 1 0 
z ynz 0 1 

This represents the network shown in figure 9.9.1. 
, _  .3 

rr-z1 z y 
Ly-zJ 
4 2 

FIG. 9.9.1 
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For a two-terminal circuit, the synthesis problem consists of starting 
with an output matrix 

F = [} {J 
and successively inserting nodes to reduce the matrix components to 
simple form so that ultimately a primitive connection matrix is obtained. 
It is not in fact necessary to write down a new matrix at each stage; 
the whole process can be performed by extending the original output 
matrix, as the following example shows. 

Lct f=�n�u�n�u�n� 

The output matrix in its original form is therefore 

F= [ l �n�u�n�u�n�] 
(xny)u(xny)u(ynz) 1 

The term (xny) can be removed fromf12 andf21 by inserting a third 
node, yielding the matrix [1 . (xny)u(ynz) �ny)u�nz) ! 
(xny)u(ynz) now simplifies to yn(xuz), and a fourth node is in­
serted to yield 

o 

y 
xuz 

x 
y 1 
o 

The resultant circuit is shown in figure 9.9.2. 

,Ay. < x�\.4 Y�) 
2 

FIG. 9.9.2 
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Instead of writing down a separate matrix for each node insertion, 
all the stages may be represented by extending one matrix, yielding 

ix nji)u(xny) u(VnZ)] 
y 

{
] �Uil 

xuz o 1 

The original function I is not repeated in position 21 which is left 
blank until its final value is inserted � the end of the process. 

A further example of greater complexity will now be given in order 
to demonstrate the power of the method which is not adequately 
revealed in the trivial cases so far considered. The example selected 
is given as a problem by Keister, Ritchie, and Washburn,7 and its 
solution by a matrix method was demonstrated by Hohn and Schissler.5. 

Operating conditions for four leads with respect to the state of five 
relays are specified in accordance with table 9.9.2. 

Relays operated Leads earthed 

v, w I 
v, x 2 
w, x 1, 2 
v, y 3 
w, y I, 3 
x, y 2, 3 
v, Z 1 , 2, 3 
w, Z 4 
x, Z 1 , 4 
y, Z 2,4 
none none 

TABLE 9.9.2 

It is assumed that no other input conditions will occur. Full use is 
made of "don't care" conditions in the simplification of the switching 
functions expressing the conditions under which the various leads are 
earthed. The resulting table is table 9.9.3. 

Lead Switching function 

1 (Wrlz)v(WrlYrlz) 
2 (Xrlz)v(WrlXrlz) 
3 (Vrlz)v(Yrlz) 

4 VrlZ 

TABLE 9.9.3 

172 

MATRICES WITH BOOLEAN COMPONENTS-I 9.9 

A matrix in which the fifth row and column represent connections to 
earth can now be written down: 

1 0 0 0 (wnz)v(wnjin 
0 1 0 0 (xnz)v(wnxn 
0 0 1 0 (vnz)v(ynz) 
0 0 0 I vnz 

12 13 14 1 

Since z is a factor of a term in each component of the fifth column, a 
sixth node can be inserted to remove such terms. This, however, 
involves the temporary insertion of redundant terms in place of some 
of the zero components of the matrix. It is only necessary to show 
these terms above the diagonal as in the matrix which follows: 

1 [wnxnji] [vnwnji] [vnwnji] (wnz)v(wnjinz) wnji 
o 1 [vnwnxJ [vnwnx] (xnz)v(xnwnz) wnx 
o 0 1 0 (vnz)v(ynz) v 
o 0 0 1 vnz v 
11 12 13 14 1 Z 

wnji wnx v z 1 
The redundant component 12 arises because the insertion of node 6 
gives an additional path from node 1 to node 2 via node 6 when 

(wnji)n(wnx) = (wn.'(nji) = 1 

The remaining redundant components arise similarly. It is necessary 
here to check that the redundant components do not permit the earthing 
of a lead for conditions other than those prescribed. In this case, 
only the redundant component 23 gives an undesired path, hence the 
term (vnz) in column 5 is not removed when node 6 is inserted. A 
further node, node 7, can now be inserted to remove terms in column 
5 containing Z. After again checking the redundant terms, the follow­
ing connection matrix is obtained: 

0 0 0 0 w nji 
1 0 0 0 
0 1 0 vnz 0 
0 0 1 0 v 0 
0 vnz 0 z z 

nji wnx 0 v z 1 0 
x y 0 z 0 1 
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This matrix represents the network shown in figure 9.9.3. 

r1 r1 n t I w I x y y y 

r I ! 7f I I r. I 
z z z 

'1 1 -::-$ 

FIG. 9.9.3 

It might appear at first sight that the two z-contacts next to earth 
could be combined, and likewise the two iV-contacts following node 6. 
Such combinations are not possible, however, since in the former 
instance node 2 would be earthed through node 3 when relays v and y 
are operated, and in the latter instance node 2 would be earthed through 
node 1 when relays v and ware operated. It is this type of error that 
the tests with redundant components are specifically designed to 
prevent. 

In the examples considered so far bi-directional devices only have 
been utilized. Both analysis and synthesis techniques apply equally 
well to cases where uni-directional devices are involved, the only 
difference being that the switching matrices are not symmetrical. 

Suppose that the requirement for a two-terminal circuit is given by the 
functions 

112 = (xny)u(ynz) 
121 = (xnz)u(ynz) 

Sincel12 =1= 121> the output matrix F will not be symmetrical, and hence 
at least one uni-directional device will be required. It is, of course, 
possible to write down immediately a circuit satisfying the prescribed 
conditions using two uni-directional devices. However, the matrix 
approach to the problem yields initially 

F = [1 (xny)u(Ynz)] 
(xnz)u(ynz) 1 
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The first step is to insert a non-terminal node 3 to separate the y and z 
occurring in both output terms. This gives a connection matrix 

xny 
1 
z 

A second non-terminal node, node 4, can now be inserted such that a 
path exists from node 1 to node 2 via nodes 3 and 4, thus allowing the 
deletion of component 12. Since components 13 and 31 are already y. 

component 34 can be made unity and component 42 can be made x. 
However (xny) is not a permitted path in the reverse direction, hence 
component 43 must be zero. The required switching conditions are 
now met by making components 14 and 41 take the value x, the primi­
tive connection matrix being 

o 
1 
z 
X 

y 
z 
1 
o 

The required connection between nodes 3 and 4 can be obtained by the 
insertion of a simple uni-directional device. This can be considered for 
switching purposes to take the value 1 for forward transmission, and 
to take the value 0 for backward transmission. The network finally 
obtained is shown in figure 9.9.4. 
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EXERCISES 

1. Perform the simple matrix operations indicated, assuming in each case that the 
matrices represent entries on the Karnaugh maps, as appropriate, shown below: 

(a) [
0
1 0 1 0 J [0 0 1 I

1J 1 1 0 v O I O 

(b) [1 0 J [1 I 0 0
0 J 0 1 () 1 1 1  
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(c) 1 1 
1 0 
o 0 
1 1 

(d) 0 0 
I 0 
o 0 
o 1 

(,) [� � 1 
v ([b 6 

o 1 
I 0 �J) 

2. Write down the primitive connection matrix and the output matrix for each of 
the networks (a) to (d): 

3. Form the matrices C-u, as indicated, from the primitive connection matrices 
(a) to Cd); 

(a) C-5 from [1 0 x Y Z] 
o 1 y Z 0 
x y I 0 x 
y z 0 1 0 
z 0 X 0 1 

(h) C-." fmm [� 
7 177 H711) 
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(c) C-5.1 from 

[; 
0 x v W 

� 
1 0 0 iJ 
0 1 IV 0 
0 IV 1 x 

W iJ 0 x 1 
Z x 0 Z Y 

(d) C-", (rom � 0 0 0 x 

� 
1 x y 0 
x ! Z Z 
Y Z 1 0 
0 Z 0 I 
0 0 o x 

4. Obtain a primitive connection matrix by inserting the appropriate number of 
nodes into each of the connection matrices Ca) to (c): 

Ca) [1 Xuy 
Xuy 1 
Z XIlY 

(b) [� � Y

1
[XIl(YUZ)]U(YIlZ) ] 

[XIl(jU Z)]U(YIlZ) 

(c) The symmetric matrix, C, with components: 

Cll = 1 
C!2 = wnx 
CB = Y 
CI4 =0 
C15 = 0 cn = 1 
C23 = IVllxny 
C24 = wnx 
C25 = zu(wnxny) 
C33 = 1 
C34 = (WIlX)U(XIlY) 
C35 = 0 
C44 = 1 
C45 = (XIlY)U(YIlZ) 
CS5 = I 

5. Expand and simplify the following determinants: 

(a) 
det [; x �J (b) [X y �J x det 1 x 

0 0 0 

Cc) 

dol [� X y 1] (d) [� x y 
x 1 

det 
1 x 

0 0 x I 

y 0 y 0 
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6. Determine the order relations defining all possible switching functions z, which 
may be substituted for the component Y in the networks Ca) and (b) without 
altering the output: 

Ca) 

7. Write down the connection matrix for linking up the three networks shown in 
each of the ways indicated: 

(a) 1-5, 2-4, 7-8, 6-9 

(b) 1-5-9, 2-11, 3-6, 4-10 

(c) 1-8, 3-7-9 

8. Write down the output matrix and derive the primitive connection matrix which 
will satisfy the stated conditions in each of the following: 

(a) y Z f12 In fl4 123 fz4 134 

0 0 0 0 0 0 
0 1 1 0 1 0 0 

0 0 0 1 0 0 0 
1 0 0 0 1 

(b) 1= [YIl(WUX)]U [XIlYIl(WUZ)] 

Cc) I = [v Il WIl(XUZ)]U {XIl [(V Il z) u Cwn z)]} 
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Cd)  Relays operated (of 4) Leads earthed (of 3) 

W, x 1,2 

w,y 3 

W,Z 2 

x,y 1, 3 

X, Z 1, 2, 3 

y,Z 1 

none none 

No other inputs possible. 

(e) Relays operated (of 5) Leads earthed (of 4) 

v, w,x 1,3 
v, w,y 2 
v, w, z 2,4 

v, x,y 1, 3, 4 

v, x, z 1, 2 
v, y, z 1, 4 

w,x,y 2, 3 
w,x,z 3 
w,y,z 4 

x, y, z 2, 3,4 
none none 

No other inputs possible. 

(f) f12 = xv [zn(xvy)] 
hl=Yvz 

(g) !t2 = wv(xny) 
!t3=X 
/z3 = wnx 
121 = wv(xny) 
f31 = 1 

132 = WVXVy 

1 
Matrices with Boolean Components-II 

10.1 Introductory 

In section 9.2 three ways were described in which matrices with 
Boolean components can arise. This chapter will be devoted to 
matrices of the third type, namely those which arise in problems in­
volving the solution of sets of simultaneous Boolean equations, and 
which have been termed Boolean matrices in order to distinguish them 
from the switching matrices already discussed at length in the pre­
ceding chapter. Boolean matrices of this type are particularly suited 
to the analysis and synthesis of digital systems employing delay 
elements, and such application will be described after consideration of 
the special algebraic properties of the matrices. 

10.2 Basic Considerations 

It has been seen that a Karnaugh map can give rise to a trivial 
type of matrix where the elements of the matrix take on the value 
1 or 0 accordingly as there is or is not an entry in the map in the 
corresponding position. If the map is reshaped so that all the cells are 
in one horizontal line, the equivalent matrix will be a vector or row 
matrix of order 1 x 2n. Several such maps placed one below another 
would therefore give rise to a matrix of order p x q, where p is the 
number of functions plotted and q = 2n as before. Each cell of a 
Karnaugh map represents a minimal polynomial, hence the matrix com­
ponents produced in this way will indicate the presence or absence of the 
various minimal polynomials in each function. Figure 10.2.1 shows 
two 1 x 22 maps with a switching function plotted upon each. 

It will be seen that the decimal representations of the minimal 
, polynomials are also indicated, and the two switching functions are 

/ clearly 

and 
11 = (ynz)u(ynz) 
12 = (ynz)u(ynz) = z 

nil 
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If y and Z are now rewritten as Z2 and Zl respectively, a familiar 
kind of matrix equation ensues, namely 

[� 
This may be written 

1 
o 

Bz=1 

where B is the matrix of coefficients and z and I are vectors. This 
represents the simultaneous Boolean equations 

(OIlZI IlZz) v ( 1  IlZl IlZ2) v Cl IlZl IlZ2) V (OIlZl IlZ2) = 11 
( 1  nZI IlZz) v (0 IlZl Il zz) v (l nZl Il zz)v (0 nz! IlZ2) = 12 

o 

I I 

o I 

I 2 
FIG. 10.2.1 

o 

o 

A special type of vector can now be defined having decimal and not 
Boolean components. This is obtained from a Boolean matrix by 
regarding its columns as binary numbers, least significant digit at the 
top, and writing the decimal equivalent below each column . Thus, 
from the matrix 

B = [� 
the vector 

B= 
is obtained. 

1 
o 

1 
1 �J 
3 0] 

The vector A is defined as having components as where 

and 

as = s- 1 

s = 1 ,  2, 3, . . .  , 2" 
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Thus for n = 2 

A = [0 2 3J 
and for n = 3 

A= 2 3 4 5 6 7] 
Clearly, these can be obtained from matrices 

A = [� 1 0 �J 0 
and 

1 0 0 1 0 
A= 0 0 0 1 

0 0 0 1 1 1 

respectively. Clearly, a matrix A is of order n x 2n and the binary 
digits 0 and 1 appear alternatively in row 1 ,  in pairs in row 2, and so 
on up to groups of 2 n-1 in row n. 

It is sometimes useful to group the rows of a matrix A in pairs so 
that the columns produce sets of binary numbers and the vector A 
then becomes a matrix having more than one row. For example, when 
n=4 fo 1 0 1 0 1 0 1 0 1 0 1 

A= 
00 1 1 00 1  1 00 1 1 
o 0 00 1 1 1 1 0 0 0 0 
o 0 0 0 0 000 1 I I I  

o 1 0 IJ o 0 1 1 
1 1 1 1 
1 1 1 1 

If the columns are now taken to represent pairs of binary numbers [0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3J Az = 
0 0 0 0 1 1 1 I 2 2 2 2 3 3 3 3 

where the suffix 2 indicates that the components within the columns 
of A have been taken two at a time. The matrix A for any value of n 
can be regarded as the identity matrix in the algebra of Boolean 
matrices in n-space. 

Boolean matrices have certain properties in common with switching 
matrices and also with the matrices of ordinary algebra. Thus the join 
of two Boolean matrices corresponds to the join of two switching 
"matrices; hence, if 

D =Bv C 
then drs = brsvcrs 
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and the indempotent, commutative, associative, and distributive laws 
will hold for Boolean matrix union. Further, the complement of a 
Boolean matrix B with components b rs is the matrix B with com­
ponents b rs' and the scalar product of a matrix B with some scalar c is 
a matrix with components c () b rs' 

Consider now any Boolean vector or column matrix z. Each of the 
2n possible z's will be equal to one and only one of the columns of 
the n x 2n A-matrix. For example, if 

z= 

then the corresponding A-matrix will be 

[� 

1 
o 
o 

o 
1 
o 

1 
1 
o 

o 
o 
1 

1 
o 
1 

o 
1 
1 

It is seen that only column 6 of A corresponds to the vector z. Such 
a column will be designated ap' 

I t  is now possible to define a special operation of Boolean matrix 
multiplication. Given the matrix product 

BC= D 

the columns of D are obtained one by one by comparing the columns 
of C with the appropriate A-matrix columns, i.e. locating respective 
av

's, the appropriate column of D in each case being the pth column 
of B. For example, consider the product BC, 

1 
1 

o 
1 �J [� 

for which the appropriate A-matrix is 

[� 1 
o 

o 
1 

o 
o 

iJ 

1 
1 �J 

The first column of C is the same as the second column of A, hence 
the first column of the product D is the same as the second column of 
B .  The second column of C corresponds to column 1 of A, hence the 
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second column of D is the same as column 1 of B. The process is 
to yield the final product 

1 
o 

1 
1 �J 

The whole process may be carried out with even greater ease by 
using the decimal vector equivalents. Thus 

B C  = [1 3 2 3) [1 0 3 2J 

yields the product 

[3 1 3 

where each component is simply the (cs+ 1)th component of B. As 
in the case of ordinary matrices, Boolean matrix mUltiplication is not 
commutative, neither does it obey the idempotent law. For the 
matrices B and C above, the product CB can be seen to be 

[� o 
1 

0' d 
which is not the same as the matrix D obtained previously . 

A Boolean matrix is said to be singular when two or more of its 
columns are identical. A singular matrix has a defect of order d, 
where d is the number of columns of the identity matrix A not present 
in it. Thus the matrix 

[� 

1 0 
o 1 
o 0 

o 0 
o 0 
1 1 

1 
o 
1 

1 
1 
1 �] 

which has two pairs of identical columns, is singular and has a defect 
of order 2, since the fourth and seventh columns of the corresponding 
A-matrix are not present. As with ordinary matrices, the inverse of 
a Boolean matrix can be defined only in cases where the matrix is 
non-singular. The process of inversion may be carried out simply by 
a reversal of the process of multiplication . Since the A-matrix is an 
identity matrix, the inverse of a matrix B can be obtained from the 
equation 
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where the components of B-1 are given by subtracting 1 from the 
column number of B in which the number (s -1) occurs for each bs -1. 
Thus the inverse of the decimal vector 

[ 1 2 0 3] 
is the vector 

[2 0 1 3] 

The first component is seen to be 3 - 1 since 0 occurs in the third 
column of B. Clearly 

[1 2 0 3] [2 0 1 3] 
= [2 0 3] [1 2 0 3J 
= [0 2 3J 

Written in full, the above becomes 

[� 0 0 �J [� 0 1 iJ 1 0 0 0 
_ [0 0 1 �J [� 0 0 D - I 0 0 1 0 

= [� 1 0 �J 0 1 

Consider now the problem of finding the components of the vector f 
which satisfies the matrix equation 

B z  =f 

the components of  B and z being stated explicitly. These are obtained 
by first locating column ap of the appropriate A-matrix, 1 now being 
identical to the pth column of B .  For example, given the matrix 
equation, B z  = f, as follows: 

[� � � � � � � �] [b] [�:] 
1 1 0 0 1 0 0 1 1 13 

and referring to the appropriate A-matrix, namely 

[� � � i � � � 
I
!] 

0 0 0 0 1 1 1  
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column 6 of A corresponds to the vector 

and hence the vector f is the same as column 6 of B, namely 

A special case of matrix equation is 

B z  = z 

10.3 

and any vector z which satisfies this equality is termed a characteristic 
vector of B. For example, both 

[�J and [iJ 
are characteristic vectors of the matrix 

[� 
1 0 �J o 0 

since 

[� 1 0 �J [�J [�J 0 0 
and 

[� 1 0 iJ [iJ [iJ 0 0 

The processes, which have been described above in this section, will 
be expressed formally in the section which follows. 

10.3 Formalization of Basic Processes 

The vector A with components 0, 1,2, ... , 2n may be formally de­
fined as that vector having components as where 

n 
as = L 2'-lars; s = 1,2, . . . , 2n 

,=1 

where a,s are the components of the A-matrix already described. It 
can bsily be seen that this is effectively the formula for binary-to-
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decimal conversion. In a similar manner, a vector B can be defined as 
that vector having components where 

n 
= L 2T-1

bys; S = 1,2, . . . , 2n 
r= 1 

brs being the components of any matrix B. 
A set of simultaneous Boolean equations can be expressed in the 

generalized form 
Fr(zf, ZZ, . . • , zn) =fr; r = 1,2, . . . , n 

The components of the matrix of coefficients, B say, are given by 

brs = Flals> azso ... , an,) ; r = 1,2, . .. , n 
s = 1,2, . . . , 2n 

This is merely a formalized algebraic representation of the process of 
obtaining minimal polynomials. For example, consider the equations 

ZluzZ =i1 
(zl (')zZ)U(zl (') ZZ) =f2 

The component b13 of the matrix of coefficients, B, is given by 

b13 = F1(a13, a23) 
= Fl(O, 1) 

= OvO 
=0 

Similarly, the component bzz of B is given by 

bzz = FZ(a12, a2Z) 
= F2(l, 0) 
= (1 (') l)v (OnO) 

= 1 

These results may be checked by expressing the equations in their 
canonical form and comparing the coefficients of the minimal poly­
nomials with those obtained by the formalized algebraic process. 

As an example of the reverse process, consider the Boolean matrix 
equation [1 1 

o 1 
1 0J 1 1 

This represents the set of equations in canonical form 

(l (')Zl (,)zz)v(l (')Z1 (')Z2)U(I nZI (')z2)v{OnZ1 nzz) = ft 
(0 (')2'1 (,)Zz)V (1 (')z 1 (,)zz)U (l nZl (,)zz) v (l nZ1 nzz) = fz 
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These are obtained by use of the expression, quoted by Campeau 1 but 
here stated in a slightly different form 

2n n 
iT = brsn 

the components ats being the components of the A-matrix. 
This expression can be regarded as a definition of the multiplication 

of a vector z with components zr(r = 1,2, . . . , n) by a matrix B with 
components brs(r = 1,2, . . . , n ; s = 1,2, . . .  , 2 n). A simpler 
expression can however be found if the "inner product" of two 
Boolean vectors, Y and z (say) with components Y rand Z r respectively, 
is defined as 

n 
(y, z) = n [(Yr(')zr)v(Yr(')z,)] r=l 

The expression for i r can now be written as 

f= b s (') (z, as) 
s= 

whereiand z are vectors with componentsfr and zr (r = 1,2, . . . ,n), 

and bs and as are the columns of the B-matrix and the identity matrix A 
respectively. 

It is, of course, always possible and by far the simpler method to 
write down the canonical equations directly from the matrix equation. 
Nevertheless, the example which follows is quoted in order to illustrate 
the use of the symbolical expression for fr. Reverting to the B-matrix 
of the equation given shortly above, namely 

the first equation is given by 

s= t= 

1 
1 

{bll (') [eau n Z1) v (all (') z 1) J (') [(aZl (') zz) v (a2l n Zz)]} 
v {b1Z n n Zl) v (a12 (') Zl) J (') [(azz (') Zz) v (aZ2 (') Zz))} 
v {b13 (') [(al3 nz1) v (au (') (') [(aZ3 (') Zz) v (aZ3 (') Zz)]} 
v {b14(') [(a14nZl)v(a14(')Zl)] (') [(aZ4 (,)Zz) v (aZ4nZZ)]} 
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Substituting in the appropriate values from the matrices A and B yields 

whence 

f1 = {I n [(Onz1)u(I nz\)}n [(Onzz)u(l (22)]} 
u {I n nz1)U(On21)]n [(Onzz)u(l nzl)]} 
u {I n [(Onz1)u(l (21)]n [(1 nZl)u(Onzz)]} 
u {On [(1 nz1)u(Onzd]n [(1 nzz)u(Onzz)]} 

This is the first of the two Boolean equations already quoted. 
A simple practical method for obtaining the product of two matrices 

was described in section 10.2. Consider now the matrix equation 

B(Cy) = z 

expressed in the vector form 

z" 
z = U bsn(Cy, as) 

s=1 

Since only one column of A will correspond to any particular vector y, 
namely column ap, the equation can be rewritten as 

2" 
Z = U bsn(cp, a.) 

s=[ 

Now (ak, y) = 1 only for k = p, hence the equality is not invalidated 
if the meet of the right-hand side with (ap, y) is taken together with 
the join with 

If a Boolean matrix D is now defined having columns 

s= 1 
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then the equation for z becomes 
2" 

Z = Udkn(ab y) 
k= 1 

which is equivalent to 
Dy = z 

where 
B(Cy) = (BC)y = Dy 

A formal algebraic definition of Boolean matrix multiplication has 
thus been made. The development of this formalized process is due to 
Campeau/ who defines the expression for drk in terms of the matrices 
A, B, C in a form equivalent to 

2n n 
drk = U brsn n [(Ctknats)U(Ctknats)J 

s= 1 t= 1 
r = 1,2, .. . , n 

k = 1,2, . .. ,2" 
In the example quoted in section 10.2 

B = [� 
and C = [� � 

o �J 

�J 

The 11 component of the matrix D, where BC = D, is therefore given by 
4 2 

dll = U b1sn n [(Ctl nats)u(Ctl nats)] 
s= 1 t= 1 

= [1 n(OuO)n(Ou l)]u [1 nO uO)n(Ou 1)] 
u [On(OuO)n(OuO)]u [1 n(I uO)n(OuO)] 

= OuluOuO 
= 1 

If the terms in the square brackets are extracted from the general 
expression for drk, namely 

(ctk n ats) u (Ctk nats) 

it can be seen that this is in fact 
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The general expression can therefore be written as 
zn n 

drk = U br.n n (Ctk == at.) 
s= 1 t= 1 

as elsewhere proposed by the author.z Using this form of the expres­
sion, the component dZ4, for example, is given by 

4 2 
dZ4= Ub1sn (ct4==ats) 

s= 1 t= 1 
= (On I nO)v(1 nOnO)v(l 0. 1 0. 1) vel nOn 1) 

= OvOvlvO 
= 1 

The determinant of a Boolean matrix is defined by 
2"- 2"-

det B = n U (bb as) 
s= 1 k= 1 

A singular matrix may now be defined as a matrix whose determinant 
is zero. For example, the determinant of the matrix 

is given by 

B = [� 
4 4 

s= 1 k= 1 
=Onlnlnl 
=0 

hence the matrix is singular. An expression for the inverse of a Boolean 
matrix can now be given, analogous to that for the inverse in ordinary 
matrix algebra 

where 

1 [ 2n 
bs -1 = -

d
- n U akn(b., 

et B k= 1 

t= 1 

; s = 1, 2, .. . , 2 n  

and! is not defined. For example, consider the matrix 

B = [1 0 0 1J 
1 1 0 0 
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for which the determinant det B can be found to be equal to unity. 
The columns of B-1 are given by 

bs-1 = In U
1
akn(bk, as)J 

which, by a process analogous to the method of obtaining a Boolean 
matrix product one column at a time, gives 

lOA 

B-1 = [� i b �J 
Vectors of Switching Circuits 

The output of any switching circuit taken across each pair of ter­
minal nodes for a given set of input conditions can be obtained as a 
vector f For example, consider the very simple network shown in 
figure 10.4.1. This yields the equations 

Zl viz = 112 
Zl vzz = 113 

Z1 = 123 

FIG. 1004.1 

Expressed in canonical form these equations become 

(1 nz 1 nz2) v (l nZ1 niz) u (Oni1 nzz) v (1 nZ1 n zz) = I1Z 
(0 n il niz) v (1 nZ1 ni2) u (1 nil nzz) v (1 nZ1 nz2) = 113 
(Oni1 niz)v(l nZ1 ni2)u(Onz1 nzz)v(l nZ1 nz2) = IZ3 

These yield the Boolean matrix equation 

[g i ! l][::J 
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It should be noticed here that the vector z contains only two com­
ponents, whereas the vector I has three. The appropriate A-matrix is 
therefore the 2 x 4 matrix 

A = 
[0 I 0 IJ o 0 1 1 

The vector z corresponds to the first column of the A-matrix if, for 
example, neither Zl nor Zz are operated, and the equation 

therefore has the solution 

i.e. there will be an output only across nodes 1 and 2 for the given 
condition of Zl and Zz. That this is so can readily be seen from the 
figure. 
Now let the input conditions be Zl only operated. The matrix 

equation becomes 

[� ! l] [�] m:] 

for which the solution 

is obtained. In this case there will be an output across every pair of 
nodes, which reference to figure 10.4.1 again shows to be the case. 
Completing the analysis yields 
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for the input conditions Zz only operated, and 

if both Zj and Zz are operated. 

As a second example, consider the network shown in figure 10.4.2 
which has already been considered in sections 9.4 and 9.7. 

(Zl(\ZZ)UZ3 = f12 
Zl u(zz (lZ3) = f13 

ZlUZ2UZ3 = f14 
(Zl(\Z3)U(Z2(1Z3) = /23 

Z2UZ3 = /24 
ZlUZZUZ3 = /34 

These yield the matrix equation 
0 0 0 1 Zj 112 

I 0 1 0 1 113 
I 0 1 1 1 /14 

0 0 0 0 Z2 
123 

0 0 I I 124 
0 Z3- (34 

Since vector Z contains three elements, the appropriate A-matrix is 

[� � � � � � � l�] o 0 0 0 1 1 
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The output vector I can now be obtained for any given set of input 
conditions. Thus if Zz only is operated 

which is equivalent to the third column of the A-matrix; the output is 

o 
o 
o 

1= 
1 
1 

The operation is greatly facilitated by using the decimal vectors 
described in section 10.2. The matrix equation then becomes 

[38 38 56 63 21 63 53 63 J z = f 

and the appropriate vector A-matrix is now 

[0 1 2 3 4 5 6 7] 

If Zz  only is operated, z = 2, and the output is therefore the ( 2+ l)th, 
i.e. the third term of the coefficient decimal vector. Thus f is 56, and 
the output conditions between all the pairs of terminal nodes are given 
by the binary equivalent of 56. 

The problem under consideration may be stated in a way which is 
the reverse of the two cases examined above. Suppose, for example, 
that the output conditions are specified for the network of figure 
10.4.2 by f = 21, i.e. a signal is required across nodes 1 and 2, 1 and 4, 
and 2 and 4 only. The fifth component of the decimal vector describing 
the network is equal to 21, hence the necessary input conditions are 
given by z = 5 - 1  = 4, i.e. Z3 only must be operated. It should be 
noted that output conditions other than those equivalent to columns 
of the coefficient matrix, i.e. terms of the decimal vector, are impossible. 
For instance, if output conditions denoted by f = 1 2  are demanded of 
the same network, the evaluation of the necessary input conditions is 
halted immediately by the fact that f cannot be matched with any 
component of 

[38 38 56 63 21 63 53 63] 
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On the other hand, more than one set of input conditions may give 
rise to a prescribed output. Suppose that a signal is required across 
nodes 1 and 3, and 1 and 4, and therefore across nodes 3 and 4 also. 
This yields f = 38, which corresponds to both the first and second 
components of the decimal vector. Hence, z may be either 0 or 1, and 
the conditions are met if no input elements are operated or if Zl only 
is operated. Clearly, output conditions giving rise to f = 63 could be 
met in three different ways, since 63 appears in three places in the 
decimal vector. 

10.5 Systems with Delay Elements 

The type of matrix with Boolean components described in this 
chapter is particularly suited to the analysis and synthesis of digital 
systems employing delay elements. Thus, if Zl' Z2' . • •  , Zn represent 
the states of n single delay elements of a system at time instant t, then 

FIG. 10.5.1 

11,lz,' .. ,In can represent the states of the same elements at time instant 
t+ 1, and the operation of the system from one time instant to the next 
is represented by a Boolean matrix B. 

Consider the system represented in figure 10.5.1. The corresponding 
set of Boolean equations is 

zlvzz=/l 
ZlV(Z2nZ3) =/2 

Zlnz3 =/3 
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The matrix equation is therefore 

[I I 0 I I 1 

o 1 0 1 1 1 

0 0 0  0 1 0 

The reaction of the system to any given set of input conditions Zl' Zz, 

Z3 may now be investigated. For example, let the initial input be 

The equation now becomes 

[� i � 1 
o 0 0 0 

Since the vector Z corresponds to the first column of the appropriate 

A-matrix, the solution of the equation is obtained from the first column 
of the coefficient matrix, giving 

11 = 1;lz -/3 =0 

The vector 1 thus represents the state of the output after one clock 
pulse. 

It is now possible to put this output as a new set of input conditions 

in order to obtain the output state after two clock pulses. The equation 
now becomes 

[� i � i 
o 0 0 0 

The solution of this equation is seen to be 

11 = /z = 1; 13 = 0 

These values may then be fed into the equation in their turn, and the 
process continued until a complete output cycle for input conditions, 
Zl = Zz = Z3 = 0, is obtained. This is shown in table 10.5.1. 

i1 h h Time 

0 0 0 t (input) 
1 0 0 t+ 1 
1 1 0 t+2 
1 1 0 >t+2 

TABLE 10.5.1 
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It can thus be seen that after two clock pulses the system will "lock" 

with a permanent output 

/1 =/Z = 1;/3 = 0 

Again, if the initial conditions are given by 

z= 

the cycle obtained is that given in table 10.5.2. 

it h h Time 

0 1 0 t (input) 
0 0 0 t+l 
1 0 0 t+2 
1 1 0 ;:;;t+3 

TABLE 10.5.2 

A complete investigation of the output cycles for each possible set of 

input conditions in fact shows that the system will lock on 1, 1, 0 

after not more than three clock pulses whatever the input. 

FIG. 10.5.2 

A second digital system will now be considered. This is illustrated 

in figure 10.5.2. The set of Boolean equations for this system is 

(Zl n2z)u(i\ nz2) = /1 

21 = /2 
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Hence the matrix equation is 

If the initial conditions, Z 1 = Z2 = 0, are postulated, then the cycle of 
table 10.5.3 results. 

It h Time 
0 0 t; 3k 
0 1 t+1+3lc 
1 1 t+2+3k 

TABLE 10.5.3 

If initially Zl = 1, Zz = ° it is seen that the system will lock immedi­
ately on this output. 

The analysis becomes even more simple if decimal notation is adopted. 
Thus in the system just considered 

B = [2 1 3 0J 

The first set of initial conditions is equivalent to 

z=o 

and since this is the same as the first component of 

A = [0 1 2 3] 

the output at t+ 1 is the first component of i.e. 2. The output cycle 
is now obtained as 

0, 2, 3, 0, 2, 3, 0, . . . 

which is the decimal equivalent of that obtained previously. 
It should be noticed that the matrix for the system of figure 10. 5.1 

is singular, but the matrix for the system of figure 1 0.5.2 is non­
singular. Since a singular matrix must have at least two columns 
identical, it is clear that at least one out of the 2n theoretical output 
vectors is not present as a column of the system matrix, and hence can 
never represent the output whatever the input conditions. It should also 
be noticed that a locking state occurred in both systems when a par­
ticular column of B was identical to the corresponding column of A. 
Clearly, this must always be the case, and such a state must be equiva­
lent to a characteristic vector as defined in section 10.2, since 

B/=/ 
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If the output is to be sampled not at every clock pulse but only at 
alternate clock pulses commencing with t + 2, then clearly this is 
equivalent to setting up a system represented by 

B2z =/ 

For example, referring again to the system illustrated in figure 1 0. 5.2, 
if 

B = [0 1 1 
1 0 1 

then 

BZ = BB = [� 1 1 �J [� 1 I �J = [i 1 0 �J 0 1 0 1 ° 0 

or alternatively 
B2 = [3 1 ° 2 ]  

If the input conditions represented by z = ° are now applied, the 
output cycle 

0, 3, 2, 0, 3, 2, 0, . . .  

is obtained. This represents sampling at every other clock pulse as 
can be seen by reference to the output cycle obtained previously for the 
same input. 

In the example just considered, since a three-stage cycle was obtained 

B - B4 - B7 - - B1+3k• k - 0 1 2 - - �- .. . .  - , - " , .. .. " 
B2 = B5 = B8 = .. . = B2+3k 

B3 = B6 = B9 = . . . = B3 + 3k 

and these matrices will each have 

b2 = az = 1 

In general, if it is required to know the state of a digital system after k 
clock pulses, then this is given by the relationship 

Bkz =/ 

For example, consider a system for which 

B = [2 1 3 2 0 7 4 5] 
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Evaluation of successive powers of B yields 

B2 = [3 1 2 3 2 5 0 71 
B3 = [2 1 3 2 3 7 2 5} 
B4 = [3 1 2 3 2 5 3 7] 
B5 = [2 1 3 2 3 7 2 5] 
B6 = [3 ] 2 3 2 5 3 7 J  

and i n  general 

B3+2k = B3; k = 1, 2, ... 
B4+2k = B4 

Thus, the output after 5 clock pulses for an input z = 7 is f = 5. 
Much more than this can be ascertained by examination of the various 
Bk. Clearly, the system will lock immediately for an input z = 1. 
Further, whatever other input is applied the system will quickly settle 
down to repeating some pair of outputs. A complete analysis of the 
system yields the following cycles: 

0, 2, 3, 2, 3, 2, 
1 ,  1, 1, 1, 1, I, 
2, 3, 2, 3, 2, 3, 
3, 2, 3, 2, 3, 2, 
4, 0, 2, 3, 2, 3, .. . 
5, 7, 5, 7, 5, 7, .. . 

6, 4, 0, 2, 3, 2, .. . 
7, 5, 7, 5, 7, 5, .. . 

These may be represented as shown in figure 1 0.5.3. 

o 
FIG. 10.5.3 

The inverse of the matrix B of a system represents that system for 
which the output cycle is reversed. For example, the system with 

B = [I 2 0 3] 
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responds to an input z = 0 with a cycle 

0, 1, 2, 0, I, 2, 0, ... 

The inverse of B has been found earlier to be 

B-1 = [2 0 I 3] 

and this responds to 11 = 0 with the cycle 

0, 2, 1, 0, 2, 1, 

In each case an input z = 3 leads to immediate locking. 

10.6 Synthesis using Decimal Vectors 

The simplest synthesis case is that of designing the logic for a system 
with a prescribed cycle. Suppose that a digital system employing delay 
elements is required having an output cycle, 

1, 3, 6, 2, 5, 7, 1, ... 

together with a locking state 4. The latter requirement immediately 
indicates that 05 = 4. It is also apparent that the B-matrix will be of 
order 3 x 8, and that there must be three outputs. 

The next stage is to write down the appropriate A-vector, with the 
output state next due according to the prescribed cycle underneath 
each as. In this case, the process yields 

[0 1 2 3 4 5 6 7] 
[? 3 5 6 4 7 2 1] 

The lower vector is the required B, which expands to 

[? 1 1 0 0 1 0 1] 
B= ? 1 0 I 0 1 1 0 

70 1 1 1 1 0 0 

The first column represents the output one clock pulse after an input 
z = O. The system can be made to lock on f = 0 for zero input by 
making = O. Alternatively, it could be made to enter the cycle at 
any desired point or to lock on f = 4. If the input z = 0 is not possible, 
it is desirable to leave the first column indeterminate and to use the 
minimal polynomials represented by the indeterminate components as 
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"don't care" conditions, thus aiding the minimization process which 
now follows. Adopting this last principle in the example being con­
sidered yields, after minimization, the set of equations: 

(Zl (") Z3) U [Zl (") (zz U Z3)] = 11 
(")(Zz UZ3)]U(Zl (")ZZ(")Z3) = Iz 

(ZZ(")Z3)U(ZZ(")Z3) = 13 

which, in turn, represents the system shown in figure 10.6.1. 

FIG. 10.6.1 

As a second example, consider the design of a simple parallel adder 
which replaces any two numbers up to three by their sum. The A­
matrix 

A = [0 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  13 1 4  1 5} 

can be written, as has been demonstrated in section 1 0.2, in the form 

[0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3J Az = 
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 
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Each term is now obtained as the sum of the components in column s 
of Az. Thus 

B = [0 1 2 3 1 2 3 4 2 3  4 5 3 4 5  6] 
which expands to [0 1 0 1 1 0 1 o 0 1 0 1 1 0 1 IJ B = 

0 0 1 1 0 1 1 0 1 1 0 0 0 0 
o 0 0 0 0 0 0 1 0 0 1 1 0 1 1 
o 0 0 0 0 0 0 0 0 0  0 0 0 0 0 

FIG. 10.6.2 

This yields, after minimization, the set of equations 

(Zl (")Z3)U(Zl (")Z3) =/1 
(Zl (") Z2 (")Z4)U (i1 (")ZZ (") Z4) V(Zz IlZ3 (")Z4)U (Z2 (") Z3 (")Z4) 

v (")Z2 (")Z3 IlZ4) V (Zl 11Z2 (")Z3 (")Z4) =/2 

�(")�v�Il�(")�u�(")�(")�=h 
o =i4 
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FIG. 10.6.3 

The digital system represented by these equations and incorporating 
delay elements is shown in figure 10.6.2, and a switching network 
producing the same output is shown in figure 10. 6.3. 
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EXERCISES 

1. Write down the full matrix equation and also the equivalent in decimal vector 
form for each of the following sets of Boolean equations: 

W �n�v�=h 
(ZZ(\Z3)v(zlnz2nz3) =/z 

(Zlnz2)vz3 =h 

(b) ZlV(ZZnz3)=h 
zZn(zlvz4) =/z 

(Z2 nZ4)n [(Zl n Z3)U(Zl nZ3)] = h 
(z2(\Z3nZ4)V(ZlnZ2nZ3nZ4) =14 
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(c) (zjnzs)n [(z2nz3nz4)u(zZnz3nz4)] =I! 
ZI u(zlnh)u(zlnz4nzS) = 12 

(z2nz3)n(z4vzS) =13 

ZlnZ2nZ3nzS =14 
(Z2nZ3)U(ZlnZ2nz3nZ4nzS) =15 

2. Determine the Boolean matrix D in each of the following: 

(a) [0 0 I 0 1 0 0 0 0 0 I 0 
I 0 I I I 0 0 U 0 0 I I 0 =D 
o 1 I o 0 0 I 1 1 1 0 0 

(b) 
[� 

o 0 
�J [� 

1 0 

�J =D I 0 o 0 

(c) [0 0 3 1] [1 2 3 OJ =D 

(d )  [7  6 3 2 0 4 5] [6 7 0 1 4 2 5 3] =D 

(e) [3 1 0 2]-1 = D 

(f) [5  4 I 3 o 6 7 2J-1 = D 

(g) [0 3 2 2 5 7 5 2]3 =D 

(h) 

[f 

0 I 0 0 0 0 0 I 1 1 I 0 0 I 

T 
I 1 1 1 0 1 0 I 0 0 o 0 0 1 I 

0 0 0 I 1 0 0 I 1 I I 1 1 0 0 =D 

0 0 0 1 0 0 0 0 0 I 1 1 0 0  1 

3. Carry out a complete analysis of the systems represented by the following matrices 
or decimal vectors, in each case writing the output cycles in the form used in 
figure 10.5.3: 

(a) [g r � i II r lJ 
(b) [0

0
1 g � b i � g �lJ 

0 1 1 0 0 1  

Cc) [3 1 2 5 4 0 0 3 8 
sampled at every clock pulse. 

sampled at every clock pulse. 

sampled at every other clock pulse 
t+2k. 

9 11 13 15 15 8 8J 

(d) {7 3 5 6 3 2 7 0] sampled at clock pulses t+3+4 k. 

(e) 1 1 0 0 0 0 1 I 1 I 0 0 0 1 0 I 1 0 1 1 1 1 1 I 0 0 0 1 0 I 1] 
101 1 I 010 101 1 0 1 1 000 1 0 101 1 001 1 0 1 0 
1 1 101 I 1 100 001 I 1 101 100 1 101 101 100 
110 I I 100 101 100 1 101 I 000 0 0 1 1 1 1 010 
11010010110101101100 01110110111 

sampled at every clock pulse, and also sampled at every third clock pulse 
t+2+3k. 
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4. For the networks (a) to Cc), shown below, write down the sets of Boolean equations 
in canonical forms which define the signals across each pair of terminal nodes, and 
determine the output vectors, f, for the inputs specified: 

(a) 

Inputs: (i) Zl = Z2 = Z3 = 0 

(ii) 
Z= 

(b) 

Inputs: (i) Zr = 0; r = 1,2, . . .  , 6 

(H) Zl = Zs = 1, ZT = 0; r = 3, 4, 5, 6 

(iii) 

MATRICES WITH BOOLEAN COMPONENTS-ll 

Cc) 

Inputs: (i) Zr = 1; r = 1,2, . . .  ,5 

(n) 

Z= 

5. Derive the appropriate B-matrix and also the set of minimized Boolean equations 
for the digital systems having outPuts as indicated in (a) to Cd) below: 

(a) 

Cb) 

(c) 1-5-2-7-0-3-4-6-1- . . .  , 
sampled every third clock pulse. 

(d) Input: Z = 0, 1, . . . , 7 
Output after one clock pulse: z2. 
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6. Sketch the system 

Ca) of question Sea), and 

(b) of question Sed), 

BOOLEAN ALGEBRA 

adopting the form of diagram as utilized in figure 10.6.2 and basing the diagrams 
on the derived minimized Boolean equations. 
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APPENDIX A 

VARIOUS CONVENTIONS FOR COMMON LOGICAL 
OPERATIONS 

Operation Other Names Symbols 

Denial Complementation if 
Negation z' 

z* 
",z 
Nz 

Conjunction Intersection ynz 
Meet y/\z 
And y.z 

yz 
Kyz 

Alternation Inclusive Disjunction yuz 
Union yvz 
Join y+z 
Or Ayz 

Implication Conditional y �z 
Less than or equal to y-+z 

y=>z 
Cyz 

Inclusion Converse Implication y �z 
Greater than or equal to ycz 

Lyz 

Equivalence Biconditional y=" --
y�z 
Eyz 

Non-conjunction Sheffer Stroke Y l z 
ynz 
y7\z 
Dyz 
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Non-alternation Non-disjunction yOz 
yvz 
Syz 

Non-implication Greater than y>z 
y;tz 
y::pz 
Hyz 

Non-inclusion Converse Non-implication y <z 
y�z 
ycj::z 
Tyz 

Non-equivalence Sum Module Two y$z 
Symmetric Difference yEBz 
Exclusive Disjunction y!::,z 
Exclusive Or Ryz 

APPENDIX B 

MATRICES 

A matrix i s  a rectangular array of  numbers which is subject to 
certain rules of combination with other such arrays. The general 
m x n matrix has m rows and n columns and, written with literal terms, 
appears as 

faH an a13 a,"] 
all azz al3 aln 
an an an a3n 

am1 aml am3 amn 

Such a matrix may be designated by A or, alternatively, by [aul where 
i takes the successive values 1, 2, 3, . . . , rn, and j takes the successive 
values 1,2,3, . . . , n. When rn = n the matrix is said to be square and 
of order n .  

Certain square matrices are of special interest, in  particular those 
where all terms are zero except terms on the principal diagonal; the 
principal diagonal being defined as aij, i = j. Such matrices are 
termed diagonal matrices, an important diagonal matrix being the 
unit matrix, U, 

1 
1 

Addition of matrices of equal order m x n is carried out by adding 
corresponding terms of the two matrices. Thus 

Multiplication of a matrix by a scalar quantity is effected by multi­
plying each term of the matrix by the scalar. Thus 

k[aij] = [kaij] 
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2. (a) S(0)0.3f(x, y, z) = 1 
S(Oh.2f(x, y, z) = 0 
S(1)l.zf(x,;, z) = 0 

(c) S(l)O.I. dew, X, y, i) = 0 
S(lh.4f(w, x, y, i) = 1 
S(O)o. zf(w, x, y, i) = 1 

3. Ca) S(l)o. dex, p, z) = 0 
S(O)o. 3f(x, p, z) = 0 
S(O)o. 3f(x, y, i) = 0 
S(O)j. 2f(x, y, z) = 1 

S(lh 3f(x, y, i) = 0 
S(lh.zf(x, y, z) = 1 
S(ll!.2.!(x y, i) = 1 
S(O)j. zf(x, y, i) = 1 

(c) S(Oh. 3, 4f(w, x, y, i) = 1 
S(1)o. 1. dew, x, y, i) = 1 
S(lh, 3, 4f(w, x, y, z )  = 1 
S(lh. 4f(w, x, y, Z) = 0 
S(O)o. 1. 3/(W, x, y, z) = 1 
S(O)o. d(rv, x, y, i) = 0 
S(Oh. 4f(w, x, y, z) = 0 
S(1)o. zj{w, x, y, z) = 0 

ANSWERS 

Cb) S(1)o.1.4f(v, w, x, y, z) = 1 
S(1)z.3,sf(v, w. x, y, i) = 0 
S(O)o,2.3f(v, w, x, y, z) = 0 

(b) S(0)1. 4. sf(v, w, x, y, i) = 0 
S(1)o. I. 4f(v, w, x, y, i) = 0 
SOh. 4. 5 f(v, w, x, y, z) = 0 
S(1h. 3.5 f(v, W, x, y, i) = 1 
S(O)o. I. 4f(v, w, x, y, z) = 0 
S(O)o. 2, 3f(v, w, x, y, i) = 1 
S(Oh. 3, 5f(v, w, x, y, z) = 1 
S(l)o. 2. 3j{V, W, X, y, z) = 1 

4. Ca) Intersection: S(OhU(wnxnyru) = 1 
Union: S(O)O,1.3.4U(wnxnynz) = 1 

(b) Intersection: S(OksU(vnwnxnynz) = 0 
Union: S(0)0.1,4.SU(vnwnxnynz) = 0 

(c) Intersection: 0 
Union: S(Oh,2.3,4.5.6UCilnvnwnxnynz) = 1 

(d) Intersection: S(OhU(wnxnynz) = 1 
Union: I 

5. Ca) Symmetric, (b) Not symmetric, (c) Symmetric. 

6. (a) Symmetric, (b) Symmetric, (c) Symmetric, (d) Not symmetric. 

7. (a) (vnwnxnyni)v(vnlVnxnyni)v(vnwnxnyni) 
v(vn wnxnyn i)v (vn wnxnyn z) 
v�nwnxnyn�v�nwnxnyn� 
v�nwnxnyn�v�nwnxnyn� 
u(vnwnxnynz)v(vnwnxnynz) 
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(b) (vnwnxny)v(vnwnxnz)v(wnxnynz)v(vnwnynz) 
v�nxnyn�v�nwnxn�v�n�nxn� 
v�nwnyn�v�nxnyn�v�nwnxn� 

(c) iiivxvyvi 

Chapter 9 
1. (a) [� 0 n 1 

(c) [r. 1 1 
1 0 
0 1 
1 1 

2. Ca) 

p
� [� 0 z ?] 1 0 

0 1 
i Y 

(b) 

p
�l� 

x y y 
1 0 z 
0 1 x 
z x I 
x Y i 

(c) 

p
�
[! 

0 1 
I 0 
0 1 
x w 
y iii 
0 0 
w 0 

(b) D 0 0 g] 0 1 

Cd) 0 1 f] (,) [0 1 0 
1 1 I 0 1 
1 1 o 0 1 
0 1 o 1 0 

F= xni 
[1 xni (xny)vz] 

I yni 

n :J 
0 0 
x y 
w w 
1 0 
0 1 
0 x 
y 0 

0 
0 
0 
0 
x 
1 
z 

(xny)vz yni 1 

F= [�Vy 
_ 

xuy 
1 

xvyvz xuyui 

�l 

�Vyv�] 
xvyvz 
1 J 

F = Dwn(xvyvZ)]u(wnx) 
[wn(xuyvz)]v(wnx)

] 1 ·  

(d) 1 0 0 0 w 0 0 
0 1 x 0 0 w 0 
0 x 1 y 0 0 x 

p= 0 0 y 1 Y 0 0 
IV 0 0 y 1 0 0 
0 w 0 0 0 1 y 
0 0 x 0 0 y 1 
x 0 0 i 0 0 z [1 xn [(yni)v(wnynz)] 

F= hI I 
131132 

3. (a) [L, 0 xvz n 1 y 
y 1 

Y i 0 
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x 
0 
0 
i 
0 
0 
z 
1 
xn [(yni)U(Wnynz)]] 
xv(wny) 
1 I 

Cb) [1 
xnynz 

�nynzJ 



(c) [1 
C2l 

C31 

C41 

(c) 1 0 
o 1 
y 0 

o 0 
o z 
W x 

o 0 
o 0 
o 0 

ANSWERS 

X()V()W V()X 
1 W()X 
cn 1 
C42 C43 

XU {V() [YU(W()i)]}
] X() [iu(w()y)J 

vuzu [X()(wuy)] 
1 

x 
X
y
:-
] X()Y()Z 

1 
X 

�] 
y 0 0 

o 0 Z 
1 0 0 
o 1 0 
0 0 1 
o 0 0 
y x y 
W x 0 
o y z 

(b) [t 
w 0 
x 0 

o 

o 
o 

o 
o 

IV 0 
o 
o 
1 
w 

o 
o 

x 
y 

x 
o 

w 0 
1 0 
o 1 
o 0 

y 
z 

o 
o 
o 
1 

x 
1 
o 
y 
x 

y 
o 
1 
x 
y 

5. Ca) xuy, (b) y, (c) [(xuy) ()zlu (y() i), (d) 1. 

o 
y 
x 
1 
z 

6. (a) (X()y);az;a(xuy), (b) (W()X()y);a z;a (wuxuj). 
7. Ca) fl 1 

1 1 
z y 

l

w 0 
y z 

o 0 
o 0 

z 
y 

1 
o 
o 
o 
o 

w 
o 
o 
1 
wuy 
y 

o 

y 
z 

o 

o 
o 
o 

wuy Y 
1 0 
o 1 
Z x 

(b) l�
u: ! {uz 

xuy x 0 
y 0 y 
w i 0 

xuy 
x 

o 
1 
z 

o 
(c) x 

x 1 
wuz y 
o 0 
o 0 
o 0 
o 0 
i 0 

wuz 0 
y 0 

1 z 
z 1 
y x 

ji 0 
y 0 

o 0 

0 0 0  
o 0 0 
y ji y 
x 0 0 

1 w 0 
w 1 0 

0 0 1  
o 0 x 
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8. (a) 

(c) 

(d) 1 
o 
o 
x 

y 
o 
o 

(e) 1 

(f) 

o 
o 
o 
o 
x 

o 
o 
o 
o 
o 
w 

o y 0 0 
1 zOO 
z 1 0 y 

o 0 1 z 

o y z 1 
y 0 i 0 

o 0 0 
1 xuz x 
xuz 1 0 
x 0 1 

o 0 Z 
o w 0 
o 0 v 

o 0 x Y 
1 0 0 0 
o 1 0 x 
0 0 1 z 
o x z 1 
y 0 xuz 0 
o y i 0 

o 
o 
1 
o 
o 
o 

o 
o 
o 
1 
o 
o 

o 
o 
o 
o 
1 
v 
x 
v 

o 
1 
o 
o 
o 
o 
o 
o 
o 
y 

w 0 
o 0 
o wuz y 
o 
y 

w 0 

w 
o 
o 

o z ji 
1 1 i 
0 1 0  
i 0 1 

x y x 

o 
o 
o 

ANSWERS 

(b) [� _ 

wux 
wui 

o 

w v z 
0 0 0  
o w 0 

o i 
1 
o 
o 

v 
o 
1 
o 

o 
o 
1 

o 0 
y 0 

o y 
xuz i 

o 0 
1 0 
o 1 

x 0 0 
0 0 0  

o 
o 

o wux 
1 ji 
y 1 
o 0 
x 0 

WUZ 
o 
o 
1 
y 

o w 0 
o 0 0 
v x v 
1 0 0 
0 1 0  
0 0 1 
o 0 0 
zOO 

o y 0 
w 0 x 

o 
wuz 
y 

o 0 w 
ji v w 
o y 0 
wOO 

0 0 0  
z 0 W 

o 
1 
o 

o 
b 
o 
1 
o 
o 
o 

o 
o 
1 (g)r� IV X x 

l! n 
251 

o y 0 
o 0 x 
0 0 0  
1 0 0 
0 1 0  
0 0 1 

w 0 
x y 
x 0 

1 ji 
ji 1 
x 0 

1 0 
Y 0 
z 1 

w 0 
w 0 
o x 
x 0 

o 0 
1 0 
o 1 
o y 
o 0 

o 
o 
o 
y 

o 
o 
y 

1 
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Chapter 10 
1. (a) 0 1 1 0 0 0 0] 

0 1 o 1 1 0 0 
1 1 1 1 0 0 0 

[5 4 7 5 6 1 0 0 ] z=f 

(b) [� 1 0 1 1 1 0 1 o 1 0 1 1 1 0 1] mJ � [�] 1 0 0 1 1 0 0 1 0 0 0  1 0 0 0  
0 0 1 o 0 1 0 o 0 0 0 0 0  0 0 
1 0 0 o 0 0 0 o 0 0 0 0 0 0  1 

[ 10 11  0 5 3 3 4 1 2 1 0 1 3 1 0 9] z = f 

(c) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 

0 0 0 0 0 1 0 0 0 Ill�}[lJ 1 0 1 1 1 1 1 1 1 
0 0 I 1 0 0 0 0 0 
1 0 0 0 0 0 0 0 1 
0 0 0 0 0 1 1 1 0 

{6 4 2 2 18 16 2 0 6 4 2 2 18 16 2 0 2 0 2 2 18 

2. Ca) D 
(b) [g 
(c) [ 0 

(d) [4 

(e) [2 

(f) [4 

\g) [ 0  

(h) U 

0 
0 
1 

0 
1 

3 

5 

2 

2 

0 
1 
0 
0 

1 
0 

7 

3 

7 

2 

1 
1 
0 
0 

0 1 
1 1 
1 0 

g] 
0 ] 

2 

0 ] 

3 

2 2 

0 0 
I 1 
0 0 
0 0 

17 10 0 6 6 2 19 18 18 10 OJ z = f 

0 
0 
0 

6 0 3] 

0 5 6} 

2 2 2] 

1 0 1 0 0 0 0 0 1 1 
1 1 1 1 1 1 1 0 1 1 
0 0 0 1 0 0 0 1 0 0 
0 0 0 1 0 0 0 1 0 0 
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3. (a) 

(0) 

00 

(c) 

'-6T'\ 
00 �/74( 

o 

04 0 )o-/O-"7LSQt 
12 14 

J.> 
8 

(d) 

Note: In parts (a), (b) and (c), each number occurs once only in the solution 
and hence there is no ambiguity. In parts Cd) and (e), however, some numbers 
occur more than once. When this is so, the output cycle for a given initial input 
is obtained by selecting the relevant number where it occurs at the beginning of 
an input line. 
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(e) 

ANSWERS 

111\...0 12� 2S-+ 
..... ,6-13 - 4 7'4( 6

, 27 2 6  

---{ �m� 
30 28 

�/ S  ...L /9- 24-E-

-+--2- 29-20-1- 31 II-t( 

+-22-21-rs-'CY'-+ 

8 23 
I 

for sampling at wery clock pulse 

� ��/H' 
o >-1 0  

""-28 3 0  

� :::t ""(''' ..... 
� t 26 
?Jr E B 

:,-30 / 8-4:-
�25 /J '5� '6-<E-�/4 

.,( 5} 2 6 24 '1 � \ 

for sampling at every third clock pulse t+2+3k. 
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JI-20� 
20-2<t!.-

t 
7 

:S-214G. 

:]-22.of: 

4. (a) (i) (ii) 

(b) (i) (ii) 

(0) (i) 1 (il) 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
1 
0 
0 
0 
0 
0 

5. (a) 1 1 ? 
B= 0 0 ? 

0 1 ? 

(Z1 rtzZ)V(ZZIlZ3) = 11 
(ZlIlZZ)V(ZlIlZZ)VZ3 = 12 

Zl V (ZzrtZ3) = h 
(b) 1 1 1 1 1 

1 0 0 1 1 B= 0 ! I 1 1 
0 0 0 1 0 

ANSWERS 

(ill) 

0 (ill) 1 
0 0 
0 0 
0 0 
0 1 
1 0 
1 0 
0 0 
1 0 
1 1 
0 0 
0 1 
1 0 
1 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 0 
0 0 

0 n 1 
1 1 
0 1 

1 1 0 1 0 0 I 0 0 � 0 0 0 1 1 1 0 1 0 
0 0 0 0 0 0 1 1 1 
1 1 0 1 0 0 1 I 1 

255 



ANSWERS 

{ZZIl[(ZU',Z3)V(ZjIlZ3)]}VZ4 = It 
[ZZIl(Zt VZ4)]U(ZZIlZ3IlZ4) = fz 

�1l�v�ll�nv�ll�n�v�ll�n-h 

{ZZIl [(ZlIlZ4)V(Zj nZ4)]} V {Z3n [Zl V (Z2IlZ4)]} = 14 

(c) [0 
B- 1 

1 

1 
1 
I 

1 I 
1 0 
o 0 

1 0 0 
0 0 1 
1 0 0 

(d) 

6. (a) 

(ZlnZZnZ3)V [Z31l(ZlV zz)J -/1 
(ZlIlZZ)U(ZZnZ3) = fz 

(ZtIlZZIlZ3)V[Z21l(ZjVZ3)J =h 

B- [g 

1 0 1 0 1 0 
0 0 0 0 0 0 
0 1 0 0 0 1 

- 0 0 0 1 0 1 0 
0 0 0 0 1 1 0 
0 0 0 0 0 0 1 

zl =/1 
O=/z 

ZlllZ2 =h 
Zlll [(ZZIlZ3)U(Z2IlZ3)] = 14 

Z3n(ZtVZZ) = Is 
Z21lZ3 =16 
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